
Base SAS® 9
Procedures Guide
Volume 2



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2002.
Base SAS ® 9 Procedures Guide. Cary, NC: SAS Institute Inc.

Base SAS® 9 Procedures Guide
Copyright © 2002 by SAS Institute Inc., Cary, NC, USA
ISBN 1-58025-942-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc. This title includes documentation for early
adopter features. THIS DOCUMENTATION FOR AN EARLY ADOPTER FEATURE IS A
PRELIMINARY DRAFT AND IS PROVIDED BY SAS INSTITUTE INC. ON AN "AS IS"
BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTIBILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The company
does not warrant that this documentation is complete, accurate, similar to that which
may be released to the general public, or that any such documentation will be released.
The company shall not be liable whatsoever for any damages arising out of the use of this
documentation, including any direct, indirect, or consequential damages. The company
reserves the right to alter or abandon use of this documentation at any time.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, June 2002
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at www.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

What’s New xi

Overview xi

Details xi

P A R T 1 Concepts 1

Chapter 1 � Choosing the Right Procedure 3
Functional Categories of Base SAS Procedures 3

Report-Writing Procedures 4

Statistical Procedures 6

Utility Procedures 8

Brief Descriptions of Base SAS Procedures 10

Chapter 2 � Fundamental Concepts for Using Base SAS Procedures 15
Language Concepts 16

Procedure Concepts 19

Output Delivery System 32

Chapter 3 � Statements with the Same Function in Multiple Procedures 53
Overview 53

Statements 54

P A R T 2 Procedures 67

Chapter 4 � The APPEND Procedure 71
Overview: APPEND Procedure 71

Syntax: PROC APPEND 71

Chapter 5 � The CALENDAR Procedure 73
Overview: CALENDAR Procedure 74

Syntax: CALENDAR Procedure 79

Concepts: CALENDAR Procedure 97

Results: CALENDAR Procedure 107

Examples: CALENDAR Procedure 108

Chapter 6 � The CATALOG Procedure 143
Overview: CATALOG Procedure 143

Syntax: PROC CATALOG 144

Concepts: CATALOG Procedure 154

Examples: CATALOG Procedure 158

Chapter 7 � The CHART Procedure 165
Overview: CHART Procedure 165



iv

Syntax: CHART Procedure 170

Concepts: CHART Procedure 183

Results: CHART Procedure 183

Examples: CHART Procedure 184

References 197

Chapter 8 � The CIMPORT Procedure 199
Overview: CIMPORT Procedure 199

Syntax: PROC CIMPORT 200

Results: CIMPORT Procedure 205

Examples: CIMPORT Procedure 205

Chapter 9 � The COMPARE Procedure 209
Overview: COMPARE Procedure 209

Syntax: COMPARE Procedure 213

Concepts: COMPARE Procedure 224

Results: COMPARE Procedure 228

Examples: COMPARE Procedure 239

Chapter 10 � The CONTENTS Procedure 257
Overview: CONTENTS Procedure 257

Syntax: PROC CONTENTS 257

Chapter 11 � The COPY Procedure 259
Overview: COPY Procedure 259

Syntax: PROC COPY 259

Concepts: COPY Procedure 260

Example: COPY Procedure 260

Chapter 12 � The CORR Procedure 263
Overview: CORR Procedure 263

Syntax: CORR Procedure 267

Concepts: CORR Procedure 276

Statistical Computations: CORR Procedure 279

Results: CORR Procedure 287

Examples: CORR Procedure 291

References 306

Chapter 13 � The CPORT Procedure 307
Overview: CPORT Procedure 307

Syntax: PROC CPORT 308

Concepts: CPORT Procedure 316

Results: CPORT Procedure 317

Examples: CPORT Procedure 317

Chapter 14 � The CV2VIEW Procedure 323
Information about the CV2VIEW Procedure 323



v

Chapter 15 � The DATASETS Procedure 325
Overview: DATASETS Procedure 326

Syntax: PROC DATASETS 329

Concepts: DATASETS Procedure 375

Results: DATASETS Procedure 381

Examples: DATASETS Procedure 392

Chapter 16 � The DBCSTAB Procedure 407
Overview: DBCSTAB Procedure 407

Syntax: DBCSTAB Procedure 407

Details: When Do I Use the DBCSTAB Procedure? 408

Examples: DBCSTAB Procedure 409

See Also 411

Chapter 17 � The DISPLAY Procedure 413
Overview: DISPLAY Procedure 413

Syntax: DISPLAY Procedure 413

Example: DISPLAY Procedure 414

Chapter 18 � The DOCUMENT Procedure 417
Information about the DOCUMENT Procedure 417

Chapter 19 � The EXPLODE Procedure 419
Overview: EXPLODE Procedure 419

Syntax: EXPLODE Procedure 420

Examples: EXPLODE Procedure 423

Chapter 20 � The EXPORT Procedure 427
Overview: EXPORT Procedure 427

Syntax: PROC EXPORT 428

Examples: PROC EXPORT 434

Chapter 21 � The FORMAT Procedure 441
Overview: FORMAT Procedure 441

Syntax: FORMAT Procedure 443

Informat and Format Options 462

Specifying Values or Ranges 464

Concepts: FORMAT Procedure 465

Results: FORMAT Procedure 468

Examples: FORMAT Procedure 474

See Also 493

Chapter 22 � The FORMS Procedure 495
Overview: FORMS Procedure 495

Syntax: FORMS Procedure 497

Concepts: FORMS Procedure 503

Examples: FORMS Procedure 505



vi

Chapter 23 � The FREQ Procedure 513
Overview: FREQ Procedure 515

Syntax: FREQ Procedure 518

Concepts: FREQ Procedure 541

Statistical Computations: FREQ Procedure 544

Results: FREQ Procedure 585

Examples: FREQ Procedure 592

References 623

Chapter 24 � The FSLIST Procedure 627
Overview: FSLIST Procedure 627

Syntax: FSLIST Procedure 627

Chapter 25 � The IMPORT Procedure 633
Overview: IMPORT Procedure 633

Syntax: PROC IMPORT 634

Examples: IMPORT Procedure 641

Chapter 26 � The MEANS Procedure 649
Overview: MEANS Procedure 650

Syntax: MEANS Procedure 652

Concepts: MEANS Procedure 675

Statistical Computations: MEANS Procedure 678

Results: MEANS Procedure 681

Examples: MEANS Procedure 683

References 712

Chapter 27 � The OPTIONS Procedure 713
Overview: OPTIONS Procedure 713

Syntax: OPTIONS Procedure 716

Results: OPTIONS Procedure 717

Examples: OPTIONS Procedure 717

Chapter 28 � The OPTLOAD Procedure 721
Overview: OPTLOAD Procedure 721

Syntax: OPTLOAD Procedure 721

Chapter 29 � The OPTSAVE Procedure 723
Overview: OPTSAVE Procedure 723

Syntax: OPTSAVE Procedure 723

Chapter 30 � The PLOT Procedure 725
Overview: PLOT Procedure 726

Syntax: PLOT Procedure 728

Concepts: PLOT Procedure 744

Results: PLOT Procedure 749

Examples: PLOT Procedure 750



vii

Chapter 31 � The PMENU Procedure 779
Overview: PMENU Procedure 779

Syntax: PMENU Procedure 780

Concepts: PMENU Procedure 793

Examples: PMENU Procedure 796

Chapter 32 � The PRINT Procedure 817
Overview: PRINT Procedure 817

Syntax: PRINT Procedure 820

Results: Print Procedure 834

Examples: PRINT Procedure 837

Chapter 33 � The PRINTTO Procedure 879
Overview: PRINTTO Procedure 879

Syntax: PRINTTO Procedure 880

Concepts: PRINTTO Procedure 883

Examples: PRINTTO Procedure 883

Chapter 34 � The PRTDEF Procedure 893
Overview: PRTDEF Procedure 893

Syntax: PRTDEF Procedure 893

Input Data Set: PRTDEF Procedure 895

Examples: PRTDEF Procedure 899

See Also 903

Chapter 35 � The PRTEXP Procedure 905
Overview: PRTEXP Procedure 905

Syntax: PRTEXP Procedure 905

Concepts: PRTEXP Procedure 906

Examples: PRTEXP Procedure 907

See Also 908

Chapter 36 � The RANK Procedure 909
Overview: RANK Procedure 909

Syntax: RANK Procedure 911

Concepts: RANK Procedure 915

Results: RANK Procedure 916

Examples: RANK Procedure 917

References 923

Chapter 37 � The REGISTRY Procedure 925
Overview: REGISTRY Procedure 925

Syntax: REGISTRY Procedure 925

Creating Registry Files with the REGISTRY Procedure 929

Examples: REGISTRY Procedure 932

See Also 936



viii

Chapter 38 � The REPORT Procedure 937
Overview: REPORT Procedure 939

Concepts: REPORT Procedure 944

Syntax: REPORT Procedure 958

REPORT Procedure Windows 1000

How PROC REPORT Builds a Report 1024

Examples: REPORT Procedure 1037

Chapter 39 � The SORT Procedure 1091
Overview: SORT Procedure 1091

Syntax: SORT Procedure 1093

Concepts: SORT Procedure 1100

Integrity Constraints: SORT Procedure 1102

Results: SORT Procedure 1102

Examples: SORT Procedure 1103

Chapter 40 � The SQL Procedure 1113
Overview: SQL Procedure 1115

Syntax: SQL Procedure 1117

SQL Procedure Component Dictionary 1154

Concepts: SQL Procedure 1197

PROC SQL and the ANSI Standard 1204

Examples: SQL Procedure 1207

Chapter 41 � The STANDARD Procedure 1243
Overview: STANDARD Procedure 1243

Syntax: STANDARD Procedure 1245

Results: STANDARD Procedure 1250

Statistical Computations: STANDARD Procedure 1250

Examples: STANDARD Procedure 1251

Chapter 42 � The SUMMARY Procedure 1257
Overview: SUMMARY Procedure 1257

Syntax: SUMMARY Procedure 1257

Chapter 43 � The TABULATE Procedure 1259
Overview: TABULATE Procedure 1260

Terminology Used with PROC TABULATE 1263

Syntax: TABULATE Procedure 1266

Concepts: TABULATE Procedure 1291

Results: TABULATE Procedure 1299

Examples: TABULATE Procedure 1310

References 1361

Chapter 44 � The TEMPLATE Procedure 1363
Information about the TEMPLATE Procedure 1363



ix

Chapter 45 � The TIMEPLOT Procedure 1365
Overview: TIMEPLOT Procedure 1365

Syntax: TIMEPLOT Procedure 1367

Results: TIMEPLOT Procedure 1375

Examples: TIMEPLOT Procedure 1376

Chapter 46 � The TRANSPOSE Procedure 1387
Overview: TRANSPOSE Procedure 1387

Syntax: TRANSPOSE Procedure 1389

Results: TRANSPOSE Procedure 1395

Examples: TRANSPOSE Procedure 1396

Chapter 47 � The TRANTAB Procedure 1409
Overview: TRANTAB Procedure 1409

Concepts: TRANTAB Procedure 1410

Syntax: TRANTAB Procedure 1413

Examples: TRANTAB Procedure 1419

Chapter 48 � The UNIVARIATE Procedure 1435
Overview: UNIVARIATE Procedure 1436

Syntax: UNIVARIATE Procedure 1442

Concepts: UNIVARIATE Procedure 1511

Statistical Computations: UNIVARIATE Procedure 1517

Results: UNIVARIATE Procedure 1540

Examples: UNIVARIATE Procedure 1543

References 1572

P A R T 3 Appendices 1575

Appendix 1 � SAS Elementary Statistics Procedures 1577
Overview 1577

Keywords and Formulas 1578

Statistical Background 1586

References 1611

Appendix 2 � Operating Environment-Specific Procedures 1613
Descriptions of Operating Environment-Specific Procedures 1613

Appendix 3 � Raw Data and DATA Steps 1615
Overview 1615

AIRCRAFT 1615

CENSUS 1616

CHARITY 1617

CUSTOMER_RESPONSE 1619

DJIA 1621

EDUCATION 1622

EMPDATA 1623



x

ENERGY 1625

GROC 1626

HOMELOANS 1627

MATCH_11 1641

PROCLIB.DELAY 1642

PROCLIB.EMP95 1643

PROCLIB.EMP96 1644

PROCLIB.INTERNAT 1645

PROCLIB.LAKES 1646

PROCLIB.MARCH 1646

PROCLIB.PAYLIST2 1647

PROCLIB.PAYROLL 1648

PROCLIB.PAYROLL2 1651

PROCLIB.SCHEDULE 1651

PROCLIB.STAFF 1654

PROCLIB.SUPERV 1657

RADIO 1658

STATEPOP 1670

Appendix 4 � Recommended Reading 1673
Recommended Reading 1673

Index 1675



817

C H A P T E R

32
The PRINT Procedure

Overview: PRINT Procedure 817
Syntax: PRINT Procedure 820

PROC PRINT Statement 820

BY Statement 829

ID Statement 830

PAGEBY Statement 831
SUM Statement 832

SUMBY Statement 833

VAR Statement 833

Results: Print Procedure 834

Procedure Output 834

Page Layout 834
Column Headings 836

Column Width 836

Examples: PRINT Procedure 837

Example 1: Selecting Variables to Print 837

Example 2: Customizing Text in Column Headers 840
Example 3: Creating Separate Sections of a Report for Groups of Observations 844

Example 4: Summing Numeric Variables with One BY Group 849

Example 5: Summing Numeric Variables with Multiple BY Variables 853

Example 6: Limiting the Number of Sums in a Report 858

Example 7: Controlling the Layout of a Report with Many Variables 863
Example 8: Creating a Customized Layout with BY Groups and ID Variables 869

Example 9: Printing All the Data Sets in a SAS Library 875

Overview: PRINT Procedure

The PRINT procedure prints the observations in a SAS data set, using all or some of
the variables. You can create a variety of reports ranging from a simple listing to a
highly customized report that groups the data and calculates totals and subtotals for
numeric variables.

Output 32.1 on page 818 illustrates the simplest kind of report that you can produce.
The statements that produce the output follow. Example 1 on page 837 creates the data
set EXPREV.

options nodate pageno=1 linesize=64 pagesize=60;

proc print data=exprev;
run;



818 Overview: PRINT Procedure � Chapter 32

Output 32.1 Simple Listing Report Produced with PROC PRINT

The SAS System 1

Obs Region State Month Expenses Revenues

1 Southern GA JAN95 2000 8000
2 Southern GA FEB95 1200 6000
3 Southern FL FEB95 8500 11000
4 Northern NY FEB95 3000 4000
5 Northern NY MAR95 6000 5000
6 Southern FL MAR95 9800 13500
7 Northern MA MAR95 1500 1000

The following HTML report is a customized report that is produced by PROC PRINT
using ODS. The statements that create this report

� create HTML output
� customize the appearance of the report
� customize the title and the column headings
� place dollar signs and commas in numeric output
� selectively include and control the order of variables in the report
� group the data by JobCode
� sum the values for Salary for each job code and for all job codes.

For an explanation of the program that produces this report, see “Program: Creating
an HTML Report with the STYLE= Option” on page 873.



The PRINT Procedure � Overview: PRINT Procedure 819

Display 32.1 Customized Report Produced by PROC PRINT Using ODS



820 Syntax: PRINT Procedure � Chapter 32

Syntax: PRINT Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC PRINT <option(s)>;

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>
<NOTSORTED>;

PAGEBY BY-variable;
SUMBY BY-variable;

ID variable(s) <option>;

SUM variable(s) <option>;
VAR variable(s) <option>;

To do this Use this statement

Produce a separate section of the report for each BY
group

BY

Identify observations by the formatted values of the
variables that you list instead of by observation
numbers

ID

Control page ejects that occur before a page is full PAGEBY

Limit the number of sums that appear in the report SUMBY

Total values of numeric variables SUM

Select variables that appear in the report and
determine their order

VAR

PROC PRINT Statement

PROC PRINT <option(s)>;

To do this Use this option

Specify text for the HTML contents link to the output CONTENTS=



The PRINT Procedure � PROC PRINT Statement 821

To do this Use this option

Specify the input data set DATA=

Control general format

Write a blank line between observations DOUBLE

Print the number of observations in the data set,
in BY groups, or both, and specify explanatory
text to print with the number

N=

Suppress the column in the output that
identifies each observation by number

NOOBS

Specify a column header for the column that
identifies each observation by number

OBS=

Round unformatted numeric values to two
decimal places

ROUND

Control page format

Format the rows on a page ROWS=

Use each variable’s formatted width as its
column width on all pages

WIDTH=UNIFORM

Control column format

Control the orientation of the column headings HEADING=

Use variables’ labels as column headings LABEL or SPLIT=

Specify the split character, which controls line
breaks in column headings

SPLIT=

Specify one or more style elements for the
Output Delivery System to use for different
parts of the report

STYLE=

Determine the column width for each variable WIDTH=

Options

CONTENTS=link-text
specifies the text for the links in the HTML contents file to the output produced by
the PROC PRINT statement. For information on HTML output, see SAS Output
Delivery System User’s Guide.
Restriction: CONTENTS= does not affect the HTML body file. It affects only the

HTML contents file.

DATA=SAS-data-set
specifies the SAS data set to print.
Main discussion: “Input Data Sets” on page 19

DOUBLE
writes a blank line between observations.
Alias: D
Restriction: This option has no effect on the HTML output.



822 PROC PRINT Statement � Chapter 32

Featured in: Example 1 on page 837

HEADING=direction
controls the orientation of the column headings, where direction is one of the
following:

HORIZONTAL
prints all column headings horizontally.

Alias: H

VERTICAL
prints all column headings vertically.

Alias: V

Default: Headings are either all horizontal or all vertical. If you omit HEADING=,
PROC PRINT determines the direction of the column headings as follows:

� If you do not use LABEL, spacing dictates whether column headings are
vertical or horizontal.

� If you use LABEL and at least one variable has a label, all headings are
horizontal.

LABEL
uses variables’ labels as column headings.

Alias: L

Default: If you omit LABEL, PROC PRINT uses the variable’s name as the column
heading even if the PROC PRINT step contains a LABEL statement. If a variable
does not have a label, PROC PRINT uses the variable’s name as the column
heading.

Interaction: By default, if you specify LABEL and at least one variable has a label,
PROC PRINT prints all column headings horizontally. Therefore, using LABEL
may increase the number of pages of output. (Use HEADING=VERTICAL in the
PROC PRINT statement to print vertical column headings.)

Interaction: PROC PRINT sometimes conserves space by splitting labels across
multiple lines. Use SPLIT= in the PROC PRINT statement to control where these
splits occur. You do not need to use LABEL if you use SPLIT=.

Tip: To create a blank column header for a variable, use this LABEL statement in
your PROC PRINT step:

label variable-name=’00’x;

See also: For information on using the LABEL statement to create temporary
labels in procedures see Chapter 3, “Statements with the Same Function in
Multiple Procedures,” on page 53.

For information on using the LABEL statement in a DATA step to create
permanent labels, see the section on statements in SAS Language Reference:
Dictionary.

Featured in: Example 3 on page 844

Note: The SAS system option LABEL must be in effect in order for any procedure
to use labels. For more information see the section on system options in SAS
Language Reference: Dictionary �

N<=“string-1” <“string-2”>>
prints the number of observations in the data set, in BY groups, or both and specifies
explanatory text to print with the number.



The PRINT Procedure � PROC PRINT Statement 823

If you use the N option ... PROC PRINT ...

with neither a BY nor a SUM statement prints the number of observations in the data set
at the end of the report and labels the number
with the value of string-1.

with a BY statement prints the number of observations in the BY group
at the end of each BY group and labels the number
with the value of string-1.

with a BY statement and a SUM statement prints the number of observations in the BY group
at the end of each BY group and prints the
number of observations in the data set at the end
of the report. The numbers for BY groups are
labeled with string-1; the number for the entire
data set is labeled with string-2.

Featured in: Example 2 on page 840 (alone)

Example 3 on page 844 (with a BY statement)
Example 4 on page 849 (with a BY statement and a SUM statement)

NOOBS
suppresses the observation number in the output.

Featured in: Example 3 on page 844

OBS=“column-header”
specifies a column header for the column that identifies each observation by number.

Tip: OBS= honors the split character (see the discussion of SPLIT= on page 824 ).

Featured in: Example 2 on page 840

ROUND
rounds unformatted numeric values to two decimal places. (Formatted values are
already rounded by the format to the specified number of decimal places.) For both
formatted and unformatted variables, PROC PRINT uses these rounded values to
calculate any sums in the report.

If you omit ROUND, PROC PRINT adds the actual values of the rows to obtain
the sum even though it displays the formatted (rounded) values. Any sums are also
rounded by the format, but they include only one rounding error, that of rounding the
sum of the actual values. The ROUND option, on the other hand, rounds values
before summing them, so there may be multiple rounding errors. The results without
ROUND are more accurate, but ROUND is useful for published reports where it is
important for the total to be the sum of the printed (rounded) values.

Be aware that the results from PROC PRINT with the ROUND option may differ
from the results of summing the same data with other methods such as PROC
MEANS or the DATA step. Consider a simple case in which

� the data set contains three values for X: .003, .004, and .009.

� X has a format of 5.2.

Depending on how you calculate the sum, you can get three different answers:
0.02, 0.01, and 0.016. The following figure shows the results of calculating the sum
with PROC PRINT (without and with the ROUND option) and PROC MEANS.



824 PROC PRINT Statement � Chapter 32

Figure 32.1 Three Methods of Summing Variables

OBS X

1 0.00
2 0.00
3 0.01

=====
0.02

PROC PRINT without PROC PRINT with
Actual Values the ROUND option the ROUND option PROC MEANS

.003

.004

.009
=====
.016

Analysis Variable : X

Sum
------------

0.0160000
------------

OBS X

1 0.00
2 0.00
3 0.01

=====
0.01

===================================================================================

===================================================================================

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

Notice that the sum produced without the ROUND option (.02) is closer to the
actual result (0.16) than the sum produced with ROUND (0.01). However, the sum
produced with ROUND reflects the numbers displayed in the report.
Alias: R

CAUTION:
Do not use ROUND with PICTURE formats. ROUND is for use with numeric values.
SAS procedures treat variables that have picture formats as character variables.
Using ROUND with such variables may lead to unexpected results. �

ROWS= page-format
formats rows on a page. Currently, PAGE is the only value that you can use for
page-format:

PAGE
prints only one row of variables for each observation per page. When you use
ROWS=PAGE, PROC PRINT does not divide the page into sections; it prints as
many observations as possible on each page. If the observations do not fill the last
page of the output, PROC PRINT divides the last page into sections and prints all
the variables for the last few observations.

Restriction: Physical page size does not mean the same thing in HTML output as it
does in traditional procedure output. Therefore, HTML output from PROC PRINT
appears the same whether or not you use ROWS=.

Tip: The PAGE value can reduce the number of pages in the output if the data set
contains large numbers of variables and observations. However, if the data set
contains a large number of variables but few observations, the PAGE value can
increase the number of pages in the output.

See also: “Page Layout” on page 834 for discussion of the default layout.
Featured in: Example 7 on page 863

SPLIT=’split-character’
specifies the split character, which controls line breaks in column headers. It also
uses labels as column headers. PROC PRINT breaks a column heading when it
reaches the split character and continues the header on the next line. The split
character is not part of the column heading although each occurrence of the split
character counts toward the 256-character maximum for a label.
Alias: S=
Interaction: You do not need to use both LABEL and SPLIT= because SPLIT=

implies the use of labels.



The PRINT Procedure � PROC PRINT Statement 825

Interaction: The OBS= option honors the split character. (See the discussion of
OBS= on page 823.)

Featured in: Example 2 on page 840

Note: PROC PRINT does not split labels of BY variables in the heading preceding
each BY group even if you specify SPLIT=. Instead, PROC PRINT replaces the split
character with a blank. �

STYLE=

<(location(s))>=<style-element-name><[style-attribute-specification(s)]>

specifies the style element to use for the specified locations in the report.

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �

location
identifies the part of the report that the STYLE= option affects. The following
table shows the available locations and the other statements in which you can
specify them.

Note: Style specifications in a statement other than the PROC PRINT
statement override the same style specification in the PROC PRINT statement.
However, style attributes that you specify in the PROC PRINT statement are
inherited, provided that you do not override the style with style specifications in
another statement. For instance, if you specify a blue background and a white
foreground for all column headers in the PROC PRINT statement, and you specify
a gray background for the column headers of a variable in the VAR statement, the
background for that particular column header is gray, and the foreground is white
(as specified in the PROC PRINT statement). �

Table 32.1 Specifying Locations in the STYLE= Option

This location Affects this part of the report And can also be specified for
individual items in this
statement

BYLABEL the label for the BY variable
on the line containing the
SUM totals

none

DATA the cells of all columns VAR

ID

SUM

GRANDTOTAL the SUM line containing the
grand totals for the whole
report

SUM

HEADER all column headers VAR

ID

SUM

N N= table and contents none

OBS the data in the OBS column none

OBSHEADER the header of the OBS
column

none



826 PROC PRINT Statement � Chapter 32

This location Affects this part of the report And can also be specified for
individual items in this
statement

TABLE the structural part of the
report - that is, the
underlying table used to set
things like the width of the
border and the space
between cells

none

TOTAL the SUM line containing
totals for each BY group

SUM

For your convenience and for consistency with other procedures, the following
table shows aliases for the different locations.

Table 32.2 Aliases for Locations

Location Aliases

BYLABEL BYSUMLABEL

BYLBL

BYSUMLBL

DATA COLUMN

COL

GRANDTOTAL GRANDTOT

GRAND

GTOTAL

GTOT

HEADER HEAD

HDR

N none

OBS OBSDATA

OBSCOLUMN

OBSCOL

OBSHEADER OBSHEAD

OBSHDR

TABLE REPORT

TOTAL TOT

BYSUMLINE

BYLINE

BYSUM

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. Users can
create their own style definitions with PROC TEMPLATE.



The PRINT Procedure � PROC PRINT Statement 827

When style elements are processed, more specific style elements override less
specific style elements.
Default: The following table shows the default style element for each location.

Table 32.3 The Default Style Element for Each Location in PROC PRINT

Location Default style element

BYLABEL Header

DATA Data (for all but ID statement)

RowHeader (for ID statement)

GRANDTOTAL Header

HEADER Header

N NoteContent

OBS RowHeader

OBSHEADER Header

TABLE Table

TOTAL Header

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value
You can set these style attributes in the TABLE location:

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

*When you use these attributes, they affect only the text that is specified with the
PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the
foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.



828 PROC PRINT Statement � Chapter 32

You can set these style attributes in all locations other than TABLE:

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=

For information about style attributes, see DEFINE STYLE statement in SAS
Output Delivery System User’s Guide.
Restriction: This option affects all destinations except Listing and Output.

UNIFORM
See WIDTH=UNIFORM on page 828.

WIDTH=column-width
determines the column width for each variable. The value of column-width must be
one of the following:

FULL
uses a variable’s formatted width as the column width. If the variable does not
have a format that explicitly specifies a field width, PROC PRINT uses the default
width. For a character variable, the default width is the length of the variable.
For a numeric variable, the default width is 12. When you use WIDTH=FULL, the
column widths do not vary from page to page.

Tip: Using WIDTH=FULL can reduce execution time.

MINIMUM
uses for each variable the minimum column width that accommodates all values of
the variable.

Alias: MIN

UNIFORM
uses each variable’s formatted width as its column width on all pages. If the
variable does not have a format that explicitly specifies a field width, PROC
PRINT uses the widest data value as the column width. When you specify
WIDTH=UNIFORM, PROC PRINT normally needs to read the data set twice.



The PRINT Procedure � BY Statement 829

However, if all the variables in the data set have formats that explicitly specify a
field width (for example, BEST12. but not BEST.), PROC PRINT reads the data
set only once.
Alias: U
Tip: If the data set is large and you want a uniform report, you can save computer

resources by using formats that explicitly specify a field width so that PROC
PRINT reads the data only once.

Tip: WIDTH=UNIFORM is the same as UNIFORM.
Restriction: When not all variables have formats that explicitly specify a width,

you cannot use WIDTH=UNIFORM with an engine that supports concurrent
access if another user is updating the data set at the same time.

UNIFORMBY
formats all columns uniformly within a BY group, using each variable’s formatted
width as its column width. If the variable does not have a format that explicitly
specifies a field width, PROC PRINT uses the widest data value as the column
width.
Alias: UBY
Restriction: You cannot use UNIFORMBY with a sequential data set.

Default: If you omit WIDTH= and do not specify the UNIFORM option, PROC
PRINT individually constructs each page of output. The procedure analyzes the
data for a page and decides how best to display them. Therefore, column widths
may differ from one page to another.

Tip: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=.

See also: For a discussion of default column widths, see “Column Width” on page
836.

BY Statement

Produces a separate section of the report for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 3 on page 844, Example 4 on page 849, Example 5 on page 853,
Example 6 on page 858, and Example 8 on page 869

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>

<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables



830 ID Statement � Chapter 32

that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 869.)

Using the BY Statement with the NOBYLINE Option
If you use the BY statement with the SAS system option NOBYLINE, which

suppresses the BY line that normally appears in output produced with BY-group
processing, PROC PRINT always starts a new page for each BY group. This behavior
ensures that if you create customized BY lines by putting BY-group information in the
title and suppressing the default BY lines with NOBYLINE, the information in the
titles matches the report on the pages.

ID Statement

Identifies observations by using the formatted values of the variables that you list instead of by
using observation numbers.

Featured in: Example 7 on page 863 and Example 8 on page 869

ID variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

variable(s)



The PRINT Procedure � PAGEBY Statement 831

specifies one or more variables to print instead of the observation number at the
beginning of each row of the report.

Restriction: If the ID variables occupy so much space that no room remains on the
line for at least one other variable, PROC PRINT writes a warning to the SAS log
and does not treat all ID variables as ID variables.

Interaction: If a variable in the ID statement also appears in the VAR statement,
the output contains two columns for that variable.

Options

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for ID columns created with the ID statement. For
information about the arguments of this option and how it is used, see STYLE= on
page 825 in the PROC PRINT statement.
Tip: To specify different style elements for different ID columns, use a separate ID

statement for each variable and add a different STYLE= option to each ID
statement.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 869.)

PAGEBY Statement

Controls page ejects that occur before a page is full.

Requirements: BY statement
Featured in: Example 3 on page 844

PAGEBY BY-variable;

Required Arguments

BY-variable
identifies a variable appearing in the BY statement in the PROC PRINT step. If the
value of the BY variable changes, or if the value of any BY variable that precedes it
in the BY statement changes, PROC PRINT begins printing a new page.
Interaction: If you use the BY statement with the SAS system option NOBYLINE,

which suppresses the BY line that normally appears in output produced with
BY-group processing, PROC PRINT always starts a new page for each BY group.
This behavior ensures that if you create customized BY lines by putting BY-group
information in the title and suppressing the default BY lines with NOBYLINE, the
information in the titles matches the report on the pages. (See “Creating Titles
That Contain BY-Group Information” on page 19.)



832 SUM Statement � Chapter 32

SUM Statement

Totals values of numeric variables.

Featured in: Example 4 on page 849, Example 5 on page 853, Example 6 on page 858,
and Example 8 on page 869

SUM variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

variable(s)
identifies the numeric variables to total in the report.

Option

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for cells containing sums that are created with the
SUM statement. For information about the arguments of this option and how it is
used, see STYLE= on page 825 in the PROC PRINT statement.
Tip: To specify different style elements for different cells reporting sums, use a

separate SUM statement for each variable and add a different STYLE= option to
each SUM statement.

Tip: If the STYLE= option is used in multiple SUM statements that affect the same
location, the STYLE= option in the last SUM statement will be used.

Using the SUM and BY Statements Together
When you use a SUM statement and a BY statement with one BY variable, PROC

PRINT sums the SUM variables for each BY group that contains more than one
observation and totals them over all BY groups (see Example 4 on page 849).

When you use a SUM statement and a BY statement with multiple BY variables,
PROC PRINT sums the SUM variables for each BY group that contains more than one
observation, just as it does if you use only one BY variable. However, it provides sums
only for those BY variables whose values change when the BY group changes. (See
Example 5 on page 853.)

Note: When the value of a BY variable changes, the SAS System considers that the
values of all variables listed after it in the BY statement also change. �



The PRINT Procedure � VAR Statement 833

SUMBY Statement

Limits the number of sums that appear in the report.

Requirements: BY statement
Featured in: Example 6 on page 858

SUMBY BY-variable;

Required Arguments

BY-variable
identifies a variable that appears in the BY statement in the PROC PRINT step. If
the value of the BY variable changes, or if the value of any BY variable that precedes
it in the BY statement changes, PROC PRINT prints the sums of all variables listed
in the SUM statement.

What Variables Are Summed?
If you use a SUM statement, PROC PRINT subtotals only the SUM variables.

Otherwise, PROC PRINT subtotals all the numeric variables in the data set except
those listed in the ID and BY statements.

VAR Statement

Selects variables that appear in the report and determines their order.

Tip: If you omit the VAR statement, PROC PRINT prints all variables in the data set.
Featured in: Example 1 on page 837 and Example 8 on page 869

VAR variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

variable(s)
identifies the variables to print. PROC PRINT prints the variables in the order that
you list them.
Interaction: In the PROC PRINT output, variables that are listed in the ID

statement precede variables that are listed in the VAR statement. If a variable in



834 Results: Print Procedure � Chapter 32

the ID statement also appears in the VAR statement, the output contains two
columns for that variable.

Option

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for all columns that are created by a VAR
statement. For information about the arguments of this option and how it is used,
see STYLE= on page 825 in the PROC PRINT statement.

Tip: To specify different style elements for different columns, use a separate VAR
statement to create a column for each variable and add a different STYLE= option
to each VAR statement.

Results: Print Procedure

Procedure Output
PROC PRINT always produces a printed report. You control the appearance of the

report with statements and options. See “Examples: PRINT Procedure ”on page 837 for
a sampling of the types of reports that the procedure produces.

Page Layout
By default, PROC PRINT uses an identical layout for all observations on a page of

output. First, it attempts to print observations on a single line (see Figure 32.2 on page
834).

Figure 32.2 Printing Observations on a Single Line

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on a single line, it splits the observations
into two or more sections and prints the observation number or the ID variables at the
beginning of each line. For example, in Figure 32.3 on page 835, PROC PRINT prints
the values for the first three variables in the first section of each page and the values
for the second three variables in the second section of each page.



The PRINT Procedure � Page Layout 835

Figure 32.3 Splitting Observations into Multiple Sections on One Page

2
Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on one page, the procedure prints
subsequent pages with the same observations until it has printed all the variables. For
example, in Figure 32.4 on page 835, PROC PRINT uses the first two pages to print
values for the first three observations and the second two pages to print values for the
rest of the observations.

Figure 32.4 Splitting Observations across Multiple Pages

2

Obs Var_7 Var_8 Var_9

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

1

Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4

Obs Var_7 Var_8 Var_9

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

3

Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: You can alter the page layout with the ROWS= option in the PROC PRINT
statement (see the discussion of ROWS= on page 824). �

Note: PROC PRINT may produce slightly different output if the data set is not
RADIX addressable. Version 6 compressed files are not RADIX addressable, while,



836 Page Layout � Chapter 32

beginning with Version 7, compressed files are RADIX addressable. (The integrity of the
data is not compromised; the procedure simply numbers the observations differently.) �

Column Headings
By default, spacing dictates whether PROC PRINT prints column headings

horizontally or vertically. Figure 32.2 on page 834, Figure 32.3 on page 835, and Figure
32.4 on page 835 all illustrate horizontal headings. Figure 32.5 on page 836 illustrates
vertical headings.

Figure 32.5 Using Vertical Headings

1
V V V
a a a

O r r r
b – – –
s 1 2 3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: If you use LABEL and at least one variable has a label, PROC PRINT prints
all column headings horizontally unless you specify HEADING=VERTICAL. �

Column Width
By default, PROC PRINT uses a variable’s formatted width as the column width.

(The WIDTH= option overrides this default behavior.) If the variable does not have a
format that explicitly specifies a field width, PROC PRINT uses the widest data value
for that variable on that page as the column width.

If the formatted value of a character variable or the data width of an unformatted
character variable exceeds the linesize minus the length of all the ID variables, PROC
PRINT may truncate the value. Consider the following situation:

� The linesize is 80.
� IdNumber is a character variable with a length of 10. It is used as an ID variable.
� State is a character variable with a length of 2. It is used as an ID variable.
� Comment is a character variable with a length of 200.

When PROC PRINT prints these three variables on a line, it uses 14 print positions
for the two ID variables and the space after each one. This leaves 80–14, or 66, print
positions for COMMENT. Longer values of COMMENT are truncated.

WIDTH= controls the column width.

Note: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=. �



The PRINT Procedure � Program: Creating a Listing Report 837

Examples: PRINT Procedure

Example 1: Selecting Variables to Print

Procedure features:
PROC PRINT statement options:

DOUBLE
STYLE=

VAR statement

Other Features:
ODS HTML statement

This example

� selects three variables for the report

� uses variable labels as column headings

� double spaces between rows of the report.

Program: Creating a Listing Report

Set the SAS system options.

options nodate pageno=1 linesize=70 pagesize=60;

Create the input data set. EXPREV contains information about a company’s monthly
expenses and revenues for two regions of the United States.

data exprev;
input Region $ State $ Month monyy5.

Expenses Revenues;
format month monyy5.;
datalines;

Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000
Southern FL FEB95 8500 11000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL MAR95 9800 13500
Northern MA MAR95 1500 1000
;



838 Output: Listing � Chapter 32

Print the data set EXPREV. DOUBLE inserts a blank line between observations. (This option
has no effect on the HTML output.)

proc print data=exprev double;

Select the variables to include in the report. The VAR statement creates columns for
Month, State, and Expenses, in that order.

var month state expenses;

Specify a title. The TITLE statement specifies a title for the report.

title ’Monthly Expenses for Offices in Each State’;
run;

Output: Listing

Output 32.2 Selecting Variables: Listing Output

By default, PROC PRINT identifies each observation by number under the column heading Obs.

Monthly Expenses for Offices in Each State 1

Obs Month State Expenses

1 JAN95 GA 2000

2 FEB95 GA 1200

3 FEB95 FL 8500

4 FEB95 NY 3000

5 MAR95 NY 6000

6 MAR95 FL 9800

7 MAR95 MA 1500

Program: Creating an HTML Report
You can easily create HTML output by adding ODS statements. In the following

example, ODS statements were added to produce HTML output.

options nodate pageno=1 linesize=70 pagesize=60;

Create HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination. FILE= specifies the external file that you want to
contain the HTML output.

ods html file=’your_file.html’;



The PRINT Procedure � Program: Creating an HTML Report with the STYLE= Option 839

proc print data=exprev double;

var month state expenses;
title ’Monthly Expenses for Offices in Each State’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;

Output: HTML

Display 32.2 Selecting Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE= Option
You can go a step further and add more formatting to your HTML output. The

following example uses the STYLE= option to add shading to your HTML report.

options nodate pageno=1 linesize=70 pagesize=60;

ods html file=’your_file.html’;

Create stylized HTML output. The first STYLE= option specifies that the column headers be
written in white italic font.
The second STYLE= option specifies that SAS change the color of the background of the
observations column to red.

Proc Print data=exprev double
style(HEADER) = {font_style=italic foreground = white}
style(OBS) = {background=red};

var month state expenses;

title ’Monthly Expenses for Offices in Each State’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.



840 Output: HTML Output with Styles � Chapter 32

ods html close;

Output: HTML Output with Styles

Display 32.3 Selecting Variables: HTML Output Using Styles

Example 2: Customizing Text in Column Headers
Procedure features:

PROC PRINT statement options:
N
OBS=
SPLIT=
STYLE=

VAR statement option:
STYLE=

Other features:
LABEL statement
ODS PDF statement

Data set: EXPREV

This example
� customizes and underlines the text in column headings for variables
� customizes the column header for the column that identifies observations by

number
� shows the number of observations in the report
� writes the values of Expenses with commas.

Program: Creating a Listing Report



The PRINT Procedure � Output: Listing 841

options nodate pageno=1 linesize=70 pagesize=60;

Print the report and define the column headings. SPLIT= identifies the asterisk as the
character that starts a new line in column headers. The N option prints the number of
observations at the end of the report. OBS= specifies the column header for the column that
identifies each observation by number. The split character (*) starts a new line in the column
heading. Therefore, the equal signs (=) in the value of OBS= underline the column header.

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’;

Select the variables to include in the report. The VAR statement creates columns for
Month, State, and Expenses, in that order.

var month state expenses;

Assign the variables’ labels as column headings. The LABEL statement associates a label
with each variable for the duration of the PROC PRINT step. When you use SPLIT= in the
PROC PRINT statement, the procedure uses labels for column headers. The split character (*)
starts a new line in the column heading. Therefore, the equal signs (=) in the labels underline
the column headers.

label month=’Month**=====’
state=’State**=====’
expenses=’Expenses**========’;

Specify a title for the report, and format any variable containing numbers. The
FORMAT statement assigns a format to use for Expenses in the report. The TITLE statement
specifies a title.

format expenses comma10.;
title ’Monthly Expenses for Offices in Each State’;

run;

Output: Listing



842 Program: Creating a PDF Report � Chapter 32

Output 32.3 Customizing Text in Column Headers: Listing Output

Monthly Expenses for Offices in Each State 1

Observation Month State Expenses

Number

=========== ===== ===== ========

1 JAN95 GA 2,000

2 FEB95 GA 1,200

3 FEB95 FL 8,500

4 FEB95 NY 3,000

5 MAR95 NY 6,000

6 MAR95 FL 9,800

7 MAR95 MA 1,500

N = 7

Program: Creating a PDF Report
You can easily create PDF output by adding a few ODS statements. In the following

example, ODS statements were added to produce PDF output.

options nodate pageno=1 linesize=70 pagesize=60;

Create PDF output and specify the file to store the output in. The ODS PDF statement
opens the PDF destination and creates PDF output. The FILE= argument specifies your
external file that contains the PDF output.

ods pdf file=’your_file.pdf’;

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’;
var month state expenses;
label month=’Month**=====’

state=’State**=====’
expenses=’Expenses**========’;

format expenses comma10.;

title ’Monthly Expenses for Offices in Each State’;
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF destination.

ods pdf close;



The PRINT Procedure � Program: Creating a PDF Report with the STYLE= Option 843

Output: PDF

Display 32.4 Customizing Text in Column Headers: Default PDF Output

Program: Creating a PDF Report with the STYLE= Option
options nodate pageno=1 linesize=70 pagesize=60;

ods pdf file=’your_file.pdf’;

Create stylized PDF output. The first STYLE= option specifies that the background color of
the cell containing the value for N be changed to blue and that the font style be changed to
italic. The second STYLE= option specifies that the background color of the observation column,
the observation header, and the other variable’s headers be changed to white.

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’
style(N) = {font_style=italic background= blue}
Style(HEADER OBS OBSHEADER) = {background=white};

Create stylized PDF output. The STYLE= option changes the color of the cells containing
data to gray.

var month state expenses / style (DATA)= [ background = gray ] ;
label month=’Month**=====’

state=’State**=====’
expenses=’Expenses**========’;
format expenses comma10.;

title ’Monthly Expenses for Offices in Each State’;
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF destination.

ods pdf close;



844 Output: PDF Report with Styles � Chapter 32

Output: PDF Report with Styles

Display 32.5 Customizing Text in Column Headers: PDF Output Using Styles

Example 3: Creating Separate Sections of a Report for Groups of
Observations

Procedure features:
PROC PRINT statement options:

LABEL
N=
NOOBS
STYLE=

BY statement
PAGEBY statement

Other features:
SORT procedure
LABEL statement
ODS RTF statement

Data set: EXPREV

This example
� suppresses the printing of observation numbers at the beginning of each row
� presents the data for each state in a separate section of the report



The PRINT Procedure � Program: Creating a Listing Report 845

� begins a new page for each region.

Program: Creating a Listing Report

options pagesize=60 pageno=1 nodate linesize=70;

Sort the EXPREV data set. PROC SORT sorts the observations by Region, State, and Month.

proc sort data=exprev;
by region state month;

run;

Print the report, specify the total number of observations in each BY group, and
suppress the printing of observation numbers. N= prints the number of observations in a
BY group at the end of that BY group. The explanatory text that the N= option provides
precedes the number. NOOBS suppresses the printing of observation numbers at the beginning
of the rows. LABEL uses variables’ labels as column headings.

proc print data=exprev n=’Number of observations for the state: ’
noobs label;

Specify the variables to include in the report. The VAR statement creates columns for
Month, Expenses, and Revenues, in that order.

var month expenses revenues;

Create a separate section for each region of the state and specify page breaks for each
BY group of Region. The BY statement produces a separate section of the report for each BY
group and prints a heading above each one. The PAGEBY statement starts a new page each
time the value of Region changes.

by region state;
pageby region;

Establish the column headings. The LABEL statement associates a label with the variable
Region for the duration of the PROC PRINT step. When you use the LABEL option in the
PROC PRINT statement, the procedure uses labels for column headings.

label region=’Sales Region’;

Format the columns that contain numbers and specify a title. The FORMAT statement
assigns a format to Expenses and Revenues for this report. The TITLE statement specifies a
title.

format revenues expenses comma10.;
title ’Sales Figures Grouped by Region and State’;



846 Output: Listing � Chapter 32

run;

Output: Listing

Output 32.4 Creating Separate Sections of a Report for Groups of Observations: Listing Output

Sales Figures Grouped by Region and State 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

Number of observations for the state: 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

Number of observations for the state: 2

Sales Figures Grouped by Region and State 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

Number of observations for the state: 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

Number of observations for the state: 2

Program: Creating an RTF Report

options pagesize=60 pageno=1 nodate linesize=70;

Create output for Microsoft Word and specify the file to store the output in. The ODS
RTF statement opens the RTF destination and creates output formatted for Microsoft Word. The
FILE= argument specifies your external file that contains the RTF output.

ods rtf file=’your_file.rtf’;



The PRINT Procedure � Program: Creating an RTF Report with the STYLE= Option 847

proc sort data=exprev;
by region state month;
run;

proc print data=exprev n=’Number of observations for the state: ’
noobs label;
var month expenses revenues;
by region state;
pageby region;
label region=’Sales Region’;
format revenues expenses comma10.;

title ’Sales Figures Grouped by Region
and State’;
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination.

ods rtf close;

Output: RTF

Display 32.6 Creating Separate Sections of a Report for Groups of Observations: Default RTF Output

Program: Creating an RTF Report with the STYLE= Option
options pagesize=60 pageno=1 nodate linesize=70;



848 Program: Creating an RTF Report with the STYLE= Option � Chapter 32

ods rtf file=’your_file.rtf’;

proc sort data=exprev;
by region state month;
run;

Create a stylized RTF report. The first STYLE= option specifies that the background color
of the cell containing the number of observations be changed to gray.

The second STYLE= option specifies that the background color of the column header for the
variable MONTH be changed to white.

The third STYLE= option specifies that the background color of the column header for the
variable EXPENSES be changed to blue and the font color be changed to white.

The fourth STYLE= option specifies that the background color of the column header for the
variable REVENUES be changed to gray.

proc print data=exprev n=’Number of observations for the state: ’
noobs label style(N) = {background=gray};

var month / style(HEADER) = [background = white];
var expenses / style(HEADER) = [background = blue foreground=white];
var revenues / style(HEADER) = [background = gray];

by region state;
pageby region;
label region=’Sales Region’;
format revenues expenses comma10.;

title ’Sales Figures Grouped by Region
and State’;
run;

ods rtf close;



The PRINT Procedure � Example 4: Summing Numeric Variables with One BY Group 849

Output: RTF with Styles

Display 32.7 Creating Separate Sections of a Report for Groups of Observations: RTF Output Using Styles

Example 4: Summing Numeric Variables with One BY Group
Procedure features:

PROC PRINT statement options:
N=

BY statement
SUM statement

Other features:
ODS MARKUP statement
SORT procedure
TITLE statement

#BYVAL specification
SAS system options:

BYLINE



850 Program: Creating a Listing Report � Chapter 32

NOBYLINE
Data set: EXPREV

This example
� sums expenses and revenues for each region and for all regions
� shows the number of observations in each BY group and in the whole report
� creates a customized title, containing the name of the region. This title replaces

the default BY line for each BY group.

Program: Creating a Listing Report

Start each BY group on a new page and suppress the printing of the default BY line.
The SAS system option NOBYLINE suppresses the printing of the default BY line. When you
use PROC PRINT with NOBYLINE, each BY group starts on a new page.

options nodate pageno=1 linesize=70 pagesize=60 nobyline;

Sort the data set. PROC SORT sorts the observations by Region.

proc sort data=exprev;
by region;

run;

Print the report, suppress the printing of observation numbers, and print the total
number of observations for the selected variables. NOOBS suppresses the printing of
observation numbers at the beginning of the rows. N= prints the number of observations in a
BY group at the end of that BY group and (because of the SUM statement) prints the number
of observations in the data set at the end of the report. The first piece of explanatory text that
N= provides precedes the number for each BY group. The second piece of explanatory text that
N= provides precedes the number for the entire data set.

proc print data=exprev noobs
n=’Number of observations for the state: ’

’Number of observations for the data set: ’;

Sum the values for the selected variables. The SUM statement alone sums the values of
Expenses and Revenues for the entire data set. Because the PROC PRINT step contains a BY
statement, the SUM statement also sums the values of Expenses and Revenues for each region
that contains more than one observation.

sum expenses revenues;
by region;

Format the numeric values for a specified column. The FORMAT statement assigns the
COMMA10. format to Expenses and Revenues for this report.



The PRINT Procedure � Program: Creating an XML File 851

format revenues expenses comma10.;

Specify and format a dynamic (or current) title. The TITLE statement specifies a title. The
#BYVAL specification places the current value of the BY variable Region in the title. Because
NOBYLINE is in effect, each BY group starts on a new page, and the title serves as a BY line.

title ’Revenue and Expense Totals for the
#byval(region) Region’;
run;

Generate the default BY line. The SAS system option BYLINE resets the printing of the
default BY line.

options byline;

Output: Listing

Output 32.5 Summing Numeric Variables with One BY Group: Listing Output

Revenue and Expense Totals for the Northern Region 1

State Month Expenses Revenues

NY FEB95 3,000 4,000
NY MAR95 6,000 5,000
MA MAR95 1,500 1,000
------ ---------- ----------
Region 10,500 10,000

Number of observations for the state: 3

Revenue and Expense Totals for the Southern Region 2

State Month Expenses Revenues

GA JAN95 2,000 8,000
GA FEB95 1,200 6,000
FL FEB95 8,500 11,000
FL MAR95 9,800 13,500
------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

Number of observations for the state: 4
Number of observations for the data set: 7

Program: Creating an XML File
The following example opens the MARKUP destination. The output file will contain

only XML tagging unless you have a browser that reads XML.



852 Program: Creating an XML File � Chapter 32

options nodate pageno=1 linesize=70 pagesize=60 nobyline;

Produce output that is tagged with Extensible Markup Language (XML) tags and
specify the file to store it in. The ODS MARKUP statement opens the MARKUP destination
and creates a file containing output that is tagged with XML tags. The FILE= argument
specifies your external file that contains the XML output.

ods markup file=’your_file.xml’;

proc sort data=exprev;
by region;

run;

proc print data=exprev noobs
n=’Number of observations for the state: ’

’Number of observations for the data set: ’;

sum expenses revenues;
by region;

format revenues expenses comma10.;

title ’Revenue and Expense Totals for the
#byval(region) Region’;
run;

options byline;

Close the MARKUP destination. The ODS RTF CLOSE statement closes the MARKUP
destination.

ods markup close;



The PRINT Procedure � Example 5: Summing Numeric Variables with Multiple BY Variables 853

Output: XML file

Display 32.8 Summing Numeric Variables with One BY Group: XML Output

Example 5: Summing Numeric Variables with Multiple BY Variables

Procedure features:
BY statement
SUM statement

Other features: SORT procedure
Data set: EXPREV

This example
� sums expenses and revenues for

� each region
� each state with more than one row in the report



854 Program: Creating a Listing Report � Chapter 32

� all rows in the report.

� shows the number of observations in each BY group and in the whole report.

Program: Creating a Listing Report

options nodate pageno=1 linesize=70 pagesize=60;

Sort the data set. PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

Print the report, suppress the printing of observation numbers, and print the total
number of observations for the selected variables. The N option prints the number of
observations in a BY group at the end of that BY group and prints the total number of
observations used in the report at the bottom of the report. NOOBS suppresses the printing of
observation numbers at the beginning of the rows.

proc print data=exprev n noobs;

Create a separate section of the report for each BY group, and sum the values for the
selected variables. The BY statement produces a separate section of the report for each BY
group. The SUM statement alone sums the values of Expenses and Revenues for the entire data
set. Because the program contains a BY statement, the SUM statement also sums the values of
Expenses and Revenues for each BY group that contains more than one observation.

by region state;
sum expenses revenues;

Establish a label for a selected variable, format the values of specified variables, and
create a title. The LABEL statement associates a label with the variable Region for the
duration of the PROC PRINT step. The BY line at the beginning of each BY group uses the
label. The FORMAT statement assigns a format to the variables Expenses and Revenues for
this report. The TITLE statement specifies a title.

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

Output: Listing



The PRINT Procedure � Output: Listing 855

Output 32.6 Summing Numeric Variables with Multiple BY Variables: Listing Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

PROC PRINT sums Expenses and Revenues for each BY group that contains more than one
observation. However, sums are shown only for the BY variables whose values change from one
BY group to the next. For example, in the third BY group, where the sales region is Southern
and the state is FL, Expenses and Revenues are summed only for the state because the next BY
group is for the same region.

Revenue and Expense Totals for Each State and Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

N = 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
State 9,000 9,000

Region 10,500 10,000

N = 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------ ---------- ----------
State 18,300 24,500

N = 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
State 3,200 14,000

Region 21,500 38,500
========== ==========

32,000 48,500

N = 2
Total N = 7



856 Program: Creating an HTML Report � Chapter 32

Program: Creating an HTML Report

options nodate pageno=1 linesize=70 pagesize=60;

Produce HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination and creates a file that contains HTML output. The
FILE= argument specifies your external file that contains the HTML output.

ods html file=’your_file.html’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev n noobs;proc print
by region state;
sum expenses revenues;

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;



The PRINT Procedure � Program: Creating an HTML Report with the STYLE= Option 857

Output: HTML

Display 32.9 Summing Numeric Variables with Multiple BY Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE= Option
options nodate pageno=1 linesize=70 pagesize=60;

ods html file=’your_file.html’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev n noobs;

Create stylized HTML output. The STYLE= option in the first SUM statement specifies that
the background color of the cell containing the grand total for the variable EXPENSES be
changed to white and the font color be changed to dark gray.

The STYLE= option in the second SUM statement specifies that the background color of cells
containing totals for the variable REVENUES be changed to blue and the font color be changed
to white.

by region state;
sum expenses / style(GRANDTOTAL) = [background =white foreground=blue];
sum revenues / style(TOTAL) = [background =dark gray foreground=white];

label region=’Sales Region’;
format revenues expenses comma10.;



858 Output: HTML with Styles � Chapter 32

title ’Revenue and Expense Totals for Each State and Region’;
run;

ods html close;

Output: HTML with Styles

Display 32.10 Summing Numeric Variables with Multiple BY Variables: HTML Output Using Styles

Example 6: Limiting the Number of Sums in a Report
Features:

BY statement
SUM statement
SUMBY statement

Other features:
SORT procedure
LABEL statement

Data set: EXPREV

This example



The PRINT Procedure � Output: Listing 859

� creates a separate section of the report for each combination of state and region

� sums expenses and revenues only for each region and for all regions, not for
individual states.

Program: Creating a Listing Report

options nodate pageno=1 linesize=70 pagesize=60;

Sort the data set. PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

Print the report and remove the observation numbers. NOOBS suppresses the printing
of observation numbers at the beginning of the rows.

proc print data=exprev noobs;

Sum the values for each region. The SUM and BY statements work together to sum the
values of Revenues and Expenses for each BY group as well as for the whole report. The
SUMBY statement limits the subtotals to one for each region.

by region state;
sum revenues expenses;
sumby region;

Assign labels to specific variables. The LABEL statement associates a label with the
variable Region for the duration of the PROC PRINT step. This label is used in the BY lines.

label region=’Sales Region’;

Assign a format to the necessary variables and specify a title. The FORMAT statement
assigns the COMMA10. format to Expenses and Revenues for this report.

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

Output: Listing



860 Program: Creating a PostScript file � Chapter 32

Output 32.7 Limiting the Number of Sums in a Report: Listing Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

Revenue and Expense Figures for Each Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
Region 10,500 10,000

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

Program: Creating a PostScript file

options nodate pageno=1 linesize=70 pagesize=60;

Produce PostScript output and specify the file to store the output in. The ODS PS
statement opens the PS destination and creates a file that contains PostSript output. The
FILE= argument specifies your external file that contains the PostScript output.

ods ps file=’your_file.ps’;

proc sort data=exprev;
by region state;



The PRINT Procedure � Program: Creating a PostScript Report with the STYLE= Option 861

run;

proc print data=exprev noobs;

by region state;
sum revenues expenses;
sumby region;

label region=’Sales Region’;

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

Close the PS destination. The ODS PS CLOSE statement closes the PS destination.

ods ps close;

Output: PostScript

Display 32.11 Limiting the Number of Sums in a Report: PostScript Output

Program: Creating a PostScript Report with the STYLE= Option

options nodate pageno=1 linesize=70 pagesize=60;



862 Program: Creating a PostScript Report with the STYLE= Option � Chapter 32

ods ps file=’your_file.ps’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev noobs;

by region state;

Create stylized PostScript output. The STYLE= option in the first SUM statement specifies
that the background color of cells containing totals for the variable REVENUES be changed to
blue and the font color be changed to white.

The STYLE= option in the second SUM statement specifies that the background color of the cell
containing the grand total for the EXPENSES variable be changed to white and the font color
be changed to dark gray.

sum revenues / style(TOTAL) = [background =blue foreground=white];
sum expenses / style(GRANDTOTAL) = [background =white foreground=dark gray];

label region=’Sales Region’;

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

ods ps close;



The PRINT Procedure � Program: Creating a Listing Report 863

Output: PostScript with Styles

Display 32.12 Limiting the Number of Sums in a Report: PostScript Output Using Styles

Example 7: Controlling the Layout of a Report with Many Variables

Procedure features:
PROC PRINT statement options:

ROWS=
ID statement options:

STYLE=
Other features:

ODS RTF statement
SAS data set options:

OBS=

This example shows two ways of printing a data set with a large number of
variables: one is the default, and the other uses ROWS=. For detailed explanations of
the layouts of these two reports, see the ROWS= option on page 824 and see “Page
Layout” on page 834.

These reports use a pagesize of 24 and a linesize of 64 to help illustrate the different
layouts.

Note: When the two reports are written as HTML output, they do not differ. �

Program: Creating a Listing Report



864 Output: Listing � Chapter 32

options nodate pageno=1 linesize=64 pagesize=24 ;

Create the EMPDATA data set. The data set EMPDATA contains personal and job-related
information about a company’s employees. A DATA step on page 1623 creates this data set.

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

Print only the first 12 observations in a data set. The OBS= data set option uses only the
first 12 observations to create the report. (This is just to conserve space here.) The ID statement
identifies observations with the formatted value of IdNumber rather than with the observation
number. This report is shown in Example 7 on page 863.

proc print data=empdata(obs=12);
id idnumber;
title ’Personnel Data’;

run;

Print a report that contains only one row of variables on each page. ROWS=PAGE
prints only one row of variables for each observation on a page. This report is shown in Example
7 on page 863.

proc print data=empdata(obs=12) rows=page;
id idnumber;
title ’Personnel Data’;

run;

Output: Listing



The PRINT Procedure � Output: Listing 865

Output 32.8 Default Layout for a Report with Many Variables: Listing Output

In the traditional procedure output, each page of this report contains
values for all variables in each observation. In the HTML output, this
report is identical to the report that uses ROWS=PAGE.

Note that PROC PRINT automatically splits the variable names that
are used as column headers at a change in capitalization if the entire
name does not fit in the column. Compare, for example, the column
headers for LastName (which fits in the column) and FirstName (which
does not fit in the column).

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060

Personnel Data 2

Id First
Number LastName Name City State Gender

1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247



866 Program: Creating an RTF Report � Chapter 32

Output 32.9 Layout Produced by the ROWS=PAGE Option: Listing Output

Each page of this report contains values for only some of the variables
in each observation. However, each page contains values for more
observations than the default report does.

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M
1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

Personnel Data 2

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060
1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247

Program: Creating an RTF Report

options nodate pageno=1 linesize=64 pagesize=24;

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;



The PRINT Procedure � Program: Creating an RTF Report with the STYLE= Option 867

datalines;
1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

Create output for Microsoft Word and specify the file to store the output in. The ODS
RTF statement opens the RTF destination and creates output formatted for Microsoft Word. The
FILE= argument specifies your external file that contains the RTF output.

ods rtf file=’your_file.rtf’;

proc print data=empdata(obs=12);
id idnumber;
title ’Personnel Data’;

run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination.

ods rtf close;

Output: RTF

Display 32.13 Layout for a Report with Many Variables: RTF Output

Program: Creating an RTF Report with the STYLE= Option

options nodate pageno=1 linesize=64 pagesize=24;



868 Program: Creating an RTF Report with the STYLE= Option � Chapter 32

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

ods rtf file=’your_file.rtf’;

proc print data=empdata(obs=12);

Create stylized output for Microsoft Word.

id idnumber / style(DATA) =
{background = red foreground = white}
style(HEADER) =
{background = blue foreground = white};

title ’Personnel Data’;
run;

ods rtf close;



The PRINT Procedure � Program: Creating a Listing Report 869

Output: RTF with Styles

Display 32.14 Layout for a Report with Many Variables: RTF Output Using Styles

Example 8: Creating a Customized Layout with BY Groups and ID Variables
Procedure features:

BY statement
ID statement
SUM statement
VAR statement

Other features:
SORT procedure

Data set: EMPDATA on page 864

This customized report
� selects variables to include in the report and controls their order
� selects observations to include in the report
� groups the selected observations by JobCode
� sums the salaries for each job code and for all job codes
� displays numeric data with commas and dollar signs.

Program: Creating a Listing Report

Create and sort a temporary data set. PROC SORT creates a temporary data set in which
the observations are sorted by JobCode and Gender.

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;

Identify the character that starts a new line in column headers. SPLIT= identifies the
asterisk as the character that starts a new line in column headers.



870 Output: Listing � Chapter 32

proc print data=tempemp split=’*’;

Specify the variables to include in the report. The VAR statement and the ID statement
together select the variables to include in the report. The ID statement and the BY statement
produce the special format.

id jobcode;
by jobcode;
var gender salary;

Calculate the total value for each BY group. The SUM statement totals the values of
Salary for each BY group and for the whole report.

sum salary;

Assign labels to the appropriate variables. The LABEL statement associates a label with
each variable for the duration of the PROC PRINT step. When you use SPLIT= in the PROC
PRINT statement, the procedure uses labels for column headings.

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

Create formatted columns. The FORMAT statement assigns a format to Salary for this
report. The WHERE statement selects for the report only the observations for job codes that
contain the letters ’FA’ or ’ME’. The TITLE statements specify two titles.

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

Output: Listing



The PRINT Procedure � Program: Creating an HTML Report 871

Output 32.10 Creating a Customized Layout with BY Groups and ID Variables:
Listing Output

The ID and BY statements work together to produce this layout. The
ID variable is listed only once for each BY group. The BY lines are
suppressed. Instead, the value of the ID variable, JobCode, identifies
each BY group.

Expenses Incurred for 1
Salaries for Flight Attendants and Mechanics

Job Code Gender Annual Salary
======== ====== =============

FA1 F $23,177.00
F $22,454.00
M $22,268.00

-------- -------------
FA1 $67,899.00

FA2 F $28,888.00
F $27,787.00
M $28,572.00

-------- -------------
FA2 $85,247.00

FA3 F $32,886.00
F $33,419.00
M $32,217.00

-------- -------------
FA3 $98,522.00

ME1 M $29,769.00
M $28,072.00
M $28,619.00

-------- -------------
ME1 $86,460.00

ME2 F $35,108.00
F $34,929.00
M $35,345.00
M $36,925.00
M $35,090.00
M $35,185.00

-------- -------------
ME2 $212,582.00

ME3 M $43,025.00
=============

$593,735.00

Program: Creating an HTML Report

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;



872 Program: Creating an HTML Report � Chapter 32

Produce HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination and creates a file that contains HTML output. The
FILE= argument specifies your external file that contains the HTML output.

ods html file=’your_file.html’;

proc print data=tempemp split=’*’;

id jobcode;
by jobcode;
var gender salary;

sum salary;

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;



The PRINT Procedure � Program: Creating an HTML Report with the STYLE= Option 873

Output: HTML

Display 32.15 Creating a Customized Layout with BY Groups and ID Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE= Option

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;

by jobcode gender;



874 Program: Creating an HTML Report with the STYLE= Option � Chapter 32

run;

ods html file=’your_file.html’;

Create stylized HTML output. The first STYLE= option specifies that the font of the headers
be changed to italic. The second STYLE= option specifies that the background of cells that
contain input data be changed to blue and the foreground of these cells be changed to white.

proc print data=tempemp split=’*’ style(HEADER) =
{font_style=italic}
style(DATA) =
{background=blue foreground = white};

id jobcode;
by jobcode;
var gender salary;

Create total values that are written in red. The STYLE= option specifies that the color of
the foreground of the cell that contain the totals be changed to red.

sum salary / style(total)= [foreground=red];

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

ods html close;



The PRINT Procedure � Example 9: Printing All the Data Sets in a SAS Library 875

Output: HTML with Styles

Display 32.16 Creating a Customized Layout with BY Groups and ID Variables: HTML Output Using Styles

Example 9: Printing All the Data Sets in a SAS Library
Features:

Macro facility



876 Program � Chapter 32

DATASETS procedure
PRINT procedure

Data set: EXPREV and LIST on page 506

This example prints all the data sets in a SAS library. You can use the same
programming logic with any procedure. Just replace the PROC PRINT step near the
end of the example with whatever procedure step you want to execute. The example
uses the macro language. For details about the macro language, see SAS Guide to
Macro Processing, Version 6, Second Edition.

Program

libname printlib ’SAS-data-library’
options nodate pageno=1 linesize=80 pagesize=60;

Copy the desired data sets from the WORK library to a permanent library. PROC
DATASETS copies two data sets from the WORK library to the PRINTLIB library in order to
limit the number of data sets available to the example.

proc datasets library=work memtype=data nolist;
copy out=printlib;

select list exprev;
run;

Create a macro and specify the parameters. The %MACRO statement creates the macro
PRINTALL. When you call the macro, you can pass one or two parameters to it. The first
parameter is the name of the library whose data set you want to print. The second parameter is
a library used by the macro. If you do not specify this parameter, the WORK library is the
default.

%macro printall(libname,worklib=work);

Create the local macro variables. The %LOCAL statement creates two local macro variables,
NUM and I, to use in a loop.

%local num i;

Produce an output data set. This PROC DATASETS step reads the library that you specify
as a parameter when you invoke the macro. The CONTENTS statement produces an output
data set called TEMP1 in WORKLIB. This data set contains an observation for each variable in
each data set in the library LIBNAME. By default, each observation includes the name of the
data set that the variable is included in as well as other information about the variable.
However, the KEEP= data set option writes only the name of the data set to TEMP1.

proc datasets library=&libname memtype=data nodetails;
contents out=&worklib..temp1(keep=memname) data=_all_ noprint;



The PRINT Procedure � Output 877

run;

Specify the unique values in the data set, assign a macro variable to each one, and
assign DATA step information to a macro variable. This DATA step increments the value
of N each time it reads the last occurrence of a data set name (when IF LAST.MEMNAME is
true). The CALL SYMPUT statement uses the current value of N to create a macro variable for
each unique value of MEMNAME in the data set TEMP1. The TRIM function removes extra
blanks in the TITLE statement in the PROC PRINT step that follows.

data _null_;
set &worklib..temp1 end=final;
by memname notsorted;
if last.memname;
n+1;
call symput(’ds’||left(put(n,8.)),trim(memname));

When it reads the last observation in the data set (when FINAL is true), the DATA step assigns
the value of N to the macro variable NUM. At this point in the program, the value of N is the
number of observations in the data set.

if final then call symput(’num’,put(n,8.));

Run the DATA step. The RUN statement is crucial. It forces the DATA step to run, thus
creating the macro variables that are used in the CALL SYMPUT statements before the %DO
loop, which uses them, executes.

run;

Print the data sets and end the macro. The %DO loop issues a PROC PRINT step for each
data set. The %MEND statement ends the macro.

%do i=1 %to &num;
proc print data=&libname..&&ds&i noobs;

title "Data Set &libname..&&ds&i";
run;

%end;
%mend printall;

Print all the data sets in the PRINTLIB library. This invocation of the PRINTALL macro
prints all the data sets in the library PRINTLIB.

options nodate pageno=1 linesize=70 pagesize=60;
%printall(printlib)

Output



878 Output � Chapter 32

Output 32.11 Printing All the Data Sets in a SAS Library: Listing Output

Data Set printlib.EXPREV 1

Region State Month Expenses Revenues

Northern MA MAR95 1500 1000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL FEB95 8500 11000
Southern FL MAR95 9800 13500
Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000

Data Set printlib.LIST 2

Name Street City State Zip

Gabrielli, Theresa 24 Ridgetop Rd. Westboro MA 01581
Clayton, Aria 314 Bridge St. Hanover NH 03755
Dix, Martin L. 4 Shepherd St. Norwich VT 05055
Slater, Emily C. 2009 Cherry St. York PA 17407
Ericson, Jane 211 Clancey Court Chapel Hill NC 27514
An, Ing 95 Willow Dr. Charlotte NC 28211
Jacobson, Becky 7 Lincoln St. Tallahassee FL 32312
Misiewicz, Jeremy 43-C Lakeview Apts. Madison WI 53704
Ahmadi, Hafez 5203 Marston Way Boulder CO 80302
Archuleta, Ruby Box 108 Milagro NM 87429



879

C H A P T E R

33
The PRINTTO Procedure

Overview: PRINTTO Procedure 879
Syntax: PRINTTO Procedure 880

PROC PRINTTO Statement 880

Concepts: PRINTTO Procedure 883

Page Numbering 883

Routing SAS Log or Procedure Output Directly to a Printer 883
Examples: PRINTTO Procedure 883

Example 1: Routing to External Files 883

Example 2: Routing to SAS Catalog Entries 886

Example 3: Using Procedure Output as an Input File 889

Example 4: Routing to a Printer 892

Overview: PRINTTO Procedure
The PRINTTO procedure defines destinations for SAS procedure output and for the

SAS log. By default, SAS procedure output and the SAS log are routed to the default
procedure output file and the default SAS log file for your method of operation. See
Table 33.1 on page 879. You can store the SAS log or procedure output in an external
file or in a SAS catalog entry. With additional programming, you can use SAS output as
input data within the same job.

Table 33.1 Default Destinations for SAS Log and Procedure Output

Method of running the SAS System SAS log destination Procedure output destination

windowing environment the LOG window the OUTPUT window

interactive line mode the display monitor (as
statements are entered)

the display monitor (as each step
executes)

noninteractive mode or batch mode depends on the host operating
system

depends on the operating
environment

Operating Environment Information: For information and examples specific to your
operating system or environment, see the appropriate SAS Companion or technical
report. �



880 Syntax: PRINTTO Procedure � Chapter 33

Syntax: PRINTTO Procedure
PROC PRINTTO <option(s)>;

PROC PRINTTO Statement
Tip: To reset the destination for the SAS log and procedure output to the default, use
the PROC PRINTTO statement without options.
Tip: To route the SAS log and procedure output to the same file, specify the same file
with both the LOG= and PRINT= options.
Restriction: To route SAS log and procedure output directly to a printer, you must use a
FILENAME statement with the PROC PRINTTO statement. See Example 4 on page
892.

PROC PRINTTO <option(s)>;

To do this Use this option

provide a description for a SAS log or procedure output
stored in a SAS catalog entry

LABEL=

route the SAS log to a permanent external file or SAS
catalog entry

LOG=

combine the SAS log and procedure output into a single file LOG= and PRINT= with same
destination

replace the file instead of appending to it NEW

route procedure output to a permanent external file or SAS
catalog entry or printer.

PRINT=

Without Options

Using a PROC PRINTTO statement with no options
� closes any files opened by a PROC PRINTTO statement
� points both the SAS log and SAS procedure output to their default destinations.

Interaction: To close the appropriate file and to return only the SAS log or
procedure output to its default destination, use LOG=LOG or PRINT=PRINT.

Featured in: Example 1 on page 883 and Example 2 on page 886

Options



The PRINTTO Procedure � PROC PRINTTO Statement 881

LABEL=’description’
provides a description for a catalog entry that contains a SAS log or procedure output.
Range: 1 to 256 characters
Interaction: Use the LABEL= option only when you specify a catalog entry as the

value for the LOG= or the PRINT= option.
Featured in: Example 2 on page 886

LOG=LOG | file-specification | SAS-catalog-entry
routes the SAS log to one of three locations:

LOG
routes the SAS log to its default destination.

file-specification
routes the SAS log to an external file. It is one of the following:

’external-file’
the name of an external file specified in quotation marks.

fileref
a fileref previously assigned to an external file.

SAS-catalog-entry
routes the SAS log to a SAS catalog entry. By default, libref is SASUSER, catalog
is PROFILE, and type is LOG. Express SAS-catalog-entry in one of the following
ways:

libref.catalog.entry<.LOG>
a SAS catalog entry stored in the SAS data library and SAS catalog specified.

catalog.entry<.LOG>
a SAS catalog entry stored in the specified SAS catalog in the default SAS data
library SASUSER.

entry.LOG
a SAS catalog entry stored in the default SAS library and catalog:
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for "FILENAME,
CATALOG Access Method" in the SAS online documentation.

Default: LOG.
Tip: After routing the log to an external file or a catalog entry, you can specify LOG

to route the SAS log back to its default destination.
Tip: When routing the SAS log, include a RUN statement in the PROC PRINTTO

statement. If you omit the RUN statement, the first line of the following DATA or
PROC step is not routed to the new file. (This occurs because a statement does not
execute until a step boundary is crossed.)

Interaction: The SAS log and procedure output cannot be routed to the same
catalog entry at the same time.

Interaction: The NEW option replaces the existing contents of a file with the new
log. Otherwise, the new log is appended to the file.

Interaction: To route the SAS log and procedure output to the same file, specify the
same file with both the LOG= and PRINT= options.

Interaction: When routing the log to a SAS catalog entry, you can use the LABEL
option to provide a description for the entry in the catalog directory.

Featured in: Example 1 on page 883, Example 2 on page 886, and Example 3 on
page 889



882 PROC PRINTTO Statement � Chapter 33

NEW
clears any information that exists in a file and prepares the file to receive the SAS
log or procedure output.

Default: If you omit NEW, the new information is appended to the existing file.

Interaction: If you specify both LOG= and PRINT=, NEW applies to both.

Featured in: Example 1 on page 883, Example 2 on page 886, and Example 3 on
page 889

PRINT= PRINT | file-specification | SAS-catalog-entry
routes procedure output to one of three locations:

PRINT
routes procedure output to its default destination. After routing it to an external
file or a catalog entry, you can specify PRINT to route subsequent procedure
output to its default destination.

file-specification
routes procedure output to an external file. It is one of the following:

’external-file’
the name of an external file specified in quotation marks.

fileref
a fileref previously assigned to an external file.

SAS-catalog-entry
routes procedure output to a SAS catalog entry. By default, libref is SASUSER,
catalog is PROFILE, and type is OUTPUT. Express SAS-catalog-entry in one of the
following ways:

libref.catalog.entry<.OUTPUT>
a SAS catalog entry stored in the SAS data library and SAS catalog specified.

catalog.entry<.OUTPUT>
a SAS catalog entry stored in the specified SAS catalog in the default SAS data
library SASUSER.

entry.OUTPUT
a SAS catalog entry stored in the default SAS library and catalog:
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for "FILENAME,
CATALOG Access Method" in the SAS online documentation.

Aliases: FILE=, NAME=

Default: PRINT

Interaction: The procedure output and the SAS log cannot be routed to the same
catalog entry at the same time.

Interaction: The NEW option replaces the existing contents of a file with the new
procedure output. If you omit NEW, the new output is appended to the file.

Interaction: To route the SAS log and procedure output to the same file, specify the
same file with both the LOG= and PRINT= options.

Interaction: When routing procedure output to a SAS catalog entry, you can use
the LABEL option to provide a description for the entry in the catalog directory.

Featured in: Example 3 on page 889

UNIT=nn



The PRINTTO Procedure � Example 1: Routing to External Files 883

routes the output to the file identified by the fileref FTnnF001, where nn is an
integer between 1 and 99.
Range: 1 to 99, integer only.
Tip: You can define this fileref yourself; however, some operating systems predefine

certain filerefs in this form.

Concepts: PRINTTO Procedure

Page Numbering
� When the SAS system option NUMBER is in effect, there is a single

page-numbering sequence for all output in the current job or session. When
NONUMBER is in effect, output pages are not numbered.

� You can specify the beginning page number for the output you are currently
producing by using the PAGENO= in an OPTIONS statement.

Routing SAS Log or Procedure Output Directly to a Printer
To route SAS log or procedure output directly to a printer, use a FILENAME

statement to associate a fileref with the printer name, and then use that fileref in the
LOG= or PRINT= option. For an example, see Example 4 on page 892.

For more information see the FILENAME statement in SAS Language Reference:
Dictionary.

Operating Environment Information: For examples of printer names, see the
documentation for your operating system. �

Examples: PRINTTO Procedure

Example 1: Routing to External Files
Procedure features:

PRINTTO statement:
Without options
Options:

LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route the log and procedure output to an
external file and then reset both destinations to the default.



884 Program � Chapter 33

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. The SOURCE
option writes lines of source code to the default destination for the SAS log.

options nodate pageno=1 linesize=80 pagesize=60 source;

Route the SAS log to an external file. PROC PRINTTO uses the LOG= option to route the
SAS log to an external file. By default, this log is appended to the current contents of log-file.

proc printto log=’log-file’;
run;

Create the NUMBERS data set. The DATA step uses list input to create the NUMBERS data
set.

data numbers;
input x y z;
datalines;

14.2 25.2 96.8
10.8 51.6 96.8

9.5 34.2 138.2
8.8 27.6 83.2

11.5 49.4 287.0
6.3 42.0 170.7

;

Route the procedure output to an external file. PROC PRINTTO routes output to an
external file. Because NEW is specified, any output written to output-file will overwrite the
file’s current contents.

proc printto print=’output-file’ new;
run;

Print the NUMBERS data set. The PROC PRINT output is written to the specified external
file.

proc print data=numbers;
title ’Listing of NUMBERS Data Set’;

run;

Reset the SAS log and procedure output destinations to default. PROC PRINTTO routes
subsequent logs and procedure output to their default destinations and closes both of the
current files.



The PRINTTO Procedure � Output 885

proc printto;
run;

Log

Output 33.1 Portion of Log Routed to the Default Destination

1 options nodate pageno=1 linesize=80 pagesize=60 source;
2 proc printto log=’log-file’;
3 run;

Output 33.2 Portion of Log Routed to an External File

5
6 data numbers;
7 input x y z;
8 datalines;

NOTE: The data set WORK.NUMBERS has 6 observations and 3 variables.
NOTE: DATA statement used:

real time 0.00 seconds
cpu time 0.00 seconds

15 ;
16 proc printto print=’output-file’ new;
16
17 run;

NOTE: PROCEDURE PRINTTO used:
real time 0.00 seconds
cpu time 0.00 seconds

18
19 proc print data=numbers;
20 title ’Listing of NUMBERS Data Set’;
21 run;

NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used:

real time 0.00 seconds
cpu time 0.00 seconds

22
23 proc printto;
24 run;

Output



886 Example 2: Routing to SAS Catalog Entries � Chapter 33

Output 33.3 Procedure Output Routed to an External File

Listing of NUMBERS Data Set 1

OBS x y z

1 14.2 25.2 96.8
2 10.8 51.6 96.8
3 9.5 34.2 138.2
4 8.8 27.6 83.2
5 11.5 49.4 287.0
6 6.3 42.0 170.7

Example 2: Routing to SAS Catalog Entries
Procedure features:

PRINTTO statement:
Without options
Options:

LABEL=
LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route the SAS log and procedure output to a
SAS catalog entry and then to reset both destinations to the default.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a libname.

libname lib1 ’SAS-data-library’;

Route the SAS log to a SAS catalog entry. PROC PRINTTO routes the SAS log to a SAS
catalog entry named SASUSER.PROFILE.TEST.LOG. The PRINTTO procedure uses the default
libref and catalog SASUSER.PROFILE because only the entry name and type are specified.
LABEL= assigns a description for the catalog entry.



The PRINTTO Procedure � Log 887

proc printto log=test.log label=’Inventory program’ new;
run;

Create the LIB1.INVENTORY data set. The DATA step creates a permanent SAS data set.

data lib1.inventry;
length Dept $ 4 Item $ 6 Season $ 6 Year 4;
input dept item season year @@;
datalines;

3070 20410 spring 1996 3070 20411 spring 1997
3070 20412 spring 1997 3070 20413 spring 1997
3070 20414 spring 1996 3070 20416 spring 1995
3071 20500 spring 1994 3071 20501 spring 1995
3071 20502 spring 1996 3071 20503 spring 1996
3071 20505 spring 1994 3071 20506 spring 1994
3071 20507 spring 1994 3071 20424 spring 1994
;

Route the procedure output to a SAS catalog entry. PROC PRINTTO routes procedure
output from the subsequent PROC REPORT step to the SAS catalog entry
LIB1.CAT1.INVENTRY.OUTPUT. LABEL= assigns a description for the catalog entry.

proc printto print=lib1.cat1.inventry.output
label=’Inventory program’ new;

run;

proc report data=lib1.inventry nowindows headskip;
column dept item season year;
title ’Current Inventory Listing’;

run;

Reset the SAS log and procedure output back to the default and close the file. PROC
PRINTTO closes the current files that were opened by the previous PROC PRINTTO step and
reroutes subsequent SAS logs and procedure output to their default destinations.

proc printto;
run;

Log



888 Output � Chapter 33

Output 33.4 SAS Log Routed to SAS Catalog Entry SASUSER.PROFILE.TEST.LOG.

You can view this catalog entry in the BUILD window of the SAS Explorer.

8
9 data lib1.inventry;
10 length Dept $ 4 Item $ 6 Season $ 6 Year 4;
11 input dept item season year @@;
12 datalines;

NOTE: SAS went to a new line when INPUT statement reached past the end of a
line.

NOTE: The data set LIB1.INVENTRY has 14 observations and 4 variables.
NOTE: DATA statement used:

real time 0.00 seconds
cpu time 0.00 seconds

20 ;
21
22 proc printto print=lib1.cat1.inventry.output
23 label=’Inventory program’ new;
24 run;

NOTE: PROCEDURE PRINTTO used:
real time 0.00 seconds
cpu time 0.00 seconds

25
26 proc report data=lib1.inventry nowindows headskip;
27 column dept item season year;
28 title ’Current Inventory Listing’;
29 run;

NOTE: PROCEDURE REPORT used:
real time 0.00 seconds
cpu time 0.00 seconds

30
31 proc printto;
32 run;

Output



The PRINTTO Procedure � Example 3: Using Procedure Output as an Input File 889

Output 33.5 Procedure Output Routed to SAS Catalog Entry LIB1.CAT1.INVENTRY.OUTPUT.

You can view this catalog entry in the BUILD window of the SAS Explorer.

Current Inventory Listing 1

Dept Item Season Year

3070 20410 spring 1996
3070 20411 spring 1997
3070 20412 spring 1997
3070 20413 spring 1997
3070 20414 spring 1996
3070 20416 spring 1995
3071 20500 spring 1994
3071 20501 spring 1995
3071 20502 spring 1996
3071 20503 spring 1996
3071 20505 spring 1994
3071 20506 spring 1994
3071 20507 spring 1994
3071 20424 spring 1994

Example 3: Using Procedure Output as an Input File
Procedure features:

PRINTTO statement:
Without options
Options:

LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route procedure output to an external file and
then uses that file as input to a DATA step.

Generate random values for the variables. The DATA step uses the RANUNI function to
randomly generate values for the variables X and Y in the data set A.

data test;
do n=1 to 1000;

x=int(ranuni(77777)*7);
y=int(ranuni(77777)*5);
output;

end;
run;

Assign a fileref and route procedure output to the file that is referenced. The
FILENAME statement assigns a fileref to an external file. PROC PRINTTO routes subsequent
procedure output to the file that is referenced by the fileref ROUTED. See Output 33.6 on page
890.



890 Example 3: Using Procedure Output as an Input File � Chapter 33

filename routed ’output-filename’;

proc printto print=routed new;
run;

Produce the frequency counts. PROC FREQ computes frequency counts and a chi-square
analysis of the variables X and Y in the data set TEST. This output is routed to the file that is
referenced as ROUTED.

proc freq data=test;
tables x*y / chisq;

run;

Close the file. You must use another PROC PRINTTO to close the file that is referenced by
fileref ROUTED so that the following DATA step can read it. The step also routes subsequent
procedure output to the default destination. PRINT= causes the step to affect only procedure
output, not the SAS log.

proc printto print=print;
run;

Create the data set PROBTEST. The DATA step uses ROUTED, the file containing PROC
FREQ output, as an input file and creates the data set PROBTEST. This DATA step reads all
records in ROUTED but creates an observation only from a record that begins with Chi-Squa.

data probtest;
infile routed;
input word1 $ @;
if word1=’Chi-Squa’ then

do;
input df chisq prob;
keep chisq prob;
output;

end;
run;

Print the PROBTEST data set. PROC PRINT produces a simple listing of data set
PROBTEST. This output is routed to the default destination. See Output 33.7 on page 891.

proc print data=probtest;
title ’Chi-Square Analysis for Table of X by Y’;

run;



The PRINTTO Procedure � Example 3: Using Procedure Output as an Input File 891

Output 33.6 PROC FREQ Output Routed to the External File Referenced as ROUTED

The FREQ Procedure

Table of x by y

x y

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+

0 | 29 | 33 | 12 | 25 | 27 | 126
| 2.90 | 3.30 | 1.20 | 2.50 | 2.70 | 12.60
| 23.02 | 26.19 | 9.52 | 19.84 | 21.43 |
| 15.18 | 16.18 | 6.25 | 11.74 | 13.50 |

---------+--------+--------+--------+--------+--------+
1 | 23 | 26 | 29 | 20 | 19 | 117

| 2.30 | 2.60 | 2.90 | 2.00 | 1.90 | 11.70
| 19.66 | 22.22 | 24.79 | 17.09 | 16.24 |
| 12.04 | 12.75 | 15.10 | 9.39 | 9.50 |

---------+--------+--------+--------+--------+--------+
2 | 28 | 26 | 32 | 30 | 25 | 141

| 2.80 | 2.60 | 3.20 | 3.00 | 2.50 | 14.10
| 19.86 | 18.44 | 22.70 | 21.28 | 17.73 |
| 14.66 | 12.75 | 16.67 | 14.08 | 12.50 |

---------+--------+--------+--------+--------+--------+
3 | 26 | 24 | 36 | 32 | 45 | 163

| 2.60 | 2.40 | 3.60 | 3.20 | 4.50 | 16.30
| 15.95 | 14.72 | 22.09 | 19.63 | 27.61 |
| 13.61 | 11.76 | 18.75 | 15.02 | 22.50 |

---------+--------+--------+--------+--------+--------+
4 | 25 | 31 | 28 | 36 | 29 | 149

| 2.50 | 3.10 | 2.80 | 3.60 | 2.90 | 14.90
| 16.78 | 20.81 | 18.79 | 24.16 | 19.46 |
| 13.09 | 15.20 | 14.58 | 16.90 | 14.50 |

---------+--------+--------+--------+--------+--------+
5 | 32 | 29 | 26 | 33 | 27 | 147

| 3.20 | 2.90 | 2.60 | 3.30 | 2.70 | 14.70
| 21.77 | 19.73 | 17.69 | 22.45 | 18.37 |
| 16.75 | 14.22 | 13.54 | 15.49 | 13.50 |

---------+--------+--------+--------+--------+--------+
6 | 28 | 35 | 29 | 37 | 28 | 157

| 2.80 | 3.50 | 2.90 | 3.70 | 2.80 | 15.70
| 17.83 | 22.29 | 18.47 | 23.57 | 17.83 |
| 14.66 | 17.16 | 15.10 | 17.37 | 14.00 |

---------+--------+--------+--------+--------+--------+
Total 191 204 192 213 200 1000

19.10 20.40 19.20 21.30 20.00 100.00

2

The FREQ Procedure

Statistics for Table of x by y

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 24 27.2971 0.2908
Likelihood Ratio Chi-Square 24 28.1830 0.2524
Mantel-Haenszel Chi-Square 1 0.6149 0.4330
Phi Coefficient 0.1652
Contingency Coefficient 0.1630
Cramer’s V 0.0826

Sample Size = 1000



892 Example 4: Routing to a Printer � Chapter 33

Output 33.7 PROC PRINT Output of Data Set PROBTEST, Routed to Default Destination

Chi-Square Analysis for Table of X by Y 3

Obs chisq prob

1 27.297 0.291

Example 4: Routing to a Printer

Procedure features:
PRINTTO statement:

Option:
PRINT= option

This example uses PROC PRINTTO to route procedure output directly to a printer.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Associate a fileref with the printer name. The FILENAME statement associates a fileref
with the printer name that you specify. If you want to associate a fileref with the default printer,
omit ’printer-name’.

filename your_fileref printer ’printer-name’;

Specify the file to route to the printer. The PRINT= option specifies the file that PROC
PRINTTO routes to the printer.

proc printto print=your_fileref;
run;



893

C H A P T E R

34
The PRTDEF Procedure

Overview: PRTDEF Procedure 893
Syntax: PRTDEF Procedure 893

PROC PRTDEF Statement 893

Input Data Set: PRTDEF Procedure 895

Summary of Valid Variables 895

Required Variables 896
Optional Variables 897

Examples: PRTDEF Procedure 899

Example 1: Defining Multiple Printer Definitions 899

Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript Printer Output in
SASUSER 900

Example 3: Creating a Single Printer Definition That Is Available to All Users 901
Example 4: Adding, Modifying, and Deleting Printer Definitions 902

See Also 905

Overview: PRTDEF Procedure

The PRTDEF procedure creates printer definitions in batch mode either for an
individual user or for all SAS users at your site. Your system administrator can create
printer definitions in the SAS registry and make these printers available to all SAS
users at your site by using PROC PRTDEF with the USESASHELP option. An
individual user can create personal printer definitions in the SAS registry by using
PROC PRTDEF.

Syntax: PRTDEF Procedure

PROC PRTDEF <option(s)>;

PROC PRTDEF Statement

PROC PRTDEF <option(s)>;



894 PROC PRTDEF Statement � Chapter 34

To do this Use this option

Specify the input data set that contains the printer
attributes

DATA=

Specify that the default operation is to delete the printer
definitions from the registry

DELETE

Specify that the registry entries are being created for export
to a different host

FOREIGN

Specify that a list of printers that are created or replaced
will be written to the log

LIST

Specify that any printer name that already exists will be
modified by using the information in the printer attributes
data set

REPLACE

Specify whether the printer definitions are available to all
users or just the users running PROC PRTDEF

USESASHELP

Options

DATA=SAS-data-set
specifies the SAS input data set that contains the printer attributes.
Requirements: Printer attributes variables that must be specified are DEST,

DEVICE, MODEL, and NAME, except when the value of the variable OPCODE is
DELETE, in which case only the NAME variable is required.

DELETE
specifies that the default operation is to delete the printer definitions from the
registry.
Interaction: If both DELETE and REPLACE are specified, then DELETE is the

default operation.
Tip: If the user-defined printer definition is deleted, then the administrator-defined

printer may still appear if it exists in the SASHELP catalog.

FOREIGN
specifies that the registry entries are being created for export to a different host. As a
consequence, tests of any host-dependent items, such as the TRANTAB, are skipped.

LIST
specifies that a list of printers that are created or replaced will be written to the log.

REPLACE
specifies that the default operation is to modify existing printer definitions. Any
printer name that already exists will be modified by using the information in the
printer attributes data set. Any printer name that does not exist will be added.
Interaction: If both REPLACE and DELETE are specified, then a DELETE will be

performed.

USESASHELP
specifies that the printer definitions that are to be placed in the SASHELP library,
where they are available to all users.

If the USESASHELP option is not specified, then the printer definitions that are
placed in the current SASUSER library, where they are available to the local user
only.



The PRTDEF Procedure � Summary of Valid Variables 895

Restriction: To use the USESASHELP option, you must have permission to write
to the SASHELP catalog.

Operating Environment Information: You can create printer definitions with PROC
PRTDEF in the Windows operating environment. However, because Universal
Printing is turned off by default in Windows, these printer definitions do not appear
in the Print window.

If you want to use your printer definitions when Universal Printing is turned off,
then do one of the following:

� specify the printer definition as part of the PRINTERPATH system option
� from the Output Delivery System (ODS), issue the following code:

ODS PRINTER SAS PRINTER=myprinter;

where myprinter is the name of your printer definition.

�

Input Data Set: PRTDEF Procedure

Summary of Valid Variables
To create your printer definitions, you must create a SAS data set whose variables

contain the appropriate printer attributes. The following table lists and describes both
the required and the optional variables for this data set.

Variable Name Variable Description

Required

DEST Destination

DEVICE Device

MODEL Prototype

NAME Printer name

Optional

BOTTOM Default bottom margin

CHARSET Default font character set

DESC Description

FONTSIZE Point size of the default font

HOSTOPT Host options

LEFT Default left margin

LRECL Output buffer size

OPCODE Operation code

PAPERIN Paper source or input tray

PAPEROUT Paper destination or output tray

PAPERSIZ Paper size



896 Required Variables � Chapter 34

Variable Name Variable Description

PAPERTYP Paper type

PREVIEW Preview

PROTOCOL Protocol

RES Default printer resolution

RIGHT Default right margin

STYLE Default font style

TOP Default top margin

TRANTAB Translation table

TYPEFACE Default font

UNITS CM or IN units

VIEWER Viewer

WEIGHT Default font weight

Required Variables
To create or modify a printer, you must supply the NAME, MODEL, DEVICE, and

DEST variables. All the other variables use default values from the printer prototype
that is specified by the MODEL variable. To delete a printer, specify only the required
NAME variable.

The following variables are required in the input data set:

DEST specifies the output destination for the printer.

Operating Environment Information: DEST is case sensitive for
some devices. �

Restriction: DEST is limited to 1023 characters.

DEVICE specifies the type of I/O device to use when sending output to the
printer. Valid devices are listed in the Printer Definition wizard and
in the SAS Registry Editor.
Restriction: DEVICE is limited to 31 characters.

MODEL specifies the printer prototype to use when defining the printer.

For a valid list of prototypes or model descriptions, you can look in
the SAS Registry Editor under CORE\PRINTING\PROTOTYPES.
Tip: While in interactive mode, you can invoke the registry with

the REGEDIT command.
Tip: While in interactive mode, you can invoke the Print Setup

dialog (DMPRTSETUP) and press New to view the list that is
specified in the second window of the Printer Definition wizard.

Restriction: MODEL is limited to 127 characters.

NAME specifies the printer definition name that will be associated with the
rest of the attributes in the printer definition.

The name is unique within a given registry. If a new printer
definition contains a name that already exists, then the record will



The PRTDEF Procedure � Optional Variables 897

not be processed unless the REPLACE option has been specified or
unless the value of the OPCODE variable is Modify.
Restriction: NAME must have the following features:

� It is limited to 127 characters.
� It must have at least one nonblank character.
� It cannot contain a backslash.

Note: Leading and trailing blanks will be stripped from the
name. �

Optional Variables
The following variables are optional in the input data set:

BOTTOM
specifies the default bottom margin in the units that are specified by the UNITS
variable.

CHARSET
specifies the default font character set.
Restriction: The value must be one of the character set names in the typeface

that is specified by the TYPEFACE variable.
Restriction: CHARSET is limited to 31 characters.

DESC
specifies the description of the printer.
Restriction: The description can have a maximum of 1023 characters.
Default: DESC defaults to the prototype that is used to create the printer.

FONTSIZE
specifies the point size of the default font.

HOSTOPT
specifies any host options for the output destination. The host options are not case
sensitive.
Restriction: The host options can have a maximum of 1023 characters.

LEFT
specifies the default left margin in the units that are specified by the UNITS
variable.

LRECL
specifies the buffer size or record length to use when sending output to the printer.
Default: If LRECL is less than zero when modifying an existing printer

definition that does not use the default buffer size, then the printer’s
non-default buffer size will be replaced by the default buffer size.

OPCODE
is a character variable that specifies what action (Add, Delete, or Modify) to
perform on the printer definition.

Add
creates a new printer definition in the registry. If the REPLACE option has
been specified, then this operation will also modify an existing printer
definition.

Delete



898 Optional Variables � Chapter 34

removes an existing printer definition from the registry.

Restriction: This operation requires only the NAME variable to be defined.
The other variables are ignored.

Modify
changes an existing printer definition in the registry or adds a new one.

Tip: If a user modifies and saves new attributes on a printer in the SASHELP
library, then these modifications are stored in the SASUSER library. Values
that are specified by the user will override values that are set by the
administrator, but they will not replace them.

Restriction: OPTCODE is limited to 8 characters.

PAPERIN
specifies the default paper source or input tray.

Restriction: The value of PAPERIN must be one of the paper source names in
the printer prototype that is specified by the MODEL variable.

Restriction: PAPERIN is limited to 31 characters.

PAPEROUT
specifies the default paper destination or output tray.

Restriction: The value of PAPEROUT must be one of the paper destination
names in the printer prototype that is specified by the MODEL variable.

Restriction: PAPEROUT is limited to 31 characters.

PAPERSIZ
specifies the default paper source or input tray.

Restriction: The value of PAPERSIZ must be one of the paper size names listed
in the printer prototype that is specified by the MODEL variable.

Restriction: PAPERSIZ is limited to 31 characters.

PAPERTYP
specifies the default paper type.

Restriction: The value of PAPERTYP must be one of the paper source names
listed in the printer prototype that is specified by the MODEL variable.

Restriction: PAPERTYP is limited to 31 characters.

PREVIEW
specifies the printer application to use for print preview.

Restriction: PREVIEW is limited to 127 characters.

PROTOCOL
specifies the I/O protocol to use when sending output to the printer.

Operating Environment Information: On mainframe systems, the protocol
describes how to convert the output to a format that can be processed by a protocol
converter that connects the mainframe to an ASCII device. �

Restriction: PROTOCAL is limited to 31 characters.

RES
specifies the default printer resolution.

Restriction: The value of RES must be one of the resolution values available to
the printer prototype that is specified by the MODEL variable.

Restriction: RES is limited to 31 characters.

RIGHT



The PRTDEF Procedure � Example 1: Defining Multiple Printer Definitions 899

specifies the default right margin in the units that are specified by the UNITS
variable.

STYLE
specifies the default font style.
Restriction: The value of STYLE must be one of the styles available to the

typeface that is specified by the TYPEFACE variable.
Restriction: STYLE is limited to 31 characters.

TOP
specifies the default top margin in the units that are specified by the UNITS
variable.

TRANTAB
specifies which translation table to use when sending output to the printer.

Operating Environment Information: The translation table is needed when an
EBCDIC host sends data to an ASCII device. �

Restriction: TRANTAB is limited to 8 characters.

TYPEFACE
specifies the typeface of the default font.
Restriction: The typeface must be one of the typeface names available to the

printer prototype that is specified by the MODEL variable.
Restriction: TYPEFACE is limited to 63 characters.

UNITS
specifies the units CM or IN that are used by margin variables.

VIEWER
specifies the host system command that is to be used during print previews. As a
result, PROC PRTDEF causes a preview printer to be created.

Preview printers are specialized printers that are used to display printer output
on the screen before printing.
Tip: The values of the PREVIEW, PROTOCOL, DEST, and HOSTOPT variables

are ignored when a value for VIEWER has been specified. Place %s where the
input filename would normally be in the viewer command. The %s can be used
as many times as needed.

Restriction: VIEWER is limited to 127 characters.

WEIGHT
specifies the default font weight.
Restriction: The value must be one of the valid weights for the typeface that is

specified by the TYPEFACE variable.

Examples: PRTDEF Procedure

Example 1: Defining Multiple Printer Definitions
Procedure features:



900 Program � Chapter 34

PROC PRTDEF statement option:
DATA=
USESASHELP

This example shows you how to set up various printers.

Program

Create the PRINTERS data set. The INPUT statement contains the names of the four
required variables. Each data line contains the information that is needed to produce a single
printer definition.

The & specifies that two or more blanks separate character values. This allows the name and
model value to contain blanks.

data printers;
input name $& model $& device $& dest $&;
datalines;
Myprinter PostScript Level 1 PRINTER printer1
Laserjet PCL 5 Printer PIPE lp -dprinter5
Color LaserJet PostScript Level 2 PIPE lp -dprinter2
;

Specify the input data set that contains the printer attributes, create the printer
definitions, and make the definitions available to all users. The DATA= option specifies
PRINTERS as the input data set that contains the printer attributes.

PROC PRTDEF creates the printer definitions for the SAS registry, and the USESASHELP
option specifies that the printer definitions will be available to all users.

proc prtdef data=printers usesashelp;
run;

Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript
Printer Output in SASUSER

Procedure features:
PROC PRTDEF statement options:

DATA=
LIST
REPLACE

This example creates a Ghostview printer definition in the SASUSER library for
previewing PostScript output.

Program



The PRTDEF Procedure � Example 3: Creating a Single Printer Definition That Is Available to All Users 901

Create the GSVIEW data set, and specify the printer name, printer description,
printer prototype, and commands to be used for print preview. The GSVIEW data set
contains the variables whose values contain the information that is needed to produce the
printer definitions.

The NAME variable specifies the printer name that will be associated with the rest of the
attributes in the printer definition data record.

The DESC variable specifies the description of the printer.

The MODEL variable specifies the printer prototype to use when defining this printer.

The VIEWER variable specifies the host system commands to be used for print preview.
GSVIEW must be installed on your system and the value for VIEWER must include the path
to find it. You must enclose the value in single quotation marks because of the %s. If you use
double quotation marks, SAS will assume that %s is a macro variable.

DEVICE and DEST are required variables, but no value is needed in this example. Therefore,
a “dummy” or blank value should be assigned.

data gsview;
name = "Ghostview";
desc = "Print Preview with Ghostview";
model= "PostScript Level 2 (Color)";
viewer = ’ghostview %s’;
device = "Dummy";
dest = " ";

Specify the input data set that contains the printer attributes, create the printer
definitions, write the printer definitions to the SAS log, and replace a printer
definition in the SAS registry. The DATA= option specifies GSVIEW as the input data set
that contains the printer attributes.

PROC PRTDEF creates the printer definitions.

The LIST option specifies that a list of printers that are created or replaced will be written to
the SAS log.

The REPLACE option specifies that a printer definition will replace a printer definition in the
registry if the name of the printer definition matches a name already in the registry. If the
printer definition names do not match, then the new printer definition is added to the registry.

proc prtdef data=gsview list replace;
run;

Example 3: Creating a Single Printer Definition That Is Available to All Users
Procedure features:

PROC PRTDEF statement option:
DATA=

This example creates a definition for a Tektronix Phaser 780 printer with a
Ghostview print previewer with the following specifications:

� bottom margin set to 1 inch
� font size set to 14 point



902 Program � Chapter 34

� paper size set to A4.

Program

Create the TEK780 data set and supply appropriate information for the printer
destination. The TEK780 data set contains the variables whose values contain the information
that is needed to produce the printer definitions.

In the example, assignment statements are used to assign these variables.

The NAME variable specifies the printer name that will be associated with the rest of the
attributes in the printer definition data record.

The DESC variable specifies the description of the printer.

The MODEL variable specifies the printer prototype to use when defining this printer.

The DEVICE variable specifies the type of I/O device to use when sending output to the printer.

The DEST variable specifies the output destination for the printer.

The PREVIEW variable specifies which printer will be used for print preview.

The UNITS variable specifies whether the margin variables are measured in centimeters or
inches.

The BOTTOM variable specifies the default bottom margin in the units that are specified by the
UNITS variable.

The FONTSIZE variable specifies the point size of the default font.

The PAPERSIZ variable specifies the default paper size.

data tek780;
name = "Tek780";
desc = "Test Lab Phaser 780P";
model = "Tek Phaser 780 Plus";
device = "PRINTER";
dest = "testlab3";
preview = "Ghostview";
units = "in";
bottom = 1;
fontsize = 14;
papersiz = "ISO A4";

run;

Create the TEK780 printer definition. The DATA= option specifies TEK780 as the input
data set.

proc prtdef data=tek780;
run;

Example 4: Adding, Modifying, and Deleting Printer Definitions

Procedure features:
PROC PRTDEF statement options:

DATA=
LIST



The PRTDEF Procedure � See Also 903

This example
� adds two printer definitions
� modifies a printer definition
� deletes two printer definitions.

Program

Create the PRINTERS data set and specify which actions to perform on the printer
definitions. The PRINTERS data set contains the variables whose values contain the
information that is needed to produce the printer definitions.

The MODEL variable specifies the printer prototype to use when defining this printer.

The DEVICE variable specifies the type of I/O device to use when sending output to the printer.

The DEST variable specifies the output destination for the printer.

The OPCODE variable specifies which action (add, delete, or modify) to perform on the printer
definition.

The first Add operation creates a new printer definition for Color PostScript in the SAS registry,
and the second Add operation creates a new printer definition for ColorPS in the SAS registry.

The Mod operation modifies the existing printer definition for LaserJet 5 in the registry.

The Del operation deletes the printer definitions for Gray PostScript and test from the registry.

The & specifies that two or more blanks separate character values. This allows the name and
model value to contain blanks.

data printers;
length name $ 80

model $ 80
device $ 8
dest $ 80
opcode $ 3
;

input opcode $& name $& model $& device $& dest $&;
datalines;
add Color PostScript PostScript Level 2 (Color) DISK sasprt.ps
mod LaserJet 5 PCL 5 DISK sasprt.pcl
del Gray PostScript PostScript Level 2 (Gray Scale) DISK sasprt.ps
del test PostScript Level 2 (Color) DISK sasprt.ps
add ColorPS PostScript Level 2 (Color) DISK sasprt.ps
;

Create multiple printer definitions and write them to the SAS log. The DATA= option
specifies the input data set PRINTERS that contains the printer attributes. PROC PRTDEF
creates five printer definitions, two of which have been deleted. The LIST option specifies that a
list of printers that are created or replaced will be written to the log.

proc prtdef data=printers library=sasuser list;
run;

See Also



904 See Also � Chapter 34

Procedures
Chapter 35, “The PRTEXP Procedure,” on page 905



905

C H A P T E R

35
The PRTEXP Procedure

Overview: PRTEXP Procedure 905
Syntax: PRTEXP Procedure 905

PROC PRTEXP Statement 905

EXCLUDE Statement 906

SELECT Statement 906

Concepts: PRTEXP Procedure 906
Examples: PRTEXP Procedure 907

Example 1: Writing Attributes to the SAS Log 907

Example 2: Writing Attributes to a SAS Data Set 907

See Also 909

Overview: PRTEXP Procedure

The PRTEXP procedure enables you to extract printer attributes from the SAS
registry for replication and modification. PROC PRTEXP then writes these attributes to
the SAS log or to a SAS data set. You can specify that PROC PRTEXP search for these
attributes in the SASHELP portion of the registry or the entire SAS registry.

Syntax: PRTEXP Procedure
Note: If neither the SELECT nor the EXCLUDE statement is used, then all of the
printers will be included in the output.

PROC PRTEXP<option(s)>;

<SELECT printer_1 ...<printer_n>>;

<EXCLUDE printer_1 ... <printer_n>>;

PROC PRTEXP Statement

PROC PRTEXP<option(s)>;



906 EXCLUDE Statement � Chapter 35

Options

USESASHELP
specifies that SAS search only the SASHELP portion of the registry for printer
definitions.
Default: The default is to search both the SASUSER and SASHELP portions of the

registry for printer definitions.

OUT=SAS-data-set
specifies the SAS data set to create that contains the printer definitions.

The data set that is specified by the OUT=SAS-data-set option is the same type of
data set that is specified by the DATA=SAS-data-set option in PROC PRTDEF to
define each printer.
Default: If OUT=SAS-data-set is not specified, then the data that is needed to

define each printer is written to the SAS log.

EXCLUDE Statement
The EXCLUDE statement will cause the output to contain information from all those printers that
are not listed.

EXCLUDE printer_1 ... <printer_n>;

Required Arguments

printer_1 printer_n
specifies the printer(s) that you do not want the output to contain information about.

SELECT Statement
The SELECT statement will cause the output to contain information from only those printers that
are listed.

SELECT printer_1 ... <printer_n>;

Required Arguments

printer_1 printer_n
specifies the printer(s) that you would like the output to contain information about.

Concepts: PRTEXP Procedure
The PRTEXP procedure, along with the PRTDEF procedure, can replicate, modify,

and create printer definitions either for an individual user or for all SAS users at your



The PRTEXP Procedure � Example 2: Writing Attributes to a SAS Data Set 907

site. PROC PRTEXP can extract only the attributes that are used to create printer
definitions from the registry. If you write them to a SAS data set, then you can later
replicate and modify them. You can then use PROC PRTDEF to create the printer
definitions in the SAS registry from your input data set. For a complete discussion of
PROC PRTDEF and the variables and attributes that are used to create the printer
definitions, see “Input Data Set: PRTDEF Procedure” on page 895.

Examples: PRTEXP Procedure

Example 1: Writing Attributes to the SAS Log

Procedure Features:
PROC PRTEXP statement option:

SELECT statement
USESASHELP option

This example shows you how to write the attributes that are used to define a printer
to the SAS log.

Program

Specify the printer that you want information about, specify that only the SASHELP
portion of the registry be searched, and write the information to the SAS log. The
SELECT statement specifies that you want the attribute information that is used to define the
printer Postscript to be included in the output. The USESASHELP option specifies that only the
SASHELP registry is to be searched for Postscript’s printer definitions. The data that is needed
to define each printer is written to the SAS log because the OUT= option was not used to specify
a SAS data set.

proc prtexp usesashelp;
select postscript;
run;

Example 2: Writing Attributes to a SAS Data Set

Procedure Features:
PROC PRTEXP statement option:

OUT= option
SELECT statement



908 Program � Chapter 35

This example shows you how to create a SAS data set that contains the data that
PROC PRTDEF would use to define the printers PCL4, PCL5, PCL5E, and PCLC.

Program

Specify the printers that you want information about and create the PRDVTER data
set. The SELECT statement specifies the printers PCL4, PCL5, PCL5E, and PCLC. The OUT=
option creates the SAS data set PRDVTER, which contains the same attributes that are used by
PROC PRTDEF to define the printers PCL4, PCL5, PCL5E, and PCLC. SAS will search both
the SASUSER and SASHELP registries, because USESASHELP was not specified.

proc prtexp out=PRDVTER;
select pcl4 pcl5 pcl5e pcl5c;
run;

See Also

Procedures
Chapter 34, “The PRTDEF Procedure,” on page 893



909

C H A P T E R

36
The RANK Procedure

Overview: RANK Procedure 909
Syntax: RANK Procedure 911

PROC RANK Statement 911

BY Statement 914

RANKS Statement 915

VAR Statement 915
Concepts: RANK Procedure 915

Computer Resources 916

Statistical Applications 916

Results: RANK Procedure 916

Missing Values 916

Output Data Set 916
Examples: RANK Procedure 917

Example 1: Ranking Values of Multiple Variables 917

Example 2: Ranking Values within BY Groups 918

Example 3: Partitioning Observations into Groups Based on Ranks 920

References 923

Overview: RANK Procedure
The RANK procedure computes ranks for one or more numeric variables across the

observations of a SAS data set and outputs the ranks to a new SAS data set. PROC
RANK by itself produces no printed output.

Output 36.1 on page 909 shows the results of ranking the values of one variable with
a simple PROC RANK step. In this example, the new ranking variable shows the order
of finish of five golfers over a four-day competition. The player with the lowest number
of strokes finishes in first place. The following statements produce the output:

proc rank data=golf out=rankings;
var strokes;
ranks Finish;

run;

proc print data=rankings;
run;



910 Overview: RANK Procedure � Chapter 36

Output 36.1 Assignment of the Lowest Rank Value to the Lowest Variable Value

The SAS System 1

Obs Player Strokes Finish

1 Jack 279 2
2 Jerry 283 3
3 Mike 274 1
4 Randy 296 4
5 Tito 302 5

In Output 36.2 on page 910, the candidates for city council are ranked by district
according to the number of votes that they received in the election and according to the
number of years that they have served in office.

This example shows how PROC RANK can
� reverse the order of the rankings so that the highest value receives the rank of 1,

the next highest value receives the rank of 2, and so on
� rank the observations separately by values of multiple variables
� rank the observations within BY groups
� handle tied values.

For an explanation of the program that produces this report, see Example 2 on page
918.

Output 36.2 Assignment of the Lowest Rank Value to the Highest Variable Value within Each BY Group

Results of City Council Election 1
---------------------------------- District=1 ----------------------------------

Vote Years
OBS Candidate Vote Years Rank Rank

1 Cardella 1689 8 1 1
2 Latham 1005 2 3 2
3 Smith 1406 0 2 3
4 Walker 846 0 4 3

N = 4

---------------------------------- District=2 ----------------------------------

Vote Years
OBS Candidate Vote Years Rank Rank

5 Hinkley 912 0 3 3
6 Kreitemeyer 1198 0 2 3
7 Lundell 2447 6 1 1
8 Thrash 912 2 3 2

N = 4



The RANK Procedure � PROC RANK Statement 911

Syntax: RANK Procedure
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC RANK <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

VAR data-set-variables(s);
RANKS new-variables(s);

To do this Use this statement

Calculate a separate set of ranks for each BY group BY

Identify a variables that contain the ranks RANKS

Specify the variables to rank VAR

PROC RANK Statement
PROC RANK <option(s)>;

To do this Use this option

Specify the input data set DATA=

Create an output data set OUT=

Specify the ranking method

Compute fractional ranks FRACTION or NPLUS1

Partition observations into groups GROUPS=

Compute normal scores NORMAL=

Compute percentages PERCENT

Compute Savage scores SAVAGE

Reverse the order of the rankings DESCENDING

Specify how to rank tied values TIES=



912 PROC RANK Statement � Chapter 36

Note: You can specify only one ranking method in a single PROC RANK step. �

Options

DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19
Restriction: You cannot use PROC RANK with an engine that supports concurrent

access if another user is updating the data set at the same time.

DESCENDING
reverses the direction of the ranks. With DESCENDING, the largest value receives a
rank of 1, the next largest value receives a rank of 2, and so on. Otherwise, values
are ranked from smallest to largest.
Featured in: Example 1 on page 917 and Example 2 on page 918

FRACTION
computes fractional ranks by dividing each rank by the number of observations
having nonmissing values of the ranking variable.
Alias: F
Interaction: TIES=HIGH is the default with the FRACTION option. With

TIES=HIGH, fractional ranks are considered values of a right-continuous
empirical cumulative distribution function.

See also: NPLUS1 option

GROUPS=number-of-groups
assigns group values ranging from 0 to number-of-groups minus 1. Common
specifications are GROUPS=100 for percentiles, GROUPS=10 for deciles, and
GROUPS=4 for quartiles. For example, GROUPS=4 partitions the original values
into four groups, with the smallest values receiving, by default, a quartile value of 0
and the largest values receiving a quartile value of 3.

The formula for calculating group values is

���������� � �� ��� ���

where FLOOR is the FLOOR function, rank is the value’s order rank, k is the value
of GROUPS=, and n is the number of observations having nonmissing values of the
ranking variable.

If the number of observations is evenly divisible by the number of groups, each
group has the same number of observations, provided there are no tied values at the
boundaries of the groups. Grouping observations by a variable that has many tied
values can result in unbalanced groups because PROC RANK always assigns
observations with the same value to the same group.
Tip: Use DESCENDING to reverse the order of the group values.
Featured in: Example 3 on page 920

NORMAL=BLOM | TUKEY | VW
computes normal scores from the ranks. The resulting variables appear normally
distributed. The formulas are

BLOM yi=�
−1(ri−3/8)/(n+1/4)



The RANK Procedure � PROC RANK Statement 913

TUKEY yi=�
−1(ri−1/3)/(n+1/3)

VW yi=�
−1(ri)/(n+1)

where �−1 is the inverse cumulative normal (PROBIT) function, ri is the rank of the
ith observation, and n is the number of nonmissing observations for the ranking
variable.

VW stands for van der Waerden. With NORMAL=VW, you can use the scores for a
nonparametric location test. All three normal scores are approximations to the exact
expected order statistics for the normal distribution, also called normal scores. The
BLOM version appears to fit slightly better than the others (Blom 1958; Tukey 1962).
Interaction: If you specify the TIES= option, then PROC RANK computes the

normal score from the ranks based on non-tied values and applies the TIES=
specification to the resulting normal score.

NPLUS1
computes fractional ranks by dividing each rank by the denominator n+1, where n is
the number of observations having nonmissing values of the ranking variable.
Aliases: FN1, N1
Interaction: TIES=HIGH is the default with the NPLUS1 option.
See also: FRACTION option

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC RANK creates it. If
you omit OUT=, the data set is named using the DATAn naming convention.

PERCENT
divides each rank by the number of observations that have nonmissing values of the
variable and multiplies the result by 100 to get a percentage.
Alias: P
Interaction: TIES=HIGH is the default with the PERCENT option.
Tip: You can use PERCENT to calculate cumulative percentages, but use

GROUPS=100 to compute percentiles.

SAVAGE
computes Savage (or exponential) scores from the ranks by the following formula
(Lehman 1998):

�� �

�
� �
��������

�
�

�

��
�
� �

TIES=HIGH | LOW | MEAN
specifies how to compute normal scores or ranks for tied data values.

HIGH
assigns the largest of the corresponding ranks (or largest of the normal scores
when NORMAL= is specified).

LOW
assigns the smallest of the corresponding ranks (or smallest of the normal scores
when NORMAL= is specified).

MEAN
assigns the mean of the corresponding rank (or mean of the normal scores when
NORMAL= is specified).



914 BY Statement � Chapter 36

Default: MEAN (unless the FRACTION option or PERCENT option is in effect).
Interaction: If you specify the NORMAL= option, then the TIES= specification

applies to the normal score, not to the rank that is used to compute the normal
score.

Featured in: Example 1 on page 917 and Example 2 on page 918

BY Statement

Produces a separate set of ranks for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 2 on page 918 and Example 3 on page 920

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the
NOTSORTED option. In fact, the procedure does not use an index if you specify
NOTSORTED. The procedure defines a BY group as a set of contiguous observations
that have the same values for all BY variables. If observations with the same values
for the BY variables are not contiguous, the procedure treats each contiguous set as a
separate BY group.



The RANK Procedure � Concepts: RANK Procedure 915

RANKS Statement
Creates new variables for the rank values.

Requirement: If you use the RANKS statement, you must also use the VAR statement.
Default: If you omit the RANKS statement, the rank values replace the original variable
values in the output data set.
Featured in: Example 1 on page 917 and Example 2 on page 918

RANKS new-variables(s);

Required Arguments

new-variable(s)
specifies one or more new variables that contain the ranks for the variable(s) listed in
the VAR statement. The first variable listed in the RANKS statement contains the
ranks for the first variable listed in the VAR statement, the second variable listed in
the RANKS statement contains the ranks for the second variable listed in the VAR
statement, and so forth.

VAR Statement
Specifies the input variables.

Default: If you omit the VAR statement, PROC RANK computes ranks for all numeric
variables in the input data set.
Featured in: Example 1 on page 917, Example 2 on page 918, and Example 3 on page 920

VAR data-set-variables(s);

Required Arguments

data-set-variable(s)
specifies one or more variables for which ranks are computed.

Using the VAR Statement with the RANKS Statement
The VAR statement is required when you use the RANKS statement. Using these

statements together creates the ranking variables named in the RANKS statement that
correspond to the input variables specified in the VAR statement. If you omit the
RANKS statement, the rank values replace the original values in the output data set.

Concepts: RANK Procedure



916 Computer Resources � Chapter 36

Computer Resources
PROC RANK stores all values in memory of the variables for which it computes

ranks.

Statistical Applications
Ranks are useful for investigating the distribution of values for a variable. The ranks

divided by n or n+1 form values in the range 0 to 1, and these values estimate the
cumulative distribution function. You can apply inverse cumulative distribution
functions to these fractional ranks to obtain probability quantile scores, which you can
compare to the original values to judge the fit to the distribution. For example, if a set
of data has a normal distribution, the normal scores should be a linear function of the
original values, and a plot of scores versus original values should be a straight line.

Many nonparametric methods are based on analyzing ranks of a variable:

� A two-sample t-test applied to the ranks is equivalent to a Wilcoxon rank sum test
using the t approximation for the significance level. If you apply the t-test to the
normal scores rather than to the ranks, the test is equivalent to the van der
Waerden test. If you apply the t-test to median scores (GROUPS=2), the test is
equivalent to the median test.

� A one-way analysis of variance applied to ranks is equivalent to the
Kruskal-Wallis k-sample test; the F-test generated by the parametric procedure
applied to the ranks is often better than the �� approximation used by
Kruskal-Wallis. This test can be extended to other rank scores (Quade 1966).

� You can obtain a Friedman’s two-way analysis for block designs by ranking within
BY groups and then performing a main-effects analysis of variance on these ranks
(Conover 1998).

� You can investigate regression relationships by using rank transformations with a
method described by Iman and Conover (1979).

Results: RANK Procedure

Missing Values
Missing values are not ranked and are left missing when ranks or rank scores

replace the original values in the output data set.

Output Data Set
The RANK procedure creates a SAS data set containing the ranks or rank scores but

does not create any printed output. You can use PROC PRINT, PROC REPORT, or
another SAS reporting tool to print the output data set.

The output data set contains all the variables from the input data set plus the
variables named in the RANKS statement. If you omit the RANKS statement, the rank
values replace the original variable values in the output data set.



The RANK Procedure � Program 917

Examples: RANK Procedure

Example 1: Ranking Values of Multiple Variables
Procedure features:

PROC RANK statement options:
DESCENDING
TIES=

RANKS statement
VAR statement

Other features:
PRINT procedure

This example
� reverses the order of the ranks so that the highest value receives the rank of 1
� assigns tied values the best possible rank
� creates ranking variables and prints them with the original variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. This data set contains each participant’s last name, score for
presentation, and score for taste in a cake-baking contest.

data cake;
input Name $ 1-10 Present 12-13 Taste 15-16;
datalines;

Davis 77 84
Orlando 93 80
Ramey 68 72
Roe 68 75
Sanders 56 79
Simms 68 77
Strickland 82 79
;



918 Output � Chapter 36

Generate the ranks for the numeric variables in descending order and create the
output data set ORDER. DESCENDING reverses the order of the ranks so that the high
score receives the rank of 1. TIES=LOW gives tied values the best possible rank. OUT= creates
the output data set ORDER.

proc rank data=cake out=order descending ties=low;

Create two new variables that contain ranks. The VAR statement specifies the variables to
rank. The RANKS statement creates two new variables, PresentRank and TasteRank, that
contain the ranks for the variables Present and Taste, respectively.

var present taste;
ranks PresentRank TasteRank;

run;

Print the data set. PROC PRINT prints the ORDER data set. The TITLE statement specifies
a title.

proc print data=order;
title "Rankings of Participants’ Scores";

run;

Output

Rankings of Participants’ Scores 1

Present Taste
OBS Name Present Taste Rank Rank

1 Davis 77 84 3 1
2 Orlando 93 80 1 2
3 Ramey 68 72 4 7
4 Roe 68 75 4 6
5 Sanders 56 79 7 3
6 Simms 68 77 4 5
7 Strickland 82 79 2 3

Example 2: Ranking Values within BY Groups

Procedure features:
PROC RANK statement options:

DESCENDING
TIES=

BY statement
RANKS statement
VAR statement

Other features:



The RANK Procedure � Program 919

PRINT procedure

This example

� ranks observations separately within BY groups

� reverses the order of the ranks so that the highest value receives the rank of 1

� assigns tied values the best possible rank

� creates ranking variables and prints them with the original variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the ELECT data set. This data set contains each candidate’s last name, district
number, vote total, and number of years’ experience on the city council.

data elect;
input Candidate $ 1-11 District 13 Vote 15-18 Years 20;
datalines;

Cardella 1 1689 8
Latham 1 1005 2
Smith 1 1406 0
Walker 1 846 0
Hinkley 2 912 0
Kreitemeyer 2 1198 0
Lundell 2 2447 6
Thrash 2 912 2
;

Generate the ranks for the numeric variables in descending order and create the
output data set RESULTS. DESCENDING reverses the order of the ranks so that the highest
vote total receives the rank of 1. TIES=LOW gives tied values the best possible rank. OUT=
creates the output data set RESULTS.

proc rank data=elect out=results ties=low descending;

Create a separate set of ranks for each BY group. The BY statement separates the
rankings by values of District.

by district;



920 Output � Chapter 36

Create two new variables that contain ranks. The VAR statement specifies the variables to
rank. The RANKS statement creates the new variables, VoteRank and YearsRank, that contain
the ranks for the variables Vote and Years, respectively.

var vote years;
ranks VoteRank YearsRank;

run;

Print the data set. PROC PRINT prints the RESULTS data set. The N option prints the
number of observations in each BY group. The TITLE statement specifies a title.

proc print data=results n;
by district;
title ’Results of City Council Election’;

run;

Output

In the second district, Hinkley and Thrash tied with 912 votes. They both receive a rank of 3
because TIES=LOW.

Results of City Council Election 1

---------------------------------- District=1 ----------------------------------

Vote Years
OBS Candidate Vote Years Rank Rank

1 Cardella 1689 8 1 1
2 Latham 1005 2 3 2
3 Smith 1406 0 2 3
4 Walker 846 0 4 3

N = 4

---------------------------------- District=2 ----------------------------------

Vote Years
OBS Candidate Vote Years Rank Rank

5 Hinkley 912 0 3 3
6 Kreitemeyer 1198 0 2 3
7 Lundell 2447 6 1 1
8 Thrash 912 2 3 2

N = 4

Example 3: Partitioning Observations into Groups Based on Ranks
Procedure features:

PROC RANK statement option:



The RANK Procedure � Program 921

GROUPS=
BY statement
VAR statement

Other features:
PRINT procedure
SORT procedure

This example
� partitions observations into groups on the basis of values of two input variables
� groups observations separately within BY groups
� replaces the original variable values with the group values.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SWIM data set. This data set contains swimmers’ first names and their times, in
seconds, for the backstroke and the freestyle. This example groups the swimmers into pairs,
within male and female classes, based on times for both strokes so that every swimmer is paired
with someone who has a similar time for each stroke.

data swim;
input Name $ 1-7 Gender $ 9 Back 11-14 Free 16-19;
datalines;

Andrea F 28.6 30.3
Carole F 32.9 24.0
Clayton M 27.0 21.9
Curtis M 29.0 22.6
Doug M 27.3 22.4
Ellen F 27.8 27.0
Jan F 31.3 31.2
Jimmy M 26.3 22.5
Karin F 34.6 26.2
Mick M 29.0 25.4
Richard M 29.7 30.2
Sam M 27.2 24.1
Susan F 35.1 36.1
;

Sort the SWIM data set and create the output data set PAIRS. PROC SORT sorts the
data set by Gender. This is required to obtain a separate set of ranks for each group. OUT=
creates the output data set PAIRS.



922 Output � Chapter 36

proc sort data=swim out=pairs;
by gender;

run;

Generate the ranks that are partitioned into three groups and create an output data
set. GROUPS=3 assigns one of three possible group values (0,1,2) to each swimmer for each
stroke. OUT= creates the output data set RANKPAIR.

proc rank data=pairs out=rankpair groups=3;

Create a separate set of ranks for each BY group. The BY statement separates the
rankings by Gender.

by gender;

Replace the original values of the variables with the rank values. The VAR statement
specifies that Back and Free are the variables to rank. With no RANKS statement, PROC
RANK replaces the original variable values with the group values in the output data set.

var back free;
run;

Print the data set. PROC PRINT prints the RANKPAIR data set. The N option prints the
number of observations in each BY group. The TITLE statement specifies a title.

proc print data=rankpair n;
by gender;
title ’Pairings of Swimmers for Backstroke and Freestyle’;

run;

Output



The RANK Procedure � References 923

The group values pair up swimmers with similar times to work on each stroke. For example,
Andrea and Ellen work together on the backstroke because they have the fastest times in the
female class. The groups of male swimmers are unbalanced because there are seven male
swimmers; for each stroke, one group has three swimmers.

Pairings of Swimmers for Backstroke and Freestyle 1

----------------------------------- Gender=F -----------------------------------

OBS Name Back Free

1 Andrea 0 1
2 Carole 1 0
3 Ellen 0 1
4 Jan 1 2
5 Karin 2 0
6 Susan 2 2

N = 6

----------------------------------- Gender=M -----------------------------------

OBS Name Back Free

7 Clayton 0 0
8 Curtis 2 1
9 Doug 1 0

10 Jimmy 0 1
11 Mick 2 2
12 Richard 2 2
13 Sam 1 1

N = 7

References

Blom, G. (1958), Statistical Estimates and Transformed Beta Variables, New York:
John Wiley & Sons, Inc.

Conover, W.J. (1998), Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Conover, W.J. and Iman, R.L. (1976), "On Some Alternative Procedures Using Ranks
for the Analysis of Experimental Designs," Communications in Statistics, A5, 14,
1348–1368.

Conover, W.J. and Iman, R.L. (1981), "Rank Transformations as a Bridge between
Parametric and Nonparametric Statistics," The American Statistician, 35, 124–129.

Iman, R.L. and Conover, W.J. (1979), "The Use of the Rank Transform in Regression,"
Technometrics, 21, 499–509.

Lehman, E.L. (1998), Nonparametrics: Statistical Methods Based on Ranks, New
Jersey: Prentice Hall .

Quade, D. (1966), "On Analysis of Variance for the k-Sample Problem," Annals of
Mathematical Statistics, 37, 1747–1758.

Tukey, John W. (1962), "The Future of Data Analysis," Annals of Mathematical
Statistics, 33, 22.



924



925

C H A P T E R

37
The REGISTRY Procedure

Overview: REGISTRY Procedure 925
Syntax: REGISTRY Procedure 925

PROC REGISTRY Statement 926

Creating Registry Files with the REGISTRY Procedure 929

Structure of a Registry File 930

Specifying Key Names 930
Specifying Values for Keys 930

Sample Registry Entries 931

Examples: REGISTRY Procedure 932

Example 1: Importing a File to the Registry 932

Example 2: Listing and Exporting the Registry 933

Example 3: Comparing the Registry to an External File 934
Example 4: Comparing Registry Files 935

See Also 937

Overview: REGISTRY Procedure
The REGISTRY procedure maintains the SAS registry. The registry consists of two

parts. One part is stored in the SASHELP library, and the other part is stored in the
SASUSER library.

The REGISTRY procedure enables you to
� import registry files to populate the SASHELP and SASUSER registries
� export all or part of the registry to another file
� list the contents of the registry in the SAS log
� compare the contents of the registry to a file
� uninstall a registry file
� deliver detailed status information when a key or value will be overwritten or

uninstalled
� clear out entries in the SASUSER registry
� validate that the registry exists
� list diagnostic information.

Syntax: REGISTRY Procedure
PROC REGISTRY <option(s)>;



926 PROC REGISTRY Statement � Chapter 37

PROC REGISTRY Statement

PROC REGISTRY <option(s)>;

To do this Use this option

Erase the contents of the SASUSER registry CLEARSASUSER

Compare two registry files COMPAREREG1 and
COMPAREREG2

Compare the contents of a registry to a file COMPARETO

Enable registry debugging DEBUGON

Disable registry debugging DEBUGOFF

Write the contents of a registry to the specified file EXPORT=

Provide additional information in the SAS log about the
results of the IMPORT= and the UNINSTALL options

FULLSTATUS

Import the specified file to a registry IMPORT=

Write the contents of the registry to the SAS log. Used with
the STARTAT= option to list specific keys.

LIST

Write the contents of the SASHELP portion of the registry
to the SAS log

LISTHELP

Send the contents of a registry to the log LISTREG

Write the contents of the SASUSER portion of the registry
to the SAS log

LISTUSER

Start exporting or writing or comparing the contents of a
registry at the specified key

STARTAT=

Delete from the specified registry all the keys and values
that are in the specified file

UNINSTALL

Uppercase all incoming key names UPCASE

Perform the specified operation on the SASHELP portion of
the SAS registry

USESASHELP

Options

CLEARSASUSER
erases the content of the SASUSER portion of the SAS registry.

COMPAREREG1=“libname.registry name-1‘”
specifies one of two registries to compare. The results appear in the SAS log.

libname



The REGISTRY Procedure � PROC REGISTRY Statement 927

is the name of the library in which the registry file resides.

registry name-1
is the name of the first registry.

Requirement: Must be used with COMPAREREG2.
Interaction: To specify a single key and all of its subkeys, specify the STARTAT=

option.

COMPAREREG2=“libname.registry name-2”
specifies the second of two registries to compare. The results appear in the SAS log.

libname
is the name of the library in which the registry file resides.

registry name-2
is the name of the second registry.

Requirement: Must be used with COMPAREREG1.

COMPARETO=file-specification
compares the contents of a file that contains registry information to a registry. It
returns information about keys and values that it finds in the file that are not in the
registry. It reports as differences

� keys that are defined in the external file but not in the registry
� value names for a given key that are in the external file but not in the registry
� differences in the content of like-named values in like-named keys.

COMPARETO= does not report as differences any keys and values that are in the
registry but not in the file because the registry could easily be composed of pieces
from many different files.

file-specification is one of the following:

’external-file’
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.
Requirement: You must have previously associated the fileref with an external file

in a FILENAME statement, a FILENAME function, the Explorer window, or an
appropriate operating environment command.

Interaction: By default, PROC REGISTRY compares file-specification to the
SASUSER portion of the registry. To compare file-specification to the SASHELP
portion of the registry, specify the option USESASHELP.

See also: For information about how to structure a file that contains registry
information, see “Creating Registry Files with the REGISTRY Procedure” on page
929.

DEBUGON
enables registry debugging by providing more descriptive log entries.

DEBUGOFF
disables registry debugging.

EXPORT=file-specification
writes the contents of a registry to the specified file, where

file-specification is one of the following:

’external-file’
is the name of an external file that contains the registry information.



928 PROC REGISTRY Statement � Chapter 37

fileref
is a fileref that has been assigned to an external file.
Requirement: You must have previously associated the fileref with an external file

in a FILENAME statement, a FILENAME function, the Explorer window, or an
appropriate operating environment command.

If file-specification already exists, PROC REGISTRY overwrites it. Otherwise,
PROC REGISTRY creates the file.
Interaction: By default, EXPORT= writes the SASUSER portion of the registry to

the specified file. To write the SASHELP portion of the registry, specify the
USESASHELP option. You must have write permission to the SASHELP library
to use USESASHELP.

Interaction: To export a single key and all of its subkeys, specify the STARTAT=
option.

FULLSTATUS
lists the keys, subkeys, and values that were added or deleted as a result of running
the IMPORT= and the UNINSTALL options.

IMPORT=file-specification
specifies the file to import into the SAS registry. PROC REGISTRY does not
overwrite the existing registry. Instead, it updates the existing registry with the
contents of the specified file.

Note: .sasxreg file extension is not required. �
file-specification is one of the following:

’external-file’
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.
Requirement: You must have previously associated the fileref with an external file

in a FILENAME statement, a FILENAME function, the Explorer window, or an
appropriate operating environment command.

Interaction: By default, IMPORT= imports the file to the SASUSER portion of the
SAS registry. To import the file to the SASHELP portion of the registry, specify
the USESASHELP option. You must have write permission to SASHELP to use
USESASHELP.

Interaction: To obtain additional information in the SAS log as you import a file,
use FULLSTATUS.

See also: For information about how to structure a file that contains registry
information, see “Creating Registry Files with the REGISTRY Procedure” on page
929.

LIST
writes the contents of the entire SAS registry to the SAS log.
Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

LISTHELP=
writes the contents of the SASHELP portion of the registry to the SAS log.
Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

LISTREG=“libname.registry name”
lists the contents of the specified registry in the log.

libname



The REGISTRY Procedure � Creating Registry Files with the REGISTRY Procedure 929

is the name of the library in which the registry file resides.

registry name
is the name of the registry.
Example:

proc registry listreg=’’sashelp.regstry’’;
run;

Interaction: To list a single key and all of its subkeys, use the STARTAT= option.

LISTUSER
writes the contents of the SASUSER portion of the registry to the SAS log.

Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

STARTAT=’key-name’
exports or writes the contents of a single key and all of its subkeys.

Interaction: USE STARTAT= with the EXPORT=, LIST, LISTHELP, LISTUSER,
COMPAREREG1=, COMPAREREG2= and the LISTREG option.

UNINSTALL=file-specification
deletes from the specified registry all the keys and values that are in the specified file.

file-specification is one of the following:

’external-file’
is the name of an external file that contains the keys and values to delete.

fileref
is a fileref that has been assigned to an external file. To assign a fileref you can

� use the Explorer Window

� use the FILENAME statement. (For information about the FILENAME
statement, see the section on statements in SAS Language Reference:
Dictionary.)

Interaction: By default, UNINSTALL deletes the keys and values from the
SASUSER portion of the SAS registry. To delete the keys and values from the
SASHELP portion of the registry, specify the USESASHELP option. You must
have write permission to SASHELP to use this option.

Interaction: Use FULLSTATUS to obtain additional information in the SAS log as
you uninstall a registry.

See also: For information about how to structure a file that contains registry
information, see “Creating Registry Files with the REGISTRY Procedure” on page
929.

UPCASE
uppercases all incoming key names.

USESASHELP
performs the specified operation on the SASHELP portion of the SAS registry.
Interaction: Use USESASHELP with the IMPORT=, EXPORT=, COMPARETO, or

UNINSTALL option. To use USESASHELP with IMPORT= or UNINSTALL, you
must have write permission to SASHELP.

Creating Registry Files with the REGISTRY Procedure



930 Structure of a Registry File � Chapter 37

Structure of a Registry File
You can create registry files with the SAS Registry Editor or with any text editor.
A registry file must have a particular structure. Each entry in the registry file

consists of a key name, followed on the next line by one or more values. The key name
identifies the key or subkey that you are defining. Any values that follow specify the
names or data to associate with the key.

Specifying Key Names
Key names are entered on a single line between square brackets ([ and ]). To specify

a subkey, enter multiple key names between the brackets, starting with the root key.
Separate the names in a sequence of key names with a backslash (\). The length of a
single key name or a sequence of key names cannot exceed 255 characters (including
the square brackets and the backslashes). Key names can contain any character except
the backslash.

Examples of valid key name sequences follow. These sequences are typical of the SAS
registry:

[CORE\EXPLORER\MENUS\ENTRIES\CLASS]
[CORE\EXPLORER\NEWMEMBER\CATALOG]
[CORE\EXPLORER\NEWENTRY\CLASS]
[CORE\EXPLORER\ICONS\ENTRIES\LOG]

Specifying Values for Keys
Enter each value on the line that follows the key name that it is associated with. You

can specify multiple values for each key, but each value must be on a separate line.
The general form of a value is

value-name=value-content

A value-name can be an at sign (@), which indicates the default value name, or it can
be any text string in double quotation marks. If the text string contains an ampersand
(&), then the character (either uppercase or lowercase) that follows the ampersand is a
shortcut for the value name. See “Sample Registry Entries” on page 931.

The entire text string cannot contain more than 255 characters (including quotation
marks and ampersands). It can contain any character except a backslash (\).

Value-content can be any of the following:
� the string double: followed by a numeric value.
� a string. You can put anything inside the quotes, including nothing ("").

Note: To include a backslash in the quoted string, use two adjacent backslashes.
To include a double quotation mark, use two adjacent double quotation marks. �

� the string hex: followed by any number of hexadecimal characters, up to the
255-character limit, separated by commas. If you extend the hexadecimal
characters beyond a single line, end the line with a backslash to indicate that the
data continues on the next line. Hex values may also be referred to as “binary
values” in the Registry Editor.

� the string dword: followed by an unsigned long hexadecimal value.
� the string int: followed by a signed long integer value.
� the string uint: followed by an unsigned long integer value.



The REGISTRY Procedure � Sample Registry Entries 931

The following display shows how the different types of values that are described above
appear in the Registry Editor:

Display 37.1 Types of Registry Values, Displayed in the Registry Editor

The following list contains a sample of valid registry values:
� A double value=double:2.4E-44
� A string="my data"
� Binary data=hex: 01,00,76,63,62,6B
� Dword=dword:00010203
� Signed integer value=int:-123
� Unsigned integer value (decimal)=dword:0001E240

Sample Registry Entries
Registry entries can vary in content and appearance, depending on their purpose.

The following display shows a registry entry that contains default PostScript printer
settings.

Display 37.2 Portion of a Registry Editor Showing Settings for a PostScript Printer

To see what the actual registry text file looks like, you can use PROC REGISTRY to
write the contents of the registry key to the SAS log, using the LISTUSER and
STARTAT= options:

Example Code 37.1 SAS code for sending a SASUSER registry entry to the log

proc registry
listuser



932 Examples: REGISTRY Procedure � Chapter 37

startat="<sasuser registry key name>";
run;

Example Code 37.2 SAS code for sending a SASUSER registry entry to the log

proc registry
listuser
startat="HKEY_SYSTEM_ROOT\CORE\PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS";

run;

For example, the list below begins at the
CORE\PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key.

Output 37.1 Log Output of a Registry Entry for a PostScript Printer

NOTE: Contents of SASUSER REGISTRY starting at subkey [CORE\

PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key]

Font Character Set="Western"

Font Size=double:12

Font Style="Regular"

Font Typeface="Courier"

Font Weight="Normal"

Margin Bottom=double:0.5

Margin Left=double:0.5

Margin Right=double:0.5

Margin Top=double:0.5

Margin Units="IN"

Paper Destination=""

Paper Size="Letter"

Paper Source=""

Paper Type=""

Resolution="300 DPI"

NOTE: PROCEDURE REGISTRY used (Total process time):

real time 0.03 seconds

cpu time 0.03 seconds

Examples: REGISTRY Procedure

Example 1: Importing a File to the Registry

Procedure features: IMPORT=
Other features: FILENAME statement

This example imports a file into the SASUSER portion of the SAS registry.

Source File
The following file contains examples of valid key name sequences in a registry file:



The REGISTRY Procedure � Program 933

[HKEY_USER_ROOT\AllGoodPeopleComeToTheAidOfTheirCountry]
@="This is a string value"

"Value2"=""
"Value3"="C:\\This\\Is\\Another\\String\\Value"

Program

Assign a fileref to a file that contains valid text for the registry. The FILENAME
statement assigns the fileref SOURCE to the external file that contains the text to read into the
registry.

filename source ’external-file’;

Invoke PROC REGISTRY to import the file that contains input for the registry. PROC
REGISTRY reads the input file that is identified by the fileref SOURCE. IMPORT= writes to
the SASUSER portion of the SAS registry by default.

proc registry import=source;
run;

SAS Log

1 filename source ’external-file’;

2 proc registry

3 import=source;

4 run;

Parsing REG file and loading the registry please wait....

Registry IMPORT is now complete.

Example 2: Listing and Exporting the Registry
Procedure features:

EXPORT=
LISTUSER

This example lists the SASUSER portion of the SAS registry and exports it to an
external file.

Note: This is usually a very large file. To export a portion of the registry, use the
STARTAT= option. �

Program

Write the contents of the SASUSER portion of the registry to the SAS log. The
LISTUSER option causes PROC REGISTRY to write the entire SASUSER portion of the
registry to the log.



934 SAS Log � Chapter 37

proc registry
listuser

Export the registry to the specified file. The EXPORT= option writes a copy of the
SASUSER portion of the SAS registry to the external file.

export=’external-file’;
run;

SAS Log

1 proc registry listuser export=’external-file’;

2 run;

Starting to write out the registry file, please wait...

The export to file external-file is now complete.

Contents of SASUSER REGISTRY.

[ HKEY_USER_ROOT]

[ CORE]

[ EXPLORER]

[ CONFIGURATION]

Initialized= "True"

[ FOLDERS]

[ UNXHOST1]

Closed= "658"

Icon= "658"

Name= "Home Directory"

Open= "658"

Path= "~"

Example 3: Comparing the Registry to an External File

Procedure features: COMPARETO=

Other features: FILENAME statement

This example compares the SASUSER portion of the SAS registry to an external file.
Comparisons such as this are useful if you want to know the difference between a
backup file that was saved with a .txt file extension and the current registry file.

Note: To compare the SASHELP portion of the registry with an external file, specify
the USESASHELP option. �

Program

Assign a fileref to the external file that contains the text to compare to the registry.
The FILENAME statement assigns the fileref TESTREG to the external file.

filename testreg ’external-file’;



The REGISTRY Procedure � Example 4: Comparing Registry Files 935

Compare the specified file to the SASUSER portion of the SAS registry. The
COMPARETO option compares the contents of a file to a registry. It returns information about
keys and values that it finds in the file that are not in the registry.

proc registry
compareto=testreg;

run;

SAS Log
This SAS log shows two differences between the SASUSER portion of the registry

and the specified external file. In the registry, the value of “Initialized” is “True”; in the
external file, it is “False”. In the registry, the value of “Icon” is “658”; in the external file
it is “343”.

1 filename testreg ’external-file’;

2 proc registry

3 compareto=testreg;

4 run;

Parsing REG file and comparing the registry please wait....

COMPARE DIFF: Value "Initialized" in

[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: REGISTRY TYPE=STRING, CURRENT

VALUE="True"

COMPARE DIFF: Value "Initialized" in

[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: FILE TYPE=STRING, FILE

VALUE="False"

COMPARE DIFF: Value "Icon" in

[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: REGISTRY TYPE=STRING,

CURRENT VALUE="658"

COMPARE DIFF: Value "Icon" in

[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: FILE TYPE=STRING, FILE

VALUE="343"

Registry COMPARE is now complete.

COMPARE: There were differences between the registry and the file.

Example 4: Comparing Registry Files

This example uses the REGISTRY procedure options COMPAREREG1 and
COMPAREREG2 to specify two registry files for comparison.

Start PROC REGISTRY and specify the first registry file to be used in the comparison.

proc registry comparereg1="sasuser.regstry"

Limit the comparison to the registry keys including and following the specified
registry key. The STARTAT= option limits the scope of the comparison. By default the
comparison includes the entire contents of both registries.

startat="HKEY_USER_ROOT/COLORNAMES"



936 See Also � Chapter 37

Specify the second registry file to be used in the comparison.

comparereg2="sasuser.regstry_copy";
run;

See Also
SAS registry chapter in SAS Language Reference: Concepts



937

C H A P T E R

38
The REPORT Procedure

Overview: REPORT Procedure 939
What Does the REPORT Procedure Do? 939

What Types of Reports Can PROC REPORT Produce? 939

What Do the Various Types of Reports Look Like? 939

Concepts: REPORT Procedure 944

Laying Out a Report 944
Usage of Variables in a Report 945

Display Variables 945

Order Variables 945

Across Variables 946

Group Variables 946

Analysis Variables 946
Computed Variables 947

Interactions of Position and Usage 947

Statistics That Are Available in PROC REPORT 949

Using Compute Blocks 949

The Purpose of Compute Blocks 950
The Contents of Compute Blocks 950

Four Ways to Reference Report Items in a Compute Block 951

Compute Block Processing 952

Using Break Lines 952

Creating Break Lines 952
Order of Break Lines 953

The Automatic Variable _BREAK_ 953

Using Style Elements in PROC REPORT 953

Printing a Report 956

Printing with ODS 956

Printing from the REPORT Window 956
Printing with a Form 956

Printing from the Output Window 957

Printing from Noninteractive or Batch Mode 957

Printing from Interactive Line Mode 957

Using PROC PRINTTO 957
Storing and Reusing a Report Definition 957

Syntax: REPORT Procedure 958

PROC REPORT Statement 959

BREAK Statement 973

BY Statement 978
CALL DEFINE Statement 979

COLUMN Statement 981

COMPUTE Statement 983



938 Contents � Chapter 38

DEFINE Statement 985
ENDCOMP Statement 994

FREQ Statement 994

LINE Statement 995

RBREAK Statement 996

WEIGHT Statement 1000
REPORT Procedure Windows 1000

BREAK 1001

COMPUTE 1004

COMPUTED VAR 1004

DATA COLUMNS 1005

DATA SELECTION 1005
DEFINITION 1006

DISPLAY PAGE 1011

EXPLORE 1012

FORMATS 1013

LOAD REPORT 1013
MESSAGES 1014

PROFILE 1014

PROMPTER 1015

REPORT 1016

ROPTIONS 1016
SAVE DATA SET 1021

SAVE DEFINITION 1021

SOURCE 1022

STATISTICS 1022

WHERE 1023

WHERE ALSO 1023
How PROC REPORT Builds a Report 1024

Sequence of Events 1024

Construction of Summary Lines 1025

Using Compound Names 1025

Building a Report That Uses Groups and a Report Summary 1026
Building a Report That Uses DATA Step Variables 1030

Examples: REPORT Procedure 1037

Example 1: Selecting Variables for a Report 1037

Example 2: Ordering the Rows in a Report 1040

Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable 1043
Example 4: Consolidating Multiple Observations into One Row of a Report 1047

Example 5: Creating a Column for Each Value of a Variable 1049

Example 6: Displaying Multiple Statistics for One Variable 1053

Example 7: Storing and Reusing a Report Definition 1055

Example 8: Condensing a Report into Multiple Panels 1058

Example 9: Writing a Customized Summary on Each Page 1060
Example 10: Calculating Percentages 1064

Example 11: How PROC REPORT Handles Missing Values 1067

Example 12: Creating and Processing an Output Data Set 1070

Example 13: Storing Computed Variables as Part of a Data Set 1072

Example 14: Using a Format to Create Groups 1075
Example 15: Specifying Style Elements for ODS Output in the PROC REPORT Statement 1078

Example 16: Specifying Style Elements for ODS Output in Multiple Statements 1083



The REPORT Procedure � What Do the Various Types of Reports Look Like? 939

Overview: REPORT Procedure

What Does the REPORT Procedure Do?
The REPORT procedure combines features of the PRINT, MEANS, and TABULATE

procedures with features of the DATA step in a single report-writing tool that can
produce a variety of reports. You can use PROC REPORT in three ways:

� in a windowing environment with a prompting facility that guides you as you
build a report.

� in a windowing environment without the prompting facility.

� in a nonwindowing environment. In this case, you submit a series of statements
with the PROC REPORT statement, just as you do in other SAS procedures. You
can submit these statements from the Program Editor with the NOWINDOWS
option in the PROC REPORT statement, or you can run SAS in batch,
noninteractive, or interactive line mode (see the information about running SAS in
SAS Language Reference: Concepts).

This documentation provides reference information about using PROC REPORT in a
windowing or nonwindowing environment. For task-oriented documentation for the
nonwindowing environment, see SAS Technical Report P-258, Using the REPORT
Procedure in a Nonwindowing Environment, Release 6.07.

What Types of Reports Can PROC REPORT Produce?
A detail report contains one row for every observation selected for the report. Each of

these rows is a detail row. A summary report consolidates data so that each row
represents multiple observations. Each of these rows is also called a detail row.

Both detail and summary reports can contain summary lines as well as detail rows.
A summary line summarizes numerical data for a set of detail rows or for all detail
rows. PROC REPORT provides both default and customized summaries (see “Using
Break Lines” on page 952).

This overview illustrates the kinds of reports that PROC REPORT can produce. The
statements that create the data sets and formats used in these reports are in Example
1 on page 1037. The formats are stored in a permanent SAS data library. See
“Examples: REPORT Procedure” on page 1037 for more reports and for the statements
that create them.

What Do the Various Types of Reports Look Like?
The data set that these reports use contains one day’s sales figures for eight stores in

a chain of grocery stores.
A simple PROC REPORT step produces a report similar to one produced by a simple

PROC PRINT step. Figure 38.1 on page 940 illustrates the simplest kind of report that
you can produce with PROC REPORT. The statements that produce the report follow.
The data set and formats that the program uses are created in Example 1 on page
1037. Although the WHERE and FORMAT statements are not essential, here they
limit the amount of output and make the values easier to understand.

libname proclib ’SAS-data-library’;



940 What Do the Various Types of Reports Look Like? � Chapter 38

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

proc report data=grocery nowd;
where sector=’se’;
format sector $sctrfmt. manager $mgrfmt.

dept $deptfmt. sales dollar10.2;
run;

Figure 38.1 Simple Detail Report with a Detail Row for Each Observation

The SAS System 1

Sector Manager Department Sales
Southeast Smith Paper $50.00
Southeast Smith Meat/Dairy $100.00
Southeast Smith Canned $120.00
Southeast Smith Produce $80.00
Southeast Jones Paper $40.00
Southeast Jones Meat/Dairy $300.00
Southeast Jones Canned $220.00
Southeast Jones Produce $70.00

Detail row

The report in Figure 38.2 on page 940 uses the same observations as those in Figure
38.1 on page 940. However, the statements that produce this report

� order the rows by the values of Manager and Department
� create a default summary line for each value of Manager
� create a customized summary line for the whole report. A customized summary

lets you control the content and appearance of the summary information, but you
must write additional PROC REPORT statements to create one.

For an explanation of the program that produces this report, see Example 2 on page
1040.

Figure 38.2 Ordered Detail Report with Default and Customized Summaries

Detail row

Customized summary
line for the whole report

Default summary
line for Manager

Sales for the Southeast Sector 1

Manager Department Sales
-----------------------------------

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

------- -------
Jones $630.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

------- -------
Smith $350.00

Total sales for these stores were: $980.00



The REPORT Procedure � What Do the Various Types of Reports Look Like? 941

The summary report in Figure 38.3 on page 941 contains one row for each store in
the northern sector. Each detail row represents four observations in the input data set,
one observation for each department. Information about individual departments does
not appear in this report. Instead, the value of Sales in each detail row is the sum of
the values of Sales in all four departments. In addition to consolidating multiple
observations into one row of the report, the statements that create this report

� customize the text of the column headers
� create default summary lines that total the sales for each sector of the city
� create a customized summary line that totals the sales for both sectors.

For an explanation of the program that produces this report, see Example 4 on page
1047.

Figure 38.3 Summary Report with Default and Customized Summaries

Sales Figures for Northern Sectors 1

Sector Manager Sales
--------- ------- ----------

Northeast Alomar 786.00
Andrews 1,045.00

----------
$1,831.00

Northwest Brown 598.00
Pelfrey 746.00
Reveiz 1,110.00

----------
$2,454.00

Combined sales for the northern sectors were $4,285.00.

Detail row

Customized summary
line for the whole report

Default summary
line for Sector

The summary report in Figure 38.4 on page 942 is similar to Figure 38.3 on page
941. The major difference is that it also includes information for individual
departments. Each selected value of Department forms a column in the report. In
addition, the statements that create this report

� compute and display a variable that is not in the input data set
� double-space the report
� put blank lines in some of the column headers.

For an explanation of the program that produces this report, see Example 5 on page
1049.



942 What Do the Various Types of Reports Look Like? � Chapter 38

Figure 38.4 Summary Report with a Column for Each Value of a Variable

Computed variable

Customized summary lines
for the whole report

Sales Figures for Perishables in Northern Sectors 1

______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total
--------------------------------------------------------

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

---------------------------------------------------
|  Combined sales for meat and dairy : $1,545.00 |
|  Combined sales for produce :         $390.00 |
|                                            |
|  Combined sales for all perishables: $1,935.00 |
---------------------------------------------------

The customized report in Figure 38.5 on page 943 shows each manager’s store on a
separate page. Only the first two pages appear here. The statements that create this
report create

� a customized header for each page of the report
� a computed variable (Profit) that is not in the input data set
� a customized summary with text that is dependent on the total sales for that

manager’s store.

For an explanation of the program that produces this report, see Example 9 on page
1060.



The REPORT Procedure � What Do the Various Types of Reports Look Like? 943

Figure 38.5 Customized Summary Report

Sales for Individual Stores 1

Northeast Sector
Store managed by Alomar

Department Sales Profit
-----------------------------------

Canned $420.00 $168.00
Meat/Dairy $190.00 $47.50
Paper $90.00 $36.00
Produce $86.00 $21.50

--------- ---------
$786.00 $196.50

Sales are in the target region.

Sales for Individual Stores 2

Northeast Sector
Store managed by Andrews

Department Sales Profit
-----------------------------------

Canned $420.00 $168.00
Meat/Dairy $300.00 $75.00
Paper $200.00 $80.00
Produce $125.00 $31.25

--------- ---------
$1,045.00 $261.25

Sales exceeded goal!

Computed variable

Customized summary line 
for Manager

Detail row

Default summary line 
for Manager

Computed variable

Customized summary line 
for Manager

Detail row

Default summary line 
for Manager

The report in Figure 38.6 on page 944 uses customized style elements to control
things like font faces, font sizes, and justification, as well as the width of the border of
the table and the width of the spacing between cells. This report was created by using
the HTML destination of the Output Delivery System (ODS) and the STYLE= option in
several statements in the procedure.

For an explanation of the program that produces this report, see Example 16 on page
1083. For information on ODS, see “Output Delivery System” on page 32.



944 Concepts: REPORT Procedure � Chapter 38

Figure 38.6 HTML Output

Concepts: REPORT Procedure

Laying Out a Report
Report writing is simplified if you approach it with a clear understanding of what

you want the report to look like. The most important thing to determine is the layout of
the report. To design the layout, ask yourself the following kinds of questions:

� What do I want to display in each column of the report?
� In what order do I want the columns to appear?
� Do I want to display a column for each value of a particular variable?
� Do I want a row for every observation in the report, or do I want to consolidate

information for multiple observations into one row?
� In what order do I want the rows to appear?

When you understand the layout of the report, use the COLUMN and DEFINE
statements in PROC REPORT to construct the layout.

The COLUMN statement lists the items that appear in the columns of the report,
describes the arrangement of the columns, and defines headers that span multiple
columns. A report item can be



The REPORT Procedure � Laying Out a Report 945

� a data set variable

� a statistic calculated by the procedure

� a variable that you compute from other items in the report.

Omit the COLUMN statement if you want to include all variables in the input data
set in the same order as they occur in the data set.

Note: If you start PROC REPORT in the windowing environment without the
COLUMN statement, then the initial report includes only as many variables as will fit
on one page. �

The DEFINE statement (or, in the windowing environment, the DEFINITION
window) defines the characteristics of an item in the report. These characteristics
include how PROC REPORT uses the item in the report, the text of the column header,
and the format to use to display values.

Usage of Variables in a Report
Much of a report’s layout is determined by the usages that you specify for variables

in the DEFINE statements or DEFINITION windows. For data set variables, these
usages are

DISPLAY

ORDER

ACROSS

GROUP

ANALYSIS

A report can contain variables that are not in the input data set. These variables
must have a usage of COMPUTED.

Display Variables
A report that contains one or more display variables has a row for every observation

in the input data set. Display variables do not affect the order of the rows in the report.
If no order variables appear to the left of a display variable, then the order of the rows
in the report reflects the order of the observations in the data set. By default, PROC
REPORT treats all character variables as display variables.

Featured in: Example 1 on page 1037

Order Variables
A report that contains one or more order variables has a row for every observation in

the input data set. If no display variable appears to the left of an order variable, then
PROC REPORT orders the detail rows according to the ascending, formatted values of
the order variable. You can change the default order with ORDER= and DESCENDING
in the DEFINE statement or with the DEFINITION window.

If the report contains multiple order variables, then PROC REPORT establishes the
order of the detail rows by sorting these variables from left to right in the report. PROC
REPORT does not repeat the value of an order variable from one row to the next if the
value does not change, unless an order variable to its left changes values.

Featured in: Example 2 on page 1040



946 Laying Out a Report � Chapter 38

Across Variables
PROC REPORT creates a column for each value of an across variable. PROC

REPORT orders the columns by the ascending, formatted values of the across variable.
You can change the default order with ORDER= and DESCENDING in the DEFINE
statement or with the DEFINITION window. If no other variable helps define the
column (see “COLUMN Statement” on page 981), then PROC REPORT displays the N
statistic (the number of observations in the input data set that belong to that cell of the
report).

If you are familiar with procedures that use class variables, then you will see that
across variables are class variables that are used in the column dimension.

Featured in: Example 5 on page 1049

Group Variables
If a report contains one or more group variables, then PROC REPORT tries to

consolidate into one row all observations from the data set that have a unique
combination of formatted values for all group variables.

When PROC REPORT creates groups, it orders the detail rows by the ascending,
formatted values of the group variable. You can change the default order with ORDER=
and DESCENDING in the DEFINE statement or with the DEFINITION window.

If the report contains multiple group variables, then the REPORT procedure
establishes the order of the detail rows by sorting these variables from left to right in the
report. PROC REPORT does not repeat the values of a group variable from one row to
the next if the value does not change, unless a group variable to its left changes values.

If you are familiar with procedures that use class variables, then you will see that
group variables are class variables that are used in the row dimension.

Note: You cannot always create groups. PROC REPORT cannot consolidate
observations into groups if the report contains any order variables or any display
variables that do not have one or more statistics associated with them (see “COLUMN
Statement” on page 981). In the windowing environment, if PROC REPORT cannot
immediately create groups, then the procedure changes all display and order variables
to group variables so that it can create the group variable that you requested. In the
nonwindowing environment, it returns to the SAS log a message that explains why it
could not create groups. Instead, it creates a detail report that displays group variables
the same way as it displays order variables. Even when PROC REPORT creates a
detail report, the variables that you define as group variables retain that usage in their
definitions. �

Featured in: Example 4 on page 1047

Analysis Variables
An analysis variable is a numeric variable that is used to calculate a statistic for all

the observations represented by a cell of the report. (Across variables, in combination
with group variables or order variables, determine which observations a cell
represents.) You associate a statistic with an analysis variable in the variable’s
definition or in the COLUMN statement. By default, PROC REPORT uses numeric
variables as analysis variables that are used to calculate the Sum statistic.

The value of an analysis variable depends on where it appears in the report:
� In a detail report, the value of an analysis variable in a detail row is the value of

the statistic associated with that variable calculated for a single observation.
Calculating a statistic for a single observation is not practical; however, using the
variable as an analysis variable enables you to create summary lines for sets of
observations or for all observations.



The REPORT Procedure � Laying Out a Report 947

� In a summary report, the value displayed for an analysis variable is the value of
the statistic that you specify calculated for the set of observations represented by
that cell of the report.

� In a summary line for any report, the value of an analysis variable is the value of
the statistic that you specify calculated for all observations represented by that
cell of the summary line.

See also: “BREAK Statement” on page 973 and “RBREAK Statement” on page
996

Featured in: Example 2 on page 1040, Example 3 on page 1043, Example 4 on
page 1047, and Example 5 on page 1049

Note: Be careful when you use SAS dates in reports that contain summary lines.
SAS dates are numeric variables. Unless you explicitly define dates as some other kind
of variable, PROC REPORT summarizes them. �

Computed Variables

Computed variables are variables that you define for the report. They are not in the
input data set, and PROC REPORT does not add them to the input data set. However,
computed variables are included in an output data set if you create one.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

In the nonwindowing environment, you add a computed variable by

� including the computed variable in the COLUMN statement

� defining the variable’s usage as COMPUTED in the DEFINE statement

� computing the value of the variable in a compute block associated with the
variable.

Featured in: Example 5 on page 1049, Example 10 on page 1064, and Example
13 on page 1072

Interactions of Position and Usage

The position and usage of each variable in the report determine the report’s structure
and content. PROC REPORT orders the detail rows of the report according to the
values of order and group variables, considered from left to right in the report.
Similarly, PROC REPORT orders columns for an across variable from left to right,
according to the values of the variable.

Several items can collectively define the contents of a column in a report. For
instance, in Figure 38.7 on page 948, the values that appear in the third and fourth
columns are collectively determined by Sales, an analysis variable, and by Department,
an across variable. You create this kind of report with the COLUMN statement or, in
the windowing environment, by placing report items above or below each other. This is
called stacking items in the report because each item generates a header, and the
headers are stacked one above the other.



948 Laying Out a Report � Chapter 38

Figure 38.7 Stacking Department and Sales

Sales Figures for Perishables in Northern Sectors

______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total
--------------------------------------------------------

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

When you use multiple items to define the contents of a column, at most one of the
following can be in a column:

� a display variable with or without a statistic above or below it
� an analysis variable with or without a statistic above or below it
� an order variable
� a group variable
� a computed variable.

More than one of these items in a column creates a conflict for PROC REPORT about
which values to display.

Table 38.1 on page 948 shows which report items can share a column.

Note: You cannot stack order variables with other report items. �

Table 38.1 Report Items That Can Share Columns

Display Analysis Order Group Computed Across Statistic

Display X* X

Analysis X X

Order

Group X

Computed
variable

X

Across X* X X X X

Statistic X X X

*When a display variable and an across variable share a column, the report must also contain another variable that is
not in the same column.

The following items can stand alone in a column:
� display variable
� analysis variable
� order variable
� group variable
� computed variable



The REPORT Procedure � Using Compute Blocks 949

� across variable
� N statistic.

Note: The values in a column that is occupied only by an across variable are
frequency counts. �

Statistics That Are Available in PROC REPORT

Descriptive statistic keywords

CSS PCTSUM

CV RANGE

MAX STDDEV|STD

MEAN STDERR

MIN SUM

N SUMWGT

NMISS USS

PCTN VAR

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

These statistics, the formulas that are used to calculate them, and their data
requirements are discussed in “Keywords and Formulas” on page 1578.

To compute standard error and the Student’s t-test you must use the default value of
VARDEF=, which is DF.

Every statistic except N must be associated with a variable. You associate a statistic
with a variable either by placing the statistic above or below a numeric display variable
or by specifying the statistic as a usage option in the DEFINE statement or in the
DEFINITION window for an analysis variable.

You can place N anywhere because it is the number of observations in the input data
set that contribute to the value in a cell of the report. The value of N does not depend
on a particular variable.

Note: If you use the MISSING option in the PROC REPORT statement, then N
includes observations with missing group, order, or across variables. �

Using Compute Blocks
A compute block is one or more programming statements that appear either between

a COMPUTE and an ENDCOMP statement or in a COMPUTE window. PROC



950 Using Compute Blocks � Chapter 38

REPORT executes these statements as it builds the report. A compute block can be
associated with a report item (a data set variable, a statistic, or a computed variable) or
with a location (at the top or bottom of the report; before or after a set of observations).
You create a compute block with the COMPUTE window or with the COMPUTE
statement. One form of the COMPUTE statement associates the compute block with a
report item. Another form associates the compute block with a location in the report
(see “Using Break Lines” on page 952).

Note: When you use the COMPUTE statement, you do not have to use a
corresponding BREAK or RBREAK statement. (See Example 2 on page 1040, which
uses COMPUTE AFTER but does not use the RBREAK statement). Use these
statements only when you want to implement one or more BREAK statement or
RBREAK statement options (see Example 9 on page 1060, which uses both COMPUTE
AFTER MANAGER and BREAK AFTER MANAGER. �

The Purpose of Compute Blocks
A compute block that is associated with a report item can
� define a variable that appears in a column of the report but is not in the input

data set
� define display attributes for a report item (see “CALL DEFINE Statement” on

page 979).

A compute block that is associated with a location can write a customized summary.
In addition, all compute blocks can use most SAS language elements to perform

calculations (see “The Contents of Compute Blocks” on page 950). A PROC REPORT
step can contain multiple compute blocks, but they cannot be nested.

The Contents of Compute Blocks
In the windowing environment, a compute block is in a COMPUTE window. In the

nonwindowing environment, a compute block begins with a COMPUTE statement and
ends with an ENDCOMP statement. Within a compute block, you can use these SAS
language elements:

� DM statement
� %INCLUDE statement
� these DATA step statements:

ARRAY IF-THEN/ELSE

assignment LENGTH

CALL RETURN

DO (all forms) SELECT

END sum

� comments
� null statements
� macro variables and macro invocations
� all DATA step functions.

For information about SAS language elements see the appropriate section in SAS
Language Reference: Dictionary.



The REPORT Procedure � Using Compute Blocks 951

Within a compute block, you can also use these PROC REPORT features:
� Compute blocks for a customized summary can contain one or more LINE

statements, which place customized text and formatted values in the summary.
(See “LINE Statement” on page 995.)

� Compute blocks for a report item can contain one or more CALL DEFINE
statements, which set attributes like color and format each time a value for the
item is placed in the report. (See “CALL DEFINE Statement” on page 979.)

� Any compute block can contain the automatic variable _BREAK_ (see “The
Automatic Variable _BREAK_” on page 953.

Four Ways to Reference Report Items in a Compute Block
A compute block can reference any report item that forms a column in the report

(whether or not the column is visible). You reference report items in a compute block in
one of four ways:

� by name.
� by a compound name that identifies both the variable and the name of the statistic

that you calculate with it. A compound name has this form

variable-name.statistic

� by an alias that you create in the COLUMN statement or in the DEFINITION
window.

� by column number, in the form

’_Cn_’

where n is the number of the column (from left to right) in the report.

Note: Even though the columns that you define with NOPRINT and NOZERO do
not appear in the report, you must count them when you are referencing columns
by number. See the discussion of NOPRINT on page 990 and NOZERO on page
991. �

Note: Referencing variables that have missing values leads to missing values. If a
compute block references a variable that has a missing value, then PROC REPORT
displays that variable as a blank (for character variables) or as a period (for numeric
variables). �

The following table shows how to use each type of reference in a compute block.

If the variable that you
reference is this type… Then refer to it by… For example…

group name* Department

order name* Department

computed name* Department

display name* Department

display sharing a column with a
statistic

a compound name* Sales.sum

analysis a compound name* Sales.mean

any type sharing a column with an
across variable

column number ** ’_c3_’



952 Using Break Lines � Chapter 38

If the variable that you
reference is this type… Then refer to it by… For example…
*If the variable has an alias, then you must reference it with the alias.
**Even if the variable has an alias, you must reference it by column number.

Featured in: Example 3 on page 1043, which references analysis variables by
their aliases; Example 5 on page 1049, which references variables by column
number; and Example 10 on page 1064, which references group variables and
computed variables by name.

Compute Block Processing
PROC REPORT processes compute blocks in two different ways.
� If a compute block is associated with a location, then PROC REPORT executes the

compute block only at that location. Because PROC REPORT calculates statistics
for groups before it actually constructs the rows of the report, statistics for sets of
detail rows are available before or after the rows are displayed, as are values for
any variables based on these statistics.

� If a compute block is associated with a report item, then PROC REPORT executes
the compute block on every row of the report when it comes to the column for that
item. The value of a computed variable in any row of a report is the last value
assigned to that variable during that execution of the DATA step statements in the
compute block. PROC REPORT assigns values to the columns in a row of a report
from left to right. Consequently, you cannot base the calculation of a computed
variable on any variable that appears to its right in the report.

Note: PROC REPORT recalculates computed variables at breaks. For details on
compute block processing see “How PROC REPORT Builds a Report” on page 1024. �

Using Break Lines
Break lines are lines of text (including blanks) that appear at particular locations,

called breaks, in a report. A report can contain multiple breaks. Generally, break lines
are used to visually separate parts of a report, to summarize information, or both. They
can occur

� at the beginning or end of a report
� at the top or bottom of each page
� between sets of observations (whenever the value of a group or order variable

changes).

Break lines can contain
� text
� values calculated for either a set of rows or for the whole report.

Creating Break Lines
There are two ways to create break lines. The first way is simpler. It produces a

default summary. The second way is more flexible. It produces a customized summary



The REPORT Procedure � Using Style Elements in PROC REPORT 953

and provides a way to slightly modify a default summary. Default summaries and
customized summaries can appear at the same location in a report.

Default summaries are produced with the BREAK statement, the RBREAK
statement, or the BREAK window. You can use default summaries to visually separate
parts of the report, to summarize information for numeric variables, or both. Options
provide some control over the appearance of the break lines, but if you choose to
summarize numeric variables, then you have no control over the content and the
placement of the summary information. (A break line that summarizes information is a
summary line.)

Customized summaries are produced in a compute block. You can control both the
appearance and content of a customized summary, but you must write the code to do so.

Order of Break Lines
You control the order of the lines in a customized summary. However, PROC

REPORT controls the order of lines in a default summary and the placement of a
customized summary relative to a default summary. When a default summary contains
multiple break lines, the order in which the break lines appear is

1 overlining or double overlining (in traditional SAS monospace output only)
2 summary line
3 underlining or double underlining (in traditional SAS monospace output only)
4 blank line
5 page break.

In traditional SAS monospace output only, if you define a customized summary for
the same location, then customized break lines appear after underlining or double
underlining.

The Automatic Variable _BREAK_
PROC REPORT automatically creates a variable called _BREAK_. This variable

contains
� a blank if the current line is not part of a break
� the value of the break variable if the current line is part of a break between sets of

observations
� the value RBREAK if the current line is part of a break at the beginning or end of

the report
� the value _PAGE_ if the current line is part of a break at the beginning or end of a

page.

Using Style Elements in PROC REPORT
If you use the Output Delivery System to create HTML, RTF, or Printer output from

PROC REPORT, then you can specify style elements for the procedure to use for various
parts of the report. Style elements determine presentation attributes like font face, font
weight, color, and so forth. For information about the attributes that you can set for a
style, see SAS Output Delivery System User’s Guide.

You specify style elements for PROC REPORT with the STYLE= option. The general
form of the STYLE= option is

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �

location(s)
identifies the part of the report that the STYLE= option affects. The following
table shows what parts of a report are affected by values of location.



954 Using Style Elements in PROC REPORT � Chapter 38

Table 38.2 Location Values

Location Value Part of Report Affected

CALLDEF Cells identified by a CALL DEFINE
statement

COLUMN Column cells

HEADER|HDR Column headers

LINES Lines generated by LINE statements

REPORT Report as a whole

SUMMARY Summary lines

The valid and default values for location vary by what statement the STYLE=
option appears in. Table 38.3 on page 954 shows valid and default values for
location for each statement. To specify more than one value of location in the same
STYLE= option, separate each value with a space.

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. Users can
create their own style definitions with the TEMPLATE procedure (see SAS Output
Delivery System User’s Guide for information about PROC TEMPLATE). The
following table shows the default style elements for each statement.

Table 38.3 Locations and Default Style Elements for Each Statement in PROC REPORT

Statement Valid Location Values Default Location
Value

Default Style
Element

PROC REPORT REPORT, COLUMN, HEADER|HDR,
SUMMARY, LINES, CALLDEF

REPORT Table

BREAK SUMMARY, LINES SUMMARY DataEmphasis

CALL DEFINE CALLDEF CALLDEF Data

COMPUTE LINES LINES NoteContent

DEFINE COLUMN, HEADER|HDR COLUMN and
HEADER

COLUMN: Data

HEADER: Header

RBREAK SUMMARY, LINES SUMMARY DataEmphasis

style-attribute-specification(s)
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

To specify more than one style-attribute-specification, separate each one with a
space.

The following table shows valid values of style-attribute-name for the REPORT
location. Note that not all style attributes are valid in all destinations. See SAS
Output Delivery System User’s Guide for more information on these style
attributes, their valid values, and their applicable destinations.



The REPORT Procedure � Using Style Elements in PROC REPORT 955

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

* When you use these attributes in this location, they affect only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter
the foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

The following table shows valid values of style-attribute-name for the CALLDEF,
COLUMN, HEADER, LINES, and SUMMARY locations. Note that not all style
attributes are valid in all destinations. See SAS Output Delivery System User’s
Guide for more information on these style attributes, their valid values, and their
applicable destinations.

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=



956 Printing a Report � Chapter 38

Specifications in a statement other than the PROC REPORT statement override the
same specification in the PROC REPORT statement. However, any style attributes that
you specify in the PROC REPORT statement and do not override in another statement
are inherited. For instance, if you specify a blue background and a white foreground for
all column headings in the PROC REPORT statement, and you specify a gray
background for the column headings of a variable in the DEFINE statement, then the
background for that particular column heading is gray, and the foreground is white (as
specified in the PROC REPORT statement).

You can use a format to assign a style attribute value. For example, the following
code assigns a red background color to cells in the Profit column for which the value is
negative, and a green background color where the values are positive:

proc format;
value proffmt low-<0=’red’

0-high=’green’;
run;
ods html body=’external-HTML-file’;
proc report data=profits nowd;

title ’Profits for Individual Stores’;
column Store Profit;
define Store / display ’Store’;
define Profit / display ’Profit’ style=[background=proffmt.];

run;
ods html close;

Printing a Report

Printing with ODS
Printing reports with the Output Delivery System is much simpler and provides

more attractive output than the older methods of printing that are documented here.
For best results, use an output destination such as Printer or RTF. For details on these
destinations and on using the ODS statement, see SAS Output Delivery System User’s
Guide.

Printing from the REPORT Window
By default, if you print from the REPORT window, then the report is routed directly

to your printer. If you want, you can specify a form to use for printing (see “Printing
with a Form” on page 956). Forms specify things like the type of printer that you are
using, text format, and page orientation.

Note: Forms are available only when you run SAS from a windowing environment. �

Operating Environment Information: Printing is implemented differently in different
operating environments. For information related to printing, consult SAS Language
Reference: Concepts. Additional information may be available in the SAS
documentation for your operating environment. �

Printing with a Form
To print with a form from the REPORT window:



The REPORT Procedure � Storing and Reusing a Report Definition 957

1 Specify a form. You can specify a form with the FORMNAME command or, in
some cases, through the File menu.

2 Specify a print file if you want the output to go to a file instead of directly to the
printer. You can specify a print file with the PRTFILE command or, in some cases,
through the File menu.

3 Issue the PRINT or PRINT PAGE command from the command line or from the
File menu.

4 If you specified a print file, then do the following:

a Free the print file. You can free a file with the FREE command or, in some
cases, through Print utilities in the File menu. You cannot view or print
the file until you free it.

b Use operating environment commands to send the file to the printer.

Printing from the Output Window
If you are running PROC REPORT with the NOWINDOWS option, then the default

destination for the output is the Output window. Use the commands in the File menu
to print the report.

Printing from Noninteractive or Batch Mode
If you use noninteractive or batch mode, then SAS writes the output either to the

display or to external files, depending on the operating environment and on the SAS
options that you use. Refer to the SAS documentation for your operating environment
for information about how these files are named and where they are stored.

You can print the output file directly or use PROC PRINTTO to redirect the output to
another file. In either case, no form is used, but carriage control characters are written
if the destination is a print file.

Use operating environment commands to send the file to the printer.

Printing from Interactive Line Mode
If you use interactive line mode, then by default the output and log are displayed on

the screen immediately following the programming statements. Use PROC PRINTTO
to redirect the output to an external file. Then use operating environment commands to
send the file to the printer.

Using PROC PRINTTO
PROC PRINTTO defines destinations for the SAS output and the SAS log (see

Chapter 33, “The PRINTTO Procedure,” on page 879).
PROC PRINTTO does not use a form, but it does write carriage control characters if

you are writing to a print file.

Note: You need two PROC PRINTTO steps. The first PROC PRINTTO step
precedes the PROC REPORT step. It redirects the output to a file. The second PROC
PRINTTO step follows the PROC REPORT step. It reestablishes the default destination
and frees the output file. You cannot print the file until PROC PRINTTO frees it. �

Storing and Reusing a Report Definition
The OUTREPT= option in the PROC REPORT statement stores a report definition in

the specified catalog entry. If you are working in the nonwindowing environment, then



958 Syntax: REPORT Procedure � Chapter 38

the definition is based on the PROC REPORT step that you submit. If you are in the
windowing environment, then the definition is based on the report that is in the
REPORT window when you end the procedure. SAS assigns an entry type of REPT to
the entry.

In the windowing environment, you can save the definition of the current report by
selecting

File � Save Report

A report definition may differ from the SAS program that creates the report (see the
discussion of OUTREPT= on page 968).

You can use a report definition to create an identically structured report for any SAS
data set that contains variables with the same names as the ones that are used in the
report definition. Use the REPORT= option in the PROC REPORT statement to load a
report definition when you start PROC REPORT. In the windowing environment, load a
report definition from the LOAD REPORT window by selecting

File � Open Report

Syntax: REPORT Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC REPORT <option(s)>;
BREAK location break-variable</ option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n> <NOTSORTED>;
COLUMN column-specification(s);

COMPUTE location <target>
</ STYLE=<style-element-name>
<[style-attribute-specification(s)]>>;

LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id, ’attribute-name’, value);
. . . select SAS language elements . . .
ENDCOMP;

DEFINE report-item / <usage>
<attribute(s)>
<option(s)>
<justification>
<COLOR=color>
<’column-header-1’ <…’column-header-n’>>
<style>;



The REPORT Procedure � PROC REPORT Statement 959

FREQ variable;

RBREAK location </ option(s)>;

WEIGHT variable;

To do this Use this statement

Produce a default summary at a change in the
value of a group or order variable

BREAK

Create a separate report for each BY group BY

Set the value of an attribute for a particular
column in the current row

CALL DEFINE

Describe the arrangement of all columns and of
headers that span more than one column

COLUMN

Specify one or more programming statements
that PROC REPORT executes as it builds the
report

COMPUTE and ENDCOMP

Describe how to use and display a report item DEFINE

Treat observations as if they appear multiple
times in the input data set

FREQ

Provide a subset of features of the PUT
statement for writing customized summaries

LINE

Produce a default summary at the beginning or
end of a report or at the beginning and end of
each BY group

RBREAK

Specify weights for analysis variables in the
statistical calculations

WEIGHT

PROC REPORT Statement

PROC REPORT <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the output data set OUT=

Select the windowing or the nonwindowing
environment

WINDOWS|NOWINDOWS



960 PROC REPORT Statement � Chapter 38

To do this Use this option

Use a report that was created before
compute blocks required aliases (before
Release 6.11)

NOALIAS

Control the statistical analysis

Specify the divisor to use in the
calculation of variances

VARDEF=

Specify the sample size to use for the
P2 quantile estimation method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition to
calculate quantiles

QNTLDEF=

Exclude observations with nonpositive
weight values from the analysis.

EXCLNPWGT

Control classification levels

Create all possible combinations of the
across variable values

COMPLETECOLS|NOCOMPLETECOLS

Create all possible combinations of the
group variable values

COMPLETEROWS|NOCOMPLETEROWS

Control the layout of the report

Use formatting characters to add
line-drawing characters to the report

BOX*

Specify whether to center or left-justify
the report and summary text

CENTER|NOCENTER

Specify the default number of
characters for columns containing
computed variables or numeric data
set variables

COLWIDTH=*

Define the characters to use as
line-drawing characters in the report

FORMCHAR=*

Specify the length of a line of the report LS=*

Consider missing values as valid values
for group, order, or across variables

MISSING

Specify the number of panels on each
page of the report

PANELS=*

Specify the number of lines in a page
of the report

PS=

Specify the number of blank characters
between panels

PSPACE=*

Override options in the DEFINE
statement that suppress the display of
a column

SHOWALL

Specify the number of blank characters
between columns

SPACING=*



The REPORT Procedure � PROC REPORT Statement 961

To do this Use this option

Display one value from each column of
the report, on consecutive lines if
necessary, before displaying another
value from the first column

WRAP

Customize column headers

Underline all column headers and the
spaces between them

HEADLINE*

Write a blank line beneath all column
headers

HEADSKIP*

Suppress column headers NOHEADER

Write name= in front of each value in
the report, where name= is the column
header for the value

NAMED

Specify the split character SPLIT=

Control ODS output

Specify one or more style elements (for
the Output Delivery System) to use for
different parts of the report

STYLE=

Specify text for the HTML or PDF
table of contents entry for the output

CONTENTS=

Store and retrieve report definitions, PROC REPORT statements, and your report profile

Write to the SAS log the PROC
REPORT code that creates the current
report

LIST

Suppress the building of the report NOEXEC

Store in the specified catalog the report
definition that is defined by the PROC
REPORT step that you submit

OUTREPT=

Identify the report profile to use PROFILE=

Specify the report definition to use REPORT=

Control the windowing environment

Display command lines rather than
menu bars in all REPORT windows

COMMAND

Identify the library and catalog
containing user-defined help for the
report

HELP=

Open the REPORT window and start
the PROMPT facility

PROMPT

* Traditional SAS monospace output only.

Options



962 PROC REPORT Statement � Chapter 38

BOX
uses formatting characters to add line-drawing characters to the report. These
characters

� surround each page of the report
� separate column headers from the body of the report
� separate rows and columns from each other
� separate values in a summary line from other values in the same columns
� separate a customized summary from the rest of the report.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: You cannot use BOX if you use WRAP in the PROC REPORT
statement or in the ROPTIONS window or if you use FLOW in any item definition.

See also: the discussion of FORMCHAR= on page 963
Featured in: Example 12 on page 1070

CENTER|NOCENTER
specifies whether to center or left-justify the report and summary text (customized
break lines).

PROC REPORT honors the first of these centering specifications that it finds:
� the CENTER or NOCENTER option in the PROC REPORT statement or the

CENTER toggle in the ROPTIONS window
� the CENTER or NOCENTER option stored in the report definition that is

loaded with REPORT= in the PROC REPORT statement
� the SAS system option CENTER or NOCENTER.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

COLWIDTH=column-width
specifies the default number of characters for columns containing computed variables
or numeric data set variables.
Default: 9
Range: 1 to the linesize
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: When setting the width for a column, PROC REPORT first looks at

WIDTH= in the definition for that column. If WIDTH= is not present, then PROC
REPORT uses a column width large enough to accommodate the format for the
item. (For information about formats see the discussion of FORMAT= on page 989.)
If no format is associated with the item, then the column width depends on

variable type:

If the variable is a… Then the column width is the…

character variable in the input data set length of the variable

numeric variable in the input data set value of the COLWIDTH= option

computed variable (numeric or character) value of the COLWIDTH= option



The REPORT Procedure � PROC REPORT Statement 963

Featured in: Example 2 on page 1040

COMMAND
displays command lines rather than menu bars in all REPORT windows.

After you have started PROC REPORT in the windowing environment, you can
display the menu bars in the current window by issuing the COMMAND command.
You can display the menu bars in all PROC REPORT windows by issuing the
PMENU command. The PMENU command affects all the windows in your SAS
session. Both of these commands are toggles.

You can store a setting of COMMAND in your report profile. PROC REPORT
honors the first of these settings that it finds:

� the COMMAND option in the PROC REPORT statement
� the setting in your report profile.

Restriction: This option has no effect in the nonwindowing environment.

COMPLETECOLS|NOCOMPLETECOLS
creates all possible combinations for the values of the across variables even if one or
more of the combinations do not occur within the input data set. Consequently, the
column headings are the same for all logical pages of the report within a single BY
group.
Default: COMPLETECOLS
Interaction: The PRELOADFMT option in the DEFINE statement ensures that

PROC REPORT uses all user-defined format ranges for the combinations of across
variables, even when a frequency is zero.

COMPLETEROWS|NOCOMPLETEROWS
displays all possible combinations of the values of the group variables, even if one or
more of the combinations do not occur in the input data set. Consequently, the row
headings are the same for all logical pages of the report within a single BY group.
Default: NOCOMPLETEROWS
Interaction: The PRELOADFMT option in the DEFINE statement ensures that

PROC REPORT uses all user-defined format ranges for the combinations of group
variables, even when a frequency is zero.

CONTENTS=’link-text’
specifies the text for the entries in the HTML contents file or PDF table of contents
for the output that is produced by PROC REPORT. For information on HTML and
PDF output, see “Output Delivery System” on page 32.
Restriction: For HTML output, the CONTENTS= option has no effect on the

HTML body file. It affects only the HTML contents file.

DATA=SAS-data-set
specifies the input data set.
Main discussion: “Input Data Sets” on page 19

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC REPORT treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGTS
Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 1000

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use as line-drawing characters in the report.



964 PROC REPORT Statement � Chapter 38

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting (position(s)) is the same as specifying all 20 possible SAS
formatting characters, in order.

Range: PROC REPORT uses 12 of the 20 formatting characters that SAS provides.
Table 38.4 on page 964 shows the formatting characters that PROC REPORT
uses. Figure 38.8 on page 965 illustrates the use of some commonly used
formatting character in the output from PROC REPORT.

formatting-character(s)
lists the characters to use for the specified positions. PROC REPORT assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, the hexadecimal character 7C to
the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Table 38.4 Formatting Characters Used by PROC REPORT

Position Default Used to draw

1 | the right and left borders and
the vertical separators
between columns

2 - the top and bottom borders
and the horizontal separators
between rows; also
underlining and overlining in
break lines as well as the
underlining that the
HEADLINE option draws

3 - the top character in the left
border

4 - the top character in a line of
characters that separates
columns



The REPORT Procedure � PROC REPORT Statement 965

5 - the top character in the right
border

6 | the leftmost character in a
row of horizontal separators

7 + the intersection of a column of
vertical characters and a row
of horizontal characters

8 | the rightmost character in a
row of horizontal separators

9 - the bottom character in the
left border

10 - the bottom character in a line
of characters that separate
columns

11 - the bottom character in the
right border

13 = double overlining and double
underlining in break lines

Figure 38.8 Formatting Characters in PROC REPORT Output

         Sales for Northern Sectors     1

       Sector     Manager       Sales
       ------------------------------

       Northeast  Alomar       786.00
                  Andrews    1,045.00
                           ----------
                             1,831.00
                           ----------

       Northwest  Brown        598.00
                  Pelfrey      746.00
                  Reveiz     1,110.00
                           ----------
                             2,454.00
                           ----------

                           ==========
                             4,285.00
                           ==========

2

13

2

HEADLINE
underlines all column headers and the spaces between them at the top of each page
of the report.

The HEADLINE option underlines with the second formatting character. (See the
discussion of FORMCHAR= on page 963 .)

Default: hyphen (-)



966 PROC REPORT Statement � Chapter 38

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Tip: In traditional (monospace) SAS output, you can underline column headers
without underlining the spaces between them, by using two hyphens (’--’) as
the last line of each column header instead of using HEADLINE.

Featured in: Example 2 on page 1040 and Example 8 on page 1058

HEADSKIP
writes a blank line beneath all column headers (or beneath the underlining that the
HEADLINE option writes) at the top of each page of the report.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 2 on page 1040

HELP=libref.catalog
identifies the library and catalog containing user-defined help for the report. This
help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry for
each item in the report with the BUILD procedure in SAS/AF software. Store all
such entries for a report in the same catalog.

Specify the entry name for help for a particular report item in the DEFINITION
window for that report item or in a DEFINE statement.
Restriction: This option has no effect in the nonwindowing environment or on ODS

destinations other than traditional SAS monospace output.

LIST
writes to the SAS log the PROC REPORT code that creates the current report. This
listing may differ in these ways from the statements that you submit:

� It shows some defaults that you may not have specified.
� It omits some statements that are not specific to the REPORT procedure,

whether you submit them with the PROC REPORT step or had previously
submitted them. These statements include

BY

FOOTNOTE

FREQ

TITLE

WEIGHT

WHERE
� It omits these PROC REPORT statement options:

LIST

OUT=

OUTREPT=

PROFILE=

REPORT=

WINDOWS|NOWINDOWS
� It omits SAS system options.
� It resolves automatic macro variables.

Restriction: This option has no effect in the windowing environment. In the
windowing environment, you can write the report definition for the report that is
currently in the REPORT window to the SOURCE window by selecting



The REPORT Procedure � PROC REPORT Statement 967

Tools � Report Statements

LS=line-size
specifies the length of a line of the report.

PROC REPORT honors the first of these line size specifications that it finds:
� the LS= option in the PROC REPORT statement or Linesize= in the

ROPTIONS window
� the LS= setting stored in the report definition loaded with REPORT= in the

PROC REPORT statement
� the SAS system option LINESIZE=.

Range: 64-256 (integer)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 6 on page 1053 and Example 8 on page 1058

MISSING
considers missing values as valid values for group, order, or across variables. Special
missing values used to represent numeric values (the letters A through Z and the
underscore (_) character) are each considered as a different value. A group for each
missing value appears in the report. If you omit the MISSING option, then PROC
REPORT does not include observations with a missing value for any group, order, or
across variables in the report.
See also: For information about special missing values, see the section on missing

values in SAS Language Reference: Concepts.
Featured in: Example 11 on page 1067

NAMED
writes name= in front of each value in the report, where name is the column header
for the value.
Interaction: When you use the NAMED option, PROC REPORT automatically uses

the NOHEADER option.
Tip: Use NAMED in conjunction with the WRAP option to produce a report that

wraps all columns for a single row of the report onto consecutive lines rather than
placing columns of a wide report on separate pages.

Featured in: Example 7 on page 1055

NOALIAS
lets you use a report that was created before compute blocks required aliases (before
Release 6.11). If you use NOALIAS, then you cannot use aliases in compute blocks.

NOCENTER
See CENTER|NOCENTER on page 962.

NOCOMPLETECOLS
See COMPLETECOLS|NOCOMPLETECOLS on page 963.

NOCOMPLETEROWS
See COMPLETEROWS|NOCOMPLETEROWS on page 963.

NOEXEC
suppresses the building of the report. Use NOEXEC with OUTREPT= to store a
report definition in a catalog entry. Use NOEXEC with LIST and REPORT= to
display a listing of the specified report definition.

NOHEADER
suppresses column headers, including those that span multiple columns.



968 PROC REPORT Statement � Chapter 38

When you suppress the display of column headers in the windowing environment,
you cannot select any report items.

NOWINDOWS

Alias: NOWD

See WINDOWS|NOWINDOWS on page 973.

OUT=SAS-data-set
names the output data set. If this data set does not exist, then PROC REPORT
creates it. The data set contains one observation for each detail row of the report and
one observation for each unique summary line. If you use both customized and
default summaries at the same place in the report, then the output data set contains
only one observation because the two summaries differ only in how they present the
data. Information about customization (underlining, color, text, and so forth) is not
data and is not saved in the output data set.

The output data set contains one variable for each column of the report. PROC
REPORT tries to use the name of the report item as the name of the corresponding
variable in the output data set. However, this is not possible if a data set variable is
under or over an across variable or if a data set variable appears multiple times in
the COLUMN statement without aliases. In these cases, the name of the variable is
based on the column number (_C1_, _C2_, and so forth).

Output data set variables that are derived from input data set variables retain the
formats of their counterparts in the input data set. PROC REPORT derives labels for
these variables from the corresponding column headers in the report unless the only
item defining the column is an across variable. In that case, the variables have no
label. If multiple items are stacked in a column, then the labels of the corresponding
output data set variables come from the analysis variable in the column.

The output data set also contains a character variable named _BREAK_. If an
observation in the output data set derives from a detail row in the report, then the
value of _BREAK_ is missing. If the observation derives from a summary line, then
the value of _BREAK_ is the name of the break variable that is associated with the
summary line, or _RBREAK_. If the observation derives from a COMPUTE BEFORE
_PAGE_ or COMPUTE AFTER _PAGE_ statement, then the value of _BREAK_ is
“_PAGE_”.

Interaction: You cannot use OUT= in a PROC REPORT step that uses a BY
statement.

Featured in: Example 12 on page 1070 and Example 13 on page 1072

OUTREPT=libref.catalog.entry
stores in the specified catalog entry the REPORT definition that is defined by the
PROC REPORT step that you submit. PROC REPORT assigns the entry a type of
REPT.

The stored report definition may differ in these ways from the statements that you
submit:

� It omits some statements that are not specific to the REPORT procedure,
whether you submit them with the PROC REPORT step or whether they are
already in effect when you submit the step. These statements include

BY

FOOTNOTE

FREQ

TITLE

WEIGHT



The REPORT Procedure � PROC REPORT Statement 969

WHERE
� It omits these PROC REPORT statement options:

LIST

NOALIAS

OUT=

OUTREPT=

PROFILE=

REPORT=

WINDOWS|NOWINDOWS
� It omits SAS system options.
� It resolves automatic macro variables.

Featured in: Example 7 on page 1055

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report is
less than half of the line size, then you can display the data in multiple sets of
columns so that rows that would otherwise appear on multiple pages appear on the
same page. Each set of columns is a panel. A familiar example of this kind of report
is a telephone book, which contains multiple panels of names and telephone numbers
on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before
beginning the next.

The number of panels that fits on a page depends on the
� width of the panel
� space between panels
� line size.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output. However, the COLUMNS= option in the ODS PRINTER
or ODS PDF statement produces similar results. For details, see the chapter on
ODS statements in SAS Output Delivery System User’s Guide.

Default: 1
Tip: If number-of-panels is larger than the number of panels that can fit on the

page, then PROC REPORT creates as many panels as it can. Let PROC REPORT
put your data in the maximum number of panels that can fit on the page by
specifying a large number of panels (for example, 99).

See also: For information about the space between panels and the line size, see the
discussions of PSPACE= on page 970 and the discussion of LS= on page 967.

Featured in: Example 8 on page 1058

PROFILE=libref.catalog
identifies the report profile to use. A profile

� specifies the location of menus that define alternative menu bars and pull-down
menus for the REPORT and COMPUTE windows.

� sets defaults for WINDOWS, PROMPT, and COMMAND.

PROC REPORT uses the entry REPORT.PROFILE in the catalog that you specify
as your profile. If no such entry exists, or if you do not specify a profile, then PROC
REPORT uses the entry REPORT.PROFILE in SASUSER.PROFILE. If you have no
profile, then PROC REPORT uses default menus and the default settings of the
options.



970 PROC REPORT Statement � Chapter 38

You create a profile from the PROFILE window while using PROC REPORT in a
windowing environment. To create a profile

1 Invoke PROC REPORT with the WINDOWS option.
2 Select

Tools � Report Profile

3 Fill in the fields to suit your needs.

4 Select OK to exit the PROFILE window. When you exit the window, PROC
REPORT stores the profile in SASUSER.PROFILE.REPORT.PROFILE. Use the
CATALOG procedure or the Explorer window to copy the profile to another
location.

Note: If, after opening the PROFILE window, you decide not to create a profile,
then select CANCEL to close the window. �

PROMPT
opens the REPORT window and starts the PROMPT facility. This facility guides you
through creating a new report or adding more data set variables or statistics to an
existing report.

If you start PROC REPORT with prompting, then the first window gives you a
chance to limit the number of observations that are used during prompting. When
you exit the prompter, PROC REPORT removes the limit.

Restriction: When you use the PROMPT option, you open the REPORT window.
When the REPORT window is open, you cannot send procedure output to any ODS
destination.

Tip: You can store a setting of PROMPT in your report profile. PROC REPORT
honors the first of these settings that it finds:

� the PROMPT option in the PROC REPORT statement
� the setting in your report profile.

If you omit PROMPT from the PROC REPORT statement, then the procedure uses
the setting in your report profile, if you have one. If you do not have a report profile,
then PROC REPORT does not use the prompt facility. For information on report
profiles, see “PROFILE” on page 1014.

PS=page-size
specifies the number of lines in a page of the report.

PROC REPORT honors the first of these page size specifications that it finds:

� the PS= option in the PROC REPORT statement
� the PS= setting in the report definition specified with REPORT= in the PROC

REPORT statement
� the SAS system option PAGESIZE=.

Range: 15-32,767 (integer)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Featured in: Example 6 on page 1053 and Example 8 on page 1058

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT separates
all panels in the report by the same number of blank characters. For each panel, the
sum of its width and the number of blank characters separating it from the panel to
its left cannot exceed the line size.



The REPORT Procedure � PROC REPORT Statement 971

Default: 4
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 8 on page 1058

QMARKERS=number
specifies the default number of markers to use for the P2 estimation method. The
number of markers controls the size of fixed memory space.
Default: The default value depends on which quantiles you request. For the median

(P50), number is 7. For the quartiles (P25 and P75), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC REPORT uses the largest default value of number.

Range: any odd integer greater than 3
Tip: Increase the number of markers above the default settings to improve the

accuracy of the estimates; you can reduce the number of markers to conserve
computing resources.

QMETHOD=OS|P2
specifies the method that PROC REPORT uses to process the input data when it
computes quantiles. If the number of observations is less than or equal to the value
of the QMARKERS= option, and the value of the QNTLDEF= option is 5, then both
methods produce the same results.

OS
uses order statistics. This is the technique that PROC UNIVARIATE uses.

Note: This technique can be very memory intensive. �

P2
uses the P2 method to approximate the quantile.

Default: OS
Restriction: When QMETHOD=P2, PROC REPORT does not compute weighted

quantiles.
Tip: When QMETHOD=P2, reliable estimates of some quantiles (P1, P5, P95, P99)

might not be possible for some data sets such as those with heavily tailed or
skewed distributions.

QNTLDEF=number
specifies the mathematical definition that the procedure uses to calculate quantiles
when the value of the QMETHOD= option is OS. When QMETHOD=P2, you must
use QNTLDEF=5.
Default: 5
Range: any integer from 1 to 5, inclusive
Alias: PCTLDEF=

REPORT=libref.catalog.entry
specifies the report definition to use. PROC REPORT stores all report definitions as
entries of type REPT in a SAS catalog.
Interaction: If you use REPORT=, then you cannot use the COLUMN statement.
See also: OUTREPT= on page 968
Featured in: Example 7 on page 1055

SHOWALL
overrides options in the DEFINE statement that suppress the display of a column.
See also: NOPRINT and NOZERO in “DEFINE Statement” on page 985



972 PROC REPORT Statement � Chapter 38

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, the sum
of its width and the blank characters between it and the column to its left cannot
exceed the line size.

Default: 2

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: PROC REPORT separates all columns in the report by the number of
blank characters specified by SPACING= in the PROC REPORT statement unless
you use SPACING= in the DEFINE statement to change the spacing to the left of
a specific item.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

Featured in: Example 2 on page 1040

SPLIT=’character’
specifies the split character. PROC REPORT breaks a column header when it
reaches that character and continues the header on the next line. The split character
itself is not part of the column header although each occurrence of the split character
counts toward the 256-character maximum for a label.

Default: slash (/)
Interaction: The FLOW option in the DEFINE statement honors the split character.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Featured in: Example 5 on page 1049

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for the specified locations in the report. See “Using
Style Elements in PROC REPORT” on page 953 for details.

Restriction: This option affects only the HTML, RTF, and Printer output.
Featured in: Example 15 on page 1078 and Example 16 on page 1083

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 38.5 on page 972 shows the possible values for divisor and associated divisors.

Table 38.5 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT|WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � ��

�. When you weight the analysis variables,
��� equals

�
�� ��� � ����, where �� is the weighted mean.

Default: DF



The REPORT Procedure � BREAK Statement 973

Requirement: To compute the standard error of the mean and Student’s t-test, use
the default value of VARDEF=.

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “WEIGHT” on page 59

WINDOWS|NOWINDOWS
selects a windowing or nonwindowing environment.

When you use WINDOWS, SAS opens the REPORT window, which enables you to
modify a report repeatedly and to see the modifications immediately. When you use
NOWINDOWS, PROC REPORT runs without the REPORT window and sends its
output to the open output destination(s).

Alias: WD|NOWD

Restriction: When you use the WINDOWS option, you cannot send procedure
output to the HTML, RTF, or Printer destination.

Tip: You can store a setting of WINDOWS in your report profile, if you have one. If
you do not specify WINDOWS or NOWINDOWS in the PROC REPORT statement,
then the procedure uses the setting in your report profile. If you do not have a
report profile, then PROC REPORT looks at the setting of the SAS system option
DMS. If DMS is ON, then PROC REPORT uses the windowing environment; if
DMS is OFF, then it uses the nonwindowing environment.

See also: For a discussion of the report profile see the discussion of PROFILE= on
page 969.

Featured in: Example 1 on page 1037

WRAP
displays one value from each column of the report, on consecutive lines if necessary,
before displaying another value from the first column. By default, PROC REPORT
displays values for only as many columns as it can fit on one page. It fills a page
with values for these columns before starting to display values for the remaining
columns on the next page.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: When WRAP is in effect, PROC REPORT ignores PAGE in any item
definitions.

Tip: Typically, you use WRAP in conjunction with the NAMED option in order to
avoid wrapping column headers.

Featured in: Example 7 on page 1055

BREAK Statement

Produces a default summary at a break (a change in the value of a group or order variable). The
information in a summary applies to a set of observations. The observations share a unique



974 BREAK Statement � Chapter 38

combination of values for the break variable and all other group or order variables to the left of
the break variable in the report.

Featured in: Example 4 on page 1047 and Example 5 on page 1049.

BREAK location break-variable</ option(s)>;

To do this Use this option

Specify the color of the break lines in the REPORT window COLOR=

Double overline each value DOL*

Double underline each value DUL*

Overline each value OL*

Start a new page after the last break line PAGE

Write a blank line for the last break line SKIP

Specify a style element for default summary lines, customized
summary lines or both

STYLE=

Write a summary line in each group of break lines SUMMARIZE

Suppress the printing of the value of the break variable in the
summary line and of any underlining or overlining in the break lines
in the column containing the break variable

SUPPRESS

Underline each value UL*

* Traditional SAS monospace output only.

Required Arguments

location
controls the placement of the break lines and is either

AFTER
places the break lines immediately after the last row of each set of rows that have
the same value for the break variable.

BEFORE
places the break lines immediately before the first row of each set of rows that
have the same value for the break variable.

break-variable
is a group or order variable. The REPORT procedure writes break lines each time
the value of this variable changes.

Options

COLOR=color



The REPORT Procedure � BREAK Statement 975

specifies the color of the break lines in the REPORT window. You can use the
following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.

Note: Not all operating environments and devices support all colors, and on some
operating systems and devices, one color may map to another color. For example, if
the DEFINITION window displays the word BROWN in yellow characters, then
selecting BROWN results in a yellow item. �

DOL
(for double overlining) uses the thirteenth formatting character to overline each value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the OL and DOL options, then PROC REPORT
honors only OL.

See also: the discussion of FORMCHAR= on page 963.

DUL
(for double underlining) uses the thirteenth formatting character to underline each
value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the UL and DUL options, then PROC REPORT
honors only UL.

See also: the discussion of FORMCHAR= on page 963.

OL
(for overlining) uses the second formatting character to overline each value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)



976 BREAK Statement � Chapter 38

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the OL and DOL options, then PROC REPORT
honors only OL.

See also: the discussion of FORMCHAR= on page 963.
Featured in: Example 2 on page 1040 and Example 9 on page 1060

PAGE
starts a new page after the last break line.
Interaction: If you use PAGE in the BREAK statement and you create a break at

the end of the report, then the summary for the whole report appears on a
separate page.

Featured in: Example 9 on page 1060

SKIP
writes a blank line for the last break line.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 2 on page 1040, Example 4 on page 1047, Example 5 on page

1049, and Example 8 on page 1058

STYLE<location(s)>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for default summary lines that are created with the
BREAK statement. See “Using Style Elements in PROC REPORT” on page 953 for
details.
Restriction: This option affects only the HTML, RTF, and Printer output.

SUMMARIZE
writes a summary line in each group of break lines. A summary line for a set of
observations contains values for

� the break variable (which you can suppress with the SUPPRESS option)
� other group or order variables to the left of the break variable
� statistics
� analysis variables
� computed variables.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line that is created by the BREAK statement:

If the report item is… Then its value is…

the break variable the current value of the variable (or a missing value if
you use SUPPRESS)

a group or order variable to the left of
the break variable

the current value of the variable

a group or order variable to the right
of the break variable, or a display
variable anywhere in the report

missing*

a statistic the value of the statistic over all observations in the set

an analysis variable the value of the statistic specified as the usage option in
the item’s definition. PROC REPORT calculates the
value of the statistic over all observations in the set.
The default usage is SUM.



The REPORT Procedure � BREAK Statement 977

If the report item is… Then its value is…

a computed variable the results of the calculations based on the code in the
corresponding compute block (see “COMPUTE
Statement” on page 983).

* If you reference a variable with a missing value in a customized summary line, then PROC
REPORT displays that variable as a blank (for character variables) or a period (for numeric
variables).

Note: PROC REPORT cannot create groups in a report that contains order or
display variables. �
Featured in: Example 2 on page 1040, Example 4 on page 1047, and Example 9 on

page 1060

SUPPRESS
suppresses printing of

� the value of the break variable in the summary line
� any underlining and overlining in the break lines in the column that contains

the break variable.

Interaction: If you use SUPPRESS, then the value of the break variable is
unavailable for use in customized break lines unless you assign a value to it in the
compute block that is associated with the break (see “COMPUTE Statement” on
page 983).

Featured in: Example 4 on page 1047

UL
(for underlining) uses the second formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the UL and DUL options, then PROC REPORT

honors only UL.
See also: the discussion of FORMCHAR= on page 963.

Order of Break Lines
When a default summary contains more than one break line, the order in which the

break lines appear is
1 overlining or double overlining (OL or DOL)
2 summary line (SUMMARIZE)
3 underlining or double underlining (UL or DUL)
4 skipped line (SKIP)
5 page break (PAGE).

Note: If you define a customized summary for the break, then customized break
lines appear after underlining or double underlining. For more information about
customized break lines, see “COMPUTE Statement” on page 983 and “LINE Statement”
on page 995. �



978 BY Statement � Chapter 38

BY Statement

Creates a separate report on a separate page for each BY group.

Restriction: If you use the BY statement, then you must use the NOWINDOWS option in
the PROC REPORT statement.
Restriction: You cannot use the OUT= option when you use a BY statement.
Interaction: If you use the RBREAK statement in a report that uses BY processing, then
PROC REPORT creates a default summary for each BY group. In this case, you cannot
summarize information for the whole report.
Tip: Using the BY statement does not make the FIRST. and LAST. variables available
in compute blocks.
Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set either must be sorted by all the
variables that you specify or must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.



The REPORT Procedure � CALL DEFINE Statement 979

CALL DEFINE Statement

Sets the value of an attribute for a particular column in the current row.

Restriction: Valid only in a compute block that is attached to a report item.
Featured in: Example 4 on page 1047

CALL DEFINE (column-id | _ROW_ , ’attribute-name’, value);

The CALL DEFINE statement is often used to write report definitions that other
people will use in a windowing environment. Only the FORMAT, URL, URLBP, and
URLP attributes have an effect in the nonwindowing environment. In fact, URL,
URLBP, and URLP are effective only in the nonwindowing environment. The STYLE=
and URL attributes are effective only when you are using the Output Delivery System
to create HTML, RTF, or Printer output. (See Table 38.6 on page 979 for descriptions of
the available attributes.)

Required Arguments

column-id
specifies a column name or a column number (that is, the position of the column from
the left edge of the report). A column ID can be one of the following:

� a character literal (in quotation marks) that is the column name
� a character expression that resolves to the column name
� a numeric literal that is the column number
� a numeric expression that resolves to the column number
� a name of the form ’_Cn_’, where n is the column number
� the automatic variable _COL_, which identifies the column that contains the

report item that the compute block is attached to

attribute-name
is the attribute to define. For attribute names, refer to Table 38.6 on page 979.

_ROW_
is an automatic variable that indicates the entire current row.

value
sets the value for the attribute. For values for each attribute, refer to Table 38.6 on
page 979.

Table 38.6 Attribute Descriptions

Attribute Description Values Affects

BLINK Controls blinking of current
value

1 turns blinking on; 0 turns
it off

windowing environment

COLOR Controls the color of the current
value in the REPORT window

’blue’, ’red’, ’pink’, ’green’,
’cyan’, ’yellow’, ’white’,
’orange’, ’black’, ’magenta’,
’gray’, ’brown’

windowing environment



980 CALL DEFINE Statement � Chapter 38

Attribute Description Values Affects

COMMAND Specifies that a series of
commands follows

a quoted string of SAS
commands to submit to the
command line

windowing environment

FORMAT Specifies a format for the column a SAS format or a
user-defined format

windowing and
nonwindowing environments

HIGHLIGHT Controls highlighting of the
current value

1 turns highlighting on; 0
turns it off

windowing environment

RVSVIDEO Controls display of the current
value

1 turns reverse video on; 0
turns it off

windowing environment

STYLE= Specifies the style element for
the Output Delivery System

See “Using the STYLE=
Attribute” on page 981

HTML, RTF, and Printer
output

URL Makes the contents of each cell
of the column a link to the
specified Uniform Resource
Locator (URL)*

a quoted URL (either single
or double quotation marks
can be used)

HTML, RTF, and Printer
output

URLBP Makes the contents of each cell
of the column a link. The link
points to a Uniform Resource
Locator that is a concatenation of

1 the string that is specified
by the BASE= option in
the ODS HTML statement

2 the string that is specified
by the PATH= option in
the ODS HTML statement

3 the value of the URLBP
attribute

*,#

a quoted URL (either single
or double quotation marks
can be used)

HTML output

URLP Makes the contents of each cell
of the column a link. The link
points to a Uniform Resource
Locator that is a concatenation of

1 the string that is specified
by the PATH= option in
the ODS HTML statement

2 the value of the URLP
attribute

*,#

a quoted URL (either single
or double quotation marks
can be used)

HTML output

* The total length of the URL that you specify (including any characters that come from the BASE= and PATH=
options) cannot exceed the line size. Use the LS= option in the PROC REPORT statement to alter the line size
for the PROC REPORT step.

# For information on the BASE= and PATH= options, see the documentation for the ODS HTML statement in
SAS Output Delivery System User’s Guide.

Note: The attributes BLINK, HIGHLIGHT, and RVSVIDEO do not work on all
devices. �



The REPORT Procedure � COLUMN Statement 981

Using the STYLE= Attribute
The STYLE= attribute specifies the style element to use in the cells that are affected

by the CALL DEFINE statement.
The STYLE= attribute functions like the STYLE= option in other statements in

PROC REPORT. However, instead of acting as an option in a statement, it becomes the
value for the STYLE= attribute. For instance, the following CALL DEFINE statement
sets the background color to yellow and the font size to 7 for the specified column:

call define(_col_, "style",
"style=[background=yellow font_size=7]");

See “Using Style Elements in PROC REPORT” on page 953 for details.

Restriction: This option affects only the HTML, RTF, Printer destinations.
Interaction: If you set a style element for the CALLDEF location in the PROC

REPORT statement and you want to use that exact style element in a CALL
DEFINE statement, then use an empty string as the value for the STYLE
attribute, as shown here:

call define (_col_, "STYLE", "" );

Featured in: Example 16 on page 1083

COLUMN Statement

Describes the arrangement of all columns and of headers that span more than one column.

Restriction: You cannot use the COLUMN statement if you use REPORT= in the PROC
REPORT statement.
Featured in: Example 1 on page 1037, Example 3 on page 1043, Example 5 on page 1049,
Example 6 on page 1053, Example 10 on page 1064, and Example 11 on page 1067

COLUMN column-specification(s);

Required Arguments

column-specification(s)
is one or more of the following:

� report-item(s)
� report-item-1, report-item-2 <. . . , report-item-n>
� (‘header-1 ’< . . . ‘header-n ’> report-item(s) )
� report-item=name

where report-item is the name of a data set variable, a computed variable, or a
statistic. See “Statistics That Are Available in PROC REPORT” on page 949 for a list
of available statistics.

report-item(s)
identifies items that each form a column in the report.



982 COLUMN Statement � Chapter 38

Featured in: Example 1 on page 1037 and Example 11 on page 1067

report-item-1, report-item-2 <. . . , report-item-n>
identifies report items that collectively determine the contents of the column or
columns. These items are said to be stacked in the report because each item
generates a header, and the headers are stacked one above the other. The header
for the leftmost item is on top. If one of the items is an analysis variable, a
computed variable, a group variable, or a statistic, then its values fill the cells in
that part of the report. Otherwise, PROC REPORT fills the cells with frequency
counts.

If you stack a statistic with an analysis variable, then the statistic that you
name in the column statement overrides the statistic in the definition of the
analysis variable. For example, the following PROC REPORT step produces a
report that contains the minimum value of Sales for each sector:

proc report data=grocery;
column sector sales,min;
define sector/group;
define sales/analysis sum;

run;

If you stack a display variable under an across variable, then all the values of
that display variable appear in the report.

Interaction: A series of stacked report items can include only one analysis variable
or statistic. If you include more than one analysis variable or statistic, then
PROC REPORT returns an error because it cannot determine which values to
put in the cells of the report.

Tip: You can use parentheses to group report items whose headers should appear
at the same level rather than stacked one above the other.

Featured in: Example 5 on page 1049, Example 6 on page 1053, and Example 10
on page 1064

(‘header-1 ’<… ‘header-n ’> report-item(s))
creates one or more headers that span multiple columns.

header
is a string of characters that spans one or more columns in the report. PROC
REPORT prints each header on a separate line. You can use split characters in
a header to split one header over multiple lines. See the discussion of SPLIT=
on page 972.

In traditional (monospace) SAS output, if the first and last characters of a
header are one of the following characters, then PROC REPORT uses that
character to expand the header to fill the space over the column or columns:

:− = \_ .* +

Similarly, if the first character of a header is < and the last character is >, or
vice-versa, then PROC REPORT expands the header to fill the space over the
column by repeating the first character before the text of the header and the
last character after it.

report-item(s)
specifies the columns to span.

Featured in: Example 10 on page 1064

report-item=name
specifies an alias for a report item. You can use the same report item more than
once in a COLUMN statement. However, you can use only one DEFINE statement



The REPORT Procedure � COMPUTE Statement 983

for any given name. (The DEFINE statement designates characteristics such as
formats and customized column headers. If you omit a DEFINE statement for an
item, then the REPORT procedure uses defaults.) Assigning an alias in the
COLUMN statement does not by itself alter the report. However, it does enable you
to use separate DEFINE statements for each occurrence of a variable or statistic.
Featured in: Example 3 on page 1043

Note: You cannot always use an alias. When you refer in a compute block to a report
item that has an alias, you must usually use the alias. However, if the report item
shares a column with an across variable, then you must reference the column by column
number (see “Four Ways to Reference Report Items in a Compute Block” on page 951). �

COMPUTE Statement

Starts a compute block. A compute block contains one or more programming statements that
PROC REPORT executes as it builds the report.

Interaction: An ENDCOMP statement must mark the end of the group of statements in
the compute block.
Featured in: Example 2 on page 1040, Example 3 on page 1043, Example 4 on page 1047,
Example 5 on page 1049, Example 9 on page 1060, and Example 10 on page 1064

COMPUTE location <target>
</ STYLE=<style-element-name>
<[style-attribute-specification(s)]>>;

LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id, ’attribute-name’, value);
. . . select SAS language elements . . .
ENDCOMP;

A compute block can be associated with a report item or with a location (at the top or
bottom of a report; at the top or bottom of a page; before or after a set of observations).
You create a compute block with the COMPUTE window or with the COMPUTE
statement. One form of the COMPUTE statement associates the compute block with a
report item. Another form associates the compute block with a location.

For a list of the SAS language elements that you can use in compute blocks, see “The
Contents of Compute Blocks” on page 950.

Required Arguments
You must specify either a location or a report item in the COMPUTE statement.

location
determines where the compute block executes in relation to target.

AFTER



984 COMPUTE Statement � Chapter 38

executes the compute block at a break in one of the following places:
� immediately after the last row of a set of rows that have the same value for

the variable that you specify as target or, if there is a default summary on
that variable, immediately after the creation of the preliminary summary line
(see “How PROC REPORT Builds a Report” on page 1024).

� except in Printer and RTF output, near the bottom of each page, immediately
before any footnotes, if you specify _PAGE_ as target.

� at the end of the report if you omit a target.

BEFORE
executes the compute block at a break in one of the following places:

� immediately before the first row of a set of rows that have the same value for
the variable that you specify as target or, if there is a default summary on
that variable, immediately after the creation of the preliminary summary line
(see “How PROC REPORT Builds a Report” on page 1024).

� except in Printer and RTF output, near the top of each page, between any
titles and the column headings, if you specify _PAGE_ as target.

� immediately before the first detail row if you omit a target.

Featured in: Example 3 on page 1043 and Example 9 on page 1060

report-item
specifies a data set variable, a computed variable, or a statistic to associate the
compute block with. If you are working in the nonwindowing environment, then you
must include the report item in the COLUMN statement. If the item is a computed
variable, then you must include a DEFINE statement for it.
Featured in: Example 4 on page 1047 and Example 5 on page 1049
Note: The position of a computed variable is important. PROC REPORT assigns

values to the columns in a row of a report from left to right. Consequently, you cannot
base the calculation of a computed variable on any variable that appears to its right in
the report. �

Options

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style to use for the text that is created by any LINE statements in this
compute block. See “Using Style Elements in PROC REPORT” on page 953 for
details.
Restriction: This option affects only the HTML, RTF, and Printer destinations.
Featured in: Example 16 on page 1083

target
controls when the compute block executes. If you specify a location (BEFORE or
AFTER) for the COMPUTE statement, then you can also specify target, which can be
one of the following:

break-variable
is a group or order variable.

When you specify a break variable, PROC REPORT executes the statements in
the compute block each time the value of the break variable changes.

_PAGE_ </ justification>
except in Printer and RTF output, causes the compute block to execute once for
each page, either immediately after printing any titles or immediately before



The REPORT Procedure � DEFINE Statement 985

printing any footnotes. justification controls the placement of text and values. It
can be one of the following:

CENTER centers each line that the compute block writes.

LEFT left-justifies each line that the compute block writes.

RIGHT right-justifies each line that the compute block writes.

Default: CENTER

Featured in: Example 9 on page 1060

type-specification
specifies the type and, optionally, the length of report-item. If the report item that is
associated with a compute block is a computed variable, then PROC REPORT
assumes that it is a numeric variable unless you use a type specification to specify
that it is a character variable. A type specification has the form

CHARACTER <LENGTH=length>

where

CHARACTER
specifies that the computed variable is a character variable. If you do not specify a
length, then the variable’s length is 8.

Alias: CHAR

Featured in: Example 10 on page 1064

LENGTH=length
specifies the length of a computed character variable.

Default: 8

Range: 1 to 200

Interaction: If you specify a length, then you must use CHARACTER to indicate
that the computed variable is a character variable.

Featured in: Example 10 on page 1064

DEFINE Statement

Describes how to use and display a report item.

Tip: If you do not use a DEFINE statement, then PROC REPORT uses default
characteristics.

Featured in: Example 2 on page 1040, Example 3 on page 1043, Example 4 on page 1047,
Example 5 on page 1049, Example 6 on page 1053, Example 9 on page 1060, and
Example 10 on page 1064

DEFINE report-item / <option(s)>;



986 DEFINE Statement � Chapter 38

To do this Use this option

Specify how to use a report item (see “Usage of Variables in a Report” on page 945)

Define the item, which must be a data set variable, as an
across variable

ACROSS

Define the item, which must be a data set variable, as an
analysis variable

ANALYSIS

Define the item as a computed variable COMPUTED

Define the item, which must be a data set variable, as a
display variable

DISPLAY

Define the item, which must be a data set variable, as a
group variable

GROUP

Define the item, which must be a data set variable, as an
order variable

ORDER

Specify style attributes for a report item

Exclude all combinations of the item that are not found in
the preloaded range of user-defined formats

EXCLUSIVE

Assign a SAS or user-defined format to the item FORMAT=

Reference a HELP or CBT entry that contains Help
information for the report item

ITEMHELP=

Consider missing values as valid values for the item MISSING

Order the values of a group, order, or across variable
according to the specified order

ORDER=

Specify that all formats are preloaded for the item. PRELOADFMT

For traditional SAS monospace output, define the number
of blank characters to leave between the column being
defined and the column immediately to its left

SPACING=

Associate a statistic with an analysis variable statistic

Specify a numeric variable whose values weight the value
of the analysis variable

WEIGHT=

Define the width of the column in which PROC REPORT
displays the report item

WIDTH=

Specify options for a report item

Reverse the order in which PROC REPORT displays rows
or values of a group, order, or across variable

DESCENDING

Wrap the value of a character variable in its column FLOW

Specify that the item that you are defining is an ID
variable

ID

Suppress the display of the report item NOPRINT

Suppress the display of the report item if its values are
all zero or missing

NOZERO

Insert a page break just before printing the first column
containing values of the report item

PAGE

Control the placement of values and column headers



The REPORT Procedure � DEFINE Statement 987

To do this Use this option

Center the formatted values of the report item within the
column width and center the column header over the
values

CENTER

Left-justify the formatted values of the report item within
the column width and left-justify the column headers over
the values

LEFT

Right-justify the formatted values of the report item
within the column width and right-justify the column
headers over the values

RIGHT

Specify the color in the REPORT window of the column
header and of the values of the item that you define

COLOR=

Define the column header for the report item column-header

Specify a style element (for the Output Delivery System) for
the report item

STYLE=

Required Arguments

report-item
specifies the name or alias (established in the COLUMN statement) of the data set
variable, computed variable, or statistic to define.

Note: Do not specify a usage option in the definition of a statistic. The name of the
statistic tells PROC REPORT how to use it. �

Options

ACROSS
defines report-item, which must be a data set variable, as an across variable. (See
“Across Variables” on page 946.)
Featured in: Example 5 on page 1049

ANALYSIS
defines report-item, which must be a data set variable, as an analysis variable. (See
“Analysis Variables” on page 946.)

By default, PROC REPORT calculates the Sum statistic for an analysis variable.
Specify an alternate statistic with the statistic option in the DEFINE statement.

Note: Naming a statistic in the DEFINE statement implies the ANALYSIS
option, so you never need to specify ANALYSIS. However, specifying ANALYSIS may
make your code easier for novice users to understand. �
Featured in: Example 2 on page 1040, Example 3 on page 1043, and Example 4 on

page 1047

CENTER
centers the formatted values of the report item within the column width and centers
the column header over the values. This option has no effect on the CENTER option
in the PROC REPORT statement, which centers the report on the page.



988 DEFINE Statement � Chapter 38

COLOR=color
specifies the color in the REPORT window of the column header and of the values of
the item that you are defining. You can use the following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.
Note: Not all operating environments and devices support all colors, and in some

operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item. �

column-header
defines the column header for the report item. Enclose each header in single or
double quotation marks. When you specify multiple column headers, PROC REPORT
uses a separate line for each one. The split character also splits a column header
over multiple lines.

In traditional (monospace) SAS output, if the first and last characters of a heading
are one of the following characters, then PROC REPORT uses that character to
expand the heading to fill the space over the column:

:− = \_ .* +

Similarly, if the first character of a header is < and the last character is >, or
vice-versa, then PROC REPORT expands the header to fill the space over the column
by repeating the first character before the text of the header and the last character
after it.
Default:

Item Header

variable without a label variable name

variable with a label variable label

statistic statistic name

Tip: If you want to use names when labels exist, then submit the following SAS
statement before invoking PROC REPORT:

options nolabel;

Tip: HEADLINE underlines all column headers and the spaces between them. In
traditional (monospace) SAS output, you can underline column headers without



The REPORT Procedure � DEFINE Statement 989

underlining the spaces between them, by using the special characters ’--’ as the
last line of each column header instead of using HEADLINE (see Example 4 on
page 1047).

See also: SPLIT= on page 972
Featured in: Example 3 on page 1043, Example 4 on page 1047, and Example 5 on

page 1049

COMPUTED
defines the specified item as a computed variable. Computed variables are variables
that you define for the report. They are not in the input data set, and PROC
REPORT does not add them to the input data set.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

In the nonwindowing environment, you add a computed variable by

� including the computed variable in the COLUMN statement
� defining the variable’s usage as COMPUTED in the DEFINE statement

� computing the value of the variable in a compute block associated with the
variable.

Featured in: Example 5 on page 1049 and Example 10 on page 1064

DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, order,
or across variable.
Tip: By default, PROC REPORT orders group, order, and across variables by their

formatted values. Use the ORDER= option in the DEFINE statement to specify an
alternate sort order.

DISPLAY
defines report-item, which must be a data set variable, as a display variable. (See
“Display Variables” on page 945.)

EXCLUSIVE
excludes from the report and the output data set all combinations of the group
variables and the across variables that are not found in the preloaded range of
user-defined formats.

Requirement: You must specify the PRELOADFMT option in the DEFINE
statement in order to preload the variable formats.

FLOW
wraps the value of a character variable in its column. The FLOW option honors the
split character. If the text contains no split character, then PROC REPORT tries to
split text at a blank.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 10 on page 1064

FORMAT=format
assigns a SAS or user-defined format to the item. This format applies to report-item
as PROC REPORT displays it; the format does not alter the format associated with a
variable in the data set. For data set variables, PROC REPORT honors the first of
these formats that it finds:

� the format assigned with FORMAT= in the DEFINE statement
� the format assigned in a FORMAT statement when you invoke PROC REPORT
� the format associated with the variable in the data set.



990 DEFINE Statement � Chapter 38

If none of these is present, then PROC REPORT uses BESTw. for numeric
variables and $w. for character variables. The value of w is the default column
width. For character variables in the input data set, the default column width is the
variable’s length. For numeric variables in the input data set and for computed
variables (both numeric and character), the default column width is the value
specified by COLWIDTH= in the PROC REPORT statement or in the ROPTIONS
window.

In the windowing environment, if you are unsure what format to use, then type a
question mark (?) in the format field in the DEFINITION window to access the
FORMATS window.
Featured in: Example 2 on page 1040 and Example 6 on page 1053

GROUP
defines report-item, which must be a data set variable, as a group variable. (See
“Group Variables” on page 946.)
Featured in: Example 4 on page 1047, Example 6 on page 1053, and Example 14

on page 1075

ID
specifies that the item that you are defining is an ID variable. An ID variable and all
columns to its left appear at the left of every page of a report. ID ensures that you
can identify each row of the report when the report contains more columns than will
fit on one page.
Featured in: Example 6 on page 1053

ITEMHELP=entry-name
references a HELP or CBT entry that contains help information for the report item.
Use PROC BUILD in SAS/AF software to create a HELP or CBT entry for a report
item. All HELP and CBT entries for a report must be in the same catalog, and you
must specify that catalog with the HELP= option in the PROC REPORT statement
or from the User Help fields in the ROPTIONS window.

Of course, you can access these entries only from a windowing environment. To
access a Help entry from the report, select the item and issue the HELP command.
PROC REPORT first searches for and displays an entry named entry-name.CBT. If
no such entry exists, then PROC REPORT searches for entry-name.HELP. If neither
a CBT nor a HELP entry for the selected item exists, then the opening frame of the
Help for PROC REPORT is displayed.

LEFT
left-justifies the formatted values of the report item within the column width and
left-justifies the column headers over the values. If the format width is the same as
the width of the column, then the LEFT option has no effect on the placement of
values.

MISSING
considers missing values as valid values for the report item. Special missing values
that represent numeric values (the letters A through Z and the underscore (_)
character) are each considered as a separate value.
Default: If you omit the MISSING option, then PROC REPORT excludes from the

report and the output data sets all observations that have a missing value for any
group, order, or across variable.

NOPRINT
suppresses the display of the report item. Use this option

� if you do not want to show the item in the report but you need to use its values
to calculate other values that you use in the report

� to establish the order of rows in the report



The REPORT Procedure � DEFINE Statement 991

� if you do not want to use the item as a column but want to have access to its
values in summaries (see Example 9 on page 1060).

Interaction: Even though the columns that you define with NOPRINT do not
appear in the report, you must count them when you are referencing columns by
number (see “Four Ways to Reference Report Items in a Compute Block” on page
951).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOPRINT.

Featured in: Example 3 on page 1043, Example 9 on page 1060, and Example 12
on page 1070

NOZERO
suppresses the display of the report item if its values are all zero or missing.
Interaction: Even though the columns that you define with NOZERO do not appear

in the report, you must count them when you are referencing columns by number
(see “Four Ways to Reference Report Items in a Compute Block” on page 951).

Interaction: SHOWALL in the PROC REPORT statement or in the ROPTIONS
window overrides all occurrences of NOZERO.

ORDER
defines report-item, which must be a data set variable, as an order variable. (See
“Order Variables” on page 945.)
Featured in: Example 2 on page 1040

ORDER=DATA|FORMATTED|FREQ|INTERNAL
orders the values of a group, order, or across variable according to the specified order,
where

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted (external) values. If no format has been assigned
to a class variable, then the default format, BEST12., is used.

FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order that PROC
SORT would yield. This order is operating environment-dependent. This sort
sequence is particularly useful for displaying dates chronologically.

Default: FORMATTED
Interaction: DESCENDING in the item’s definition reverses the sort sequence for

an item. By default, the order is ascending.
Featured in: Example 2 on page 1040

Note: The default value for the ORDER= option in PROC REPORT is not the
same as the default value in other SAS procedures. In other SAS procedures, the
default is ORDER=INTERNAL. The default for the option in PROC REPORT may
change in a future release to be consistent with other procedures. Therefore, in
production jobs where it is important to order report items by their formatted values,
specify ORDER=FORMATTED even though it is currently the default. Doing so
ensures that PROC REPORT will continue to produce the reports you expect even if
the default changes. �



992 DEFINE Statement � Chapter 38

PAGE
inserts a page break just before printing the first column containing values of the
report item.
Interaction: PAGE is ignored if you use WRAP in the PROC REPORT statement or

in the ROPTIONS window.

PRELOADFMT
specifies that the format is preloaded for the variable.
Restriction: PRELOADFMT applies only to group and across variables.
Requirement: PRELOADFMT has no effect unless you specify either EXCLUSIVE

or ORDER=DATA and you assign a format to the variable.
Interaction: To limit the report to the combination of formatted variable values

that are present in the input data set, use the EXCLUSIVE option in the DEFINE
statement.

Interaction To include all ranges and values of the user-defined formats in the
output, use the COMPLETEROWS option in the PROC REPORT statement.

Note: If you do not specify NOCOMPLETECOLS when you define the across
variables, then the report includes a column for every formatted variable. If you
specify COMPLETEROWS when you define the group variables, then the report
includes a row for every formatted value. Some combinations of rows and columns
might not make sense when the report includes a column for every formatted value
of the across variable and a row for every formatted value of the group variable. �

RIGHT
right-justifies the formatted values of the specified item within the column width and
right-justifies the column headers over the values. If the format width is the same as
the width of the column, then RIGHT has no effect on the placement of values.

SPACING=horizontal-positions
defines the number of blank characters to leave between the column being defined
and the column immediately to its left. For each column, the sum of its width and
the blank characters between it and the column to its left cannot exceed the line size.
Default: 2
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: When PROC REPORT’s CENTER option is in effect, PROC REPORT

ignores spacing that precedes the leftmost variable in the report.
Interaction: SPACING= in an item’s definition overrides the value of SPACING= in

the PROC REPORT statement or in the ROPTIONS window.

statistic
associates a statistic with an analysis variable. You must associate a statistic with
every analysis variable in its definition. PROC REPORT uses the statistic that you
specify to calculate values for the analysis variable for the observations that are
represented by each cell of the report. You cannot use statistic in the definition of any
other kind of variable.

See “Statistics That Are Available in PROC REPORT” on page 949 for a list of
available statistics.
Default: SUM
Featured in: Example 2 on page 1040, Example 3 on page 1043, and Example 4 on

page 1047
Note: PROC REPORT uses the name of the analysis variable as the default

header for the column. You can customize the column header with the column-header
option in the DEFINE statement. �



The REPORT Procedure � DEFINE Statement 993

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for column headers and for text inside cells for this
report item. See “Using Style Elements in PROC REPORT” on page 953 for details.

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Featured in: Example 16 on page 1083

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the analysis variable
that is specified in the DEFINE statement. The variable value does not have to be an
integer. The following table describes how PROC REPORT treats various values of
the WEIGHT variable.

Weight
Value

PROC REPORT Response

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total number of
observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use the EXCLNPWGT option in the PROC REPORT statement. Note that most
SAS/STAT procedures, such as PROC GLM, exclude negative and zero weights by
default.

Restriction: to compute weighted quantiles, use QMETHOD=OS in the PROC
REPORT statement.

Tip: When you use the WEIGHT= option, consider which value of the VARDEF=
option in the PROC REPORT statement is appropriate.

Tip: Use the WEIGHT= option in separate variable definitions in order to specify
different weights for the variables.

Note: Prior to Version 7 of SAS, the REPORT procedure did not exclude the
observations with missing weights from the count of observations. �

WIDTH=column-width
defines the width of the column in which PROC REPORT displays report-item.

Default: A column width that is just large enough to handle the format. If there is
no format, then PROC REPORT uses the value of the COLWIDTH= option in the
PROC REPORT statement.

Range: 1 to the value of the SAS system option LINESIZE=

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: WIDTH= in an item definition overrides the value of COLWIDTH= in
the PROC REPORT statement or the ROPTIONS window.

Tip: When you stack items in the same column in a report, the width of the item
that is at the bottom of the stack determines the width of the column.

Featured in: Example 10 on page 1064



994 ENDCOMP Statement � Chapter 38

ENDCOMP Statement

Marks the end of one or more programming statements that PROC REPORT executes as it builds
the report.

Restriction: A COMPUTE statement must precede the ENDCOMP statement.

ENDCOMP;

See also: COMPUTE statement
Featured in: Example 2 on page 1040

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “Example” on page 57

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

Frequency Information Is Not Saved
When you store a report definition, PROC REPORT does not store the FREQ

statement.



The REPORT Procedure � LINE Statement 995

LINE Statement

Provides a subset of the features of the PUT statement for writing customized summaries.

Restriction: This statement is valid only in a compute block that is associated with a
location in the report.
Restriction: You cannot use the LINE statement in conditional statements (IF-THEN,
IF-THEN/ELSE, and SELECT) because it is not executed until PROC REPORT has
executed all other statements in the compute block.
Featured in: Example 2 on page 1040, Example 3 on page 1043, and Example 9 on page
1060

LINE specification(s);

Required Arguments

specification(s)
can have one of the following forms. You can mix different forms of specifications in
one LINE statement.

item item-format
specifies the item to display and the format to use to display it, where

item
is the name of a data set variable, a computed variable, or a statistic in the
report. For information about referencing report items see “Four Ways to
Reference Report Items in a Compute Block” on page 951.

item-format
is a SAS format or user-defined format. You must specify a format for each item.

Featured in: Example 2 on page 1040

’character-string ’
specifies a string of text to display. When the string is a blank and nothing else is
in specification(s), PROC REPORT prints a blank line.
Featured in: Example 2 on page 1040

number-of-repetitions*’character-string ’
specifies a character string and the number of times to repeat it.
Featured in: Example 3 on page 1043

pointer-control
specifies the column in which PROC REPORT displays the next specification. You
can use either of the following forms for pointer controls:

@column-number
specifies the number of the column in which to begin displaying the next item in
the specification list.

+column-increment
specifies the number of columns to skip before beginning to display the next
item in the specification list.
Both column-number and column-increment can be either a variable or a literal

value.



996 RBREAK Statement � Chapter 38

Restriction: The pointer controls are designed for monospace output. They have no
effect on the HTML, RTF, or Printer output.

Featured in: Example 3 on page 1043 and Example 5 on page 1049

Differences between the LINE and PUT Statements
The LINE statement does not support the following features of the PUT statement:

� automatic labeling signaled by an equals sign (=), also known as named output

� the _ALL_, _INFILE_, and _PAGE_ arguments and the OVERPRINT option

� grouping items and formats to apply one format to a list of items

� pointer control using expressions

� line pointer controls (# and /)

� trailing at signs (@ and @@)

� format modifiers

� array elements.

RBREAK Statement

Produces a default summary at the beginning or end of a report or at the beginning or end of each
BY group.

Featured in: Example 1 on page 1037 and Example 10 on page 1064

RBREAK location </ option(s)>;

To do this Use this option

Specify the color of the break lines in the REPORT window COLOR=

Double overline each value DOL*

Double underline each value DUL*

Overline each value OL*

Start a new page after the last break line of a break located at the
beginning of the report

PAGE

Write a blank line for the last break line of a break located at the
beginning of the report

SKIP*

Specify a style element (for the Output Delivery System) for
default summary lines, customized summary lines, or both

STYLE=

Include a summary line as one of the break lines SUMMARIZE

Underline each value UL*

* Traditional SAS monospace output only.



The REPORT Procedure � RBREAK Statement 997

Required Arguments

location
controls the placement of the break lines and is either of the following:

AFTER
places the break lines at the end of the report.

BEFORE
places the break lines at the beginning of the report.

Options

COLOR=color
specifies the color of the break lines in the REPORT window. You can use the
following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.
Note: Not all operating environments and devices support all colors, and in some

operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item. �

DOL
(for double overlining) uses the thirteenth formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the OL and DOL options, then PROC REPORT

honors only OL.
See also: the discussion of FORMCHAR= on page 963.
Featured in: Example 1 on page 1037

DUL
(for double underlining) uses the thirteenth formatting character to underline each
value



998 RBREAK Statement � Chapter 38

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the UL and DUL options, then PROC REPORT

honors only UL.
See also: the discussion of FORMCHAR= on page 963.

OL
(for overlining) uses the second formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the OL and DOL options, then PROC REPORT

honors only OL.
See also: the discussion of FORMCHAR= on page 963.
Featured in: Example 10 on page 1064

PAGE
starts a new page after the last break line of a break located at the beginning of the
report.

SKIP
writes a blank line after the last break line of a break located at the beginning of the
report.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for default summary lines that are created with the
RBREAK statement. See “Using Style Elements in PROC REPORT” on page 953 for
details.
Restriction: This option affects only the HTML, RTF, and Printer destinations.

SUMMARIZE
includes a summary line as one of the break lines. A summary line at the beginning
or end of a report contains values for

� statistics
� analysis variables
� computed variables.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line created by the RBREAK statement:



The REPORT Procedure � RBREAK Statement 999

If the report item is… Then its value is…

a statistic the value of the statistic over all observations in
the set

an analysis variable the value of the statistic specified as the usage
option in the DEFINE statement. PROC REPORT
calculates the value of the statistic over all
observations in the set. The default usage is SUM.

a computed variable the results of the calculations based on the code in
the corresponding compute block (see “COMPUTE
Statement” on page 983).

Featured in: Example 1 on page 1037 and Example 10 on page 1064

UL
(for underlining) uses the second formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the UL and DUL options, then PROC REPORT

honors only UL.
See also: the discussion of FORMCHAR= on page 963.

Order of Break Lines
When a default summary contains more than one break line, the order in which the

break lines appear is
1 overlining or double overlining (OL or DOL, traditional SAS monospace output

only)
2 summary line (SUMMARIZE)
3 underlining or double underlining (UL or DUL, traditional SAS monospace output

only)
4 skipped line (SKIP, traditional SAS monospace output only)
5 page break (PAGE).

Note: If you define a customized summary for the break, then customized break
lines appear after underlining or double underlining. For more information about
customized break lines, see “COMPUTE Statement” on page 983 and “LINE Statement”
on page 995. �



1000 WEIGHT Statement � Chapter 38

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information about calculating weighted statistics see “Calculating
Weighted Statistics” on page 60. For an example that uses the WEIGHT statement, see
“Weighted Statistics Example” on page 60.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The value of the variable does not have to be an integer. If the value of variable is

Weight value… PROC REPORT…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See VARDEF= on page 972 and the calculation of weighted
statistics in “Keywords and Formulas” on page 1578 for more information.

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

Weight Information Is Not Saved

When you store a report definition, PROC REPORT does not store the WEIGHT
statement.

REPORT Procedure Windows

The windowing environment in PROC REPORT provides essentially the same
functionality as the statements, with one major exception: you cannot use the Output
Delivery System from the windowing environment.



The REPORT Procedure � BREAK 1001

BREAK

Controls PROC REPORT’s actions at a change in the value of a group or order variable or at the
top or bottom of a report.

Path

Edit � Summarize information

After you select Summarize Information, PROC REPORT offers you four choices for
the location of the break:

� Before Item

� After Item

� At the top

� At the bottom.

After you select a location, the BREAK window opens.

Note: To create a break before or after detail lines (when the value of a group or
order variable changes), you must select a variable before you open the BREAK
window. �

Description

Note: For information about changing the formatting characters that are used by the
line drawing options in this window, see the discussion of FORMCHAR= on page 963. �

Options

Overline summary
uses the second formatting character to overline each value



1002 BREAK � Chapter 38

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Interaction: If you specify options to overline and to double overline, then PROC

REPORT overlines.

Double overline summary
uses the thirteenth formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Interaction: If you specify options to overline and to double overline, then PROC

REPORT overlines.

Underline summary
uses the second formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Interaction: If you specify options to underline and to double underline, then

PROC REPORT underlines.

Double underline summary
uses the thirteenth formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Interaction: If you specify options to underline and to double underline, then

PROC REPORT underlines.

Skip line after break
writes a blank line for the last break line.

This option has no effect if you use it in a break at the end of a report.

Page after break
starts a new page after the last break line. This option has no effect in a break at the
end of a report.
Interaction: If you use this option in a break on a variable and you create a break at

the end of the report, then the summary for the whole report is on a separate page.

Summarize analysis columns
writes a summary line in each group of break lines. A summary line contains values
for

� statistics
� analysis variables
� computed variables.

A summary line between sets of observations also contains
� the break variable (which you can suppress with Suppress break value)
� other group or order variables to the left of the break variable.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line created by the BREAK window:



The REPORT Procedure � BREAK 1003

If the report item is… Then its value is…

the break variable the current value of the variable (or a missing value if
you select suppress break value)

a group or order variable to the left of
the break variable

the current value of the variable

a group or order variable to the right of
the break variable, or a display
variable anywhere in the report

missing*

a statistic the value of the statistic over all observations in the
set

an analysis variable the value of the statistic specified as the usage option
in the item’s definition. PROC REPORT calculates the
value of the statistic over all observations in the set.
The default usage is SUM.

a computed variable the results of the calculations based on the code in the
corresponding compute block (see “COMPUTE
Statement” on page 983).

*If you reference a variable with a missing value in a customized summary line, then PROC
REPORT displays that variable as a blank (for character variables) or a period (for numeric
variables).

Suppress break value
suppresses printing of

� the value of the break variable in the summary line
� any underlining and overlining in the break lines in the column containing the

break variable.

If you select Suppress break value, then the value of the break variable is
unavailable for use in customized break lines unless you assign it a value in the
compute block that is associated with the break.

Color
From the list of colors, select the one to use in the REPORT window for the column

header and the values of the item that you are defining.

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some
operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item.

Buttons



1004 COMPUTE � Chapter 38

Edit Program
opens the COMPUTE window and enables you to associate a compute block with a
location in the report.

OK
applies the information in the BREAK window to the report and closes the window.

Cancel
closes the BREAK window without applying information to the report.

COMPUTE

Attaches a compute block to a report item or to a location in the report. Use the SAS Text Editor
commands to manipulate text in this window.

Path
From Edit Program in the COMPUTED VAR, DEFINITION, or BREAK window.

Description
For information about the SAS language features that you can use in the COMPUTE

window, see “The Contents of Compute Blocks” on page 950.

COMPUTED VAR

Adds a variable that is not in the input data set to the report.

Path
Select a column. Then select

Edit � Add Item � Computed Column

After you select Computed Column, PROC REPORT prompts you for the location of
the computed column relative to the column that you have selected. After you select a
location, the COMPUTED VAR window opens.

Description
Enter the name of the variable at the prompt. If it is a character variable, then

select the Character data check box and, if you want, enter a value in the Length
field. The length can be any integer between 1 and 200. If you leave the field blank,
then PROC REPORT assigns a length of 8 to the variable.

After you enter the name of the variable, select Edit Program to open the COMPUTE
window. Use programming statements in the COMPUTE window to define the
computed variable. After closing the COMPUTE and COMPUTED VAR windows, open
the DEFINITION window to describe how to display the computed variable.



The REPORT Procedure � DATA SELECTION 1005

Note: The position of a computed variable is important. PROC REPORT assigns
values to the columns in a row of a report from left to right. Consequently, you cannot
base the calculation of a computed variable on any variable that appears to its right in
the report. �

DATA COLUMNS

Lists all variables in the input data set so that you can add one or more data set variables to the
report.

Path
Select a report item. Then select

Edit � Add Item � Data Column

After you select Data column, PROC REPORT prompts you for the location of the
computed column relative to the column that you have selected. After you select a
location, the DATA COLUMNS window opens.

Description
Select one or more variables to add to the report. When you select the first variable,

it moves to the top of the list in the window. If you select multiple variables, then
subsequent selections move to the bottom of the list of selected variables. An asterisk
(*) identifies each selected variable. The order of selected variables from top to bottom
determines their order in the report from left to right.

DATA SELECTION

Loads a data set into the current report definition.

Path

File � Open Data Set

Description
The first list box in the DATA SELECTION window lists all the librefs defined for

your SAS session. The second one lists all the SAS data sets in the selected library.



1006 DEFINITION � Chapter 38

Note: You must use data that is compatible with the current report definition. The
data set that you load must contain variables whose names are the same as the
variable names in the current report definition. �

Buttons

OK
loads the selected data set into the current report definition.

Cancel
closes the DATA SELECTION window without loading new data.

DEFINITION

Displays the characteristics associated with an item in the report and lets you change them.

Path
Select a report item. Then select

Edit � Define

Note: Alternatively, double-click on the selected item. (Not all operating
environments support this method of opening the DEFINITION window.) �

Description

Usage
For an explanation of each type of usage see “Laying Out a Report” on page 944.

DISPLAY
defines the selected item as a display variable. DISPLAY is the default for character
variables.

ORDER
defines the selected item as an order variable.

GROUP



The REPORT Procedure � DEFINITION 1007

defines the selected item as a group variable.

ACROSS
defines the selected item as an across variable.

ANALYSIS
defines the selected item as an analysis variable. You must specify a statistic (see the
discussion of the Statistic= attribute on page 1008) for an analysis variable.
ANALYSIS is the default for numeric variables.

COMPUTED
defines the selected item as a computed variable. Computed variables are variables
that you define for the report. They are not in the input data set, and PROC
REPORT does not add them to the input data set. However, computed variables are
included in an output data set if you create one.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

Attributes

Format=
assigns a SAS or user-defined format to the item. This format applies to the selected
item as PROC REPORT displays it; the format does not alter the format associated
with a variable in the data set. For data set variables, PROC REPORT honors the
first of these formats that it finds:

� the format assigned with FORMAT= in the DEFINITION window
� the format assigned in a FORMAT statement when you start PROC REPORT
� the format associated with the variable in the data set.

If none of these is present, then PROC REPORT uses BESTw. for numeric
variables and $w. for character variables. The value of w is the default column
width. For character variables in the input data set, the default column width is the
variable’s length. For numeric variables in the input data set and for computed
variables (both numeric and character), the default column width is the value of the
COLWIDTH= attribute in the ROPTIONS window.

If you are unsure what format to use, then type a question mark (?) in the format
field in the DEFINITION window to access the FORMATS window.

Spacing=
defines the number of blank characters to leave between the column being defined
and the column immediately to its left. For each column, the sum of its width and
the blank characters between it and the column to its left cannot exceed the line size.
Default: 2
Interaction: When PROC REPORT’s CENTER option is in effect, PROC REPORT

ignores spacing that precedes the leftmost variable in the report.
Interaction: SPACING= in an item definition overrides the value of SPACING= in

the PROC REPORT statement or the ROPTIONS window.

Width=
defines the width of the column in which PROC REPORT displays the selected item.
Range: 1 to the value of the SAS system option LINESIZE=
Default: A column width that is just large enough to handle the format. If there is

no format, then PROC REPORT uses the value of COLWIDTH=.
Note: When you stack items in the same column in a report, the width of the

item that is at the bottom of the stack determines the width of the column. �



1008 DEFINITION � Chapter 38

Statistic=
associates a statistic with an analysis variable. You must associate a statistic with
every analysis variable in its definition. PROC REPORT uses the statistic that you
specify to calculate values for the analysis variable for the observations represented
by each cell of the report. You cannot use statistic in the definition of any other kind
of variable.
Default: SUM

Note: PROC REPORT uses the name of the analysis variable as the default
header for the column. You can customize the column header with the Header field of
the DEFINITION window. �

You can use the following values for statistic:

Descriptive statistic keywords

CSS PCTSUM

CV RANGE

MAX STDDEV|STD

MEAN STDERR

MIN SUM

N SUMWGT

NMISS USS

PCTN VAR

Quantile statistic keywords

MEDIAN|Q2|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

Explanations of the keywords, the formulas that are used to calculate them, and
the data requirements are discussed in Appendix 1, “SAS Elementary Statistics
Procedures,” on page 1577.
Requirement: To compute standard error and the Student’s t-test you must use the

default value of VARDEF= which is DF.
See also: For definitions of these statistics, see “Keywords and Formulas” on page

1578.

Order=
orders the values of a GROUP, ORDER, or ACROSS variable according to the
specified order, where

DATA
orders values according to their order in the input data set.

FORMATTED



The REPORT Procedure � DEFINITION 1009

orders values by their formatted (external) values. By default, the order is
ascending.

FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order that PROC
SORT would yield. This order is operating environment-dependent. This sort
sequence is particularly useful for displaying dates chronologically.

Default: FORMATTED
Interaction: DESCENDING in the item’s definition reverses the sort sequence for

an item.

Note: The default value for the ORDER= option in PROC REPORT is not the
same as the default value in other SAS procedures. In other SAS procedures, the
default is ORDER=INTERNAL. The default for the option in PROC REPORT may
change in a future release to be consistent with other procedures. Therefore, in
production jobs where it is important to order report items by their formatted values,
specify ORDER=FORMATTED even though it is currently the default. Doing so
ensures that PROC REPORT will continue to produce the reports you expect even if
the default changes. �

Justify=
You can justify the placement of the column header and of the values of the item that
you are defining within a column in one of three ways:

LEFT
left-justifies the formatted values of the item that you are defining within the
column width and left-justifies the column header over the values. If the format
width is the same as the width of the column, then LEFT has no effect on the
placement of values.

RIGHT
right-justifies the formatted values of the item that you are defining within the
column width and right-justifies the column header over the values. If the format
width is the same as the width of the column, then RIGHT has no effect on the
placement of values.

CENTER
centers the formatted values of the item that you are defining within the column
width and centers the column header over the values. This option has no effect on
the setting of the SAS system option CENTER.
When justifying values, PROC REPORT justifies the field width defined by the

format of the item within the column. Thus, numbers are always aligned.

Data type=
shows you if the report item is numeric or character. You cannot change this field.

Item Help=
references a HELP or CBT entry that contains help information for the selected item.
Use PROC BUILD in SAS/AF software to create a HELP or CBT entry for a report
item. All HELP and CBT entries for a report must be in the same catalog, and you
must specify that catalog with the HELP= option in the PROC REPORT statement
or from the User Help fields in the ROPTIONS window.

To access a help entry from the report, select the item and issue the HELP
command. PROC REPORT first searches for and displays an entry named
entry-name.CBT. If no such entry exists, then PROC REPORT searches for



1010 DEFINITION � Chapter 38

entry-name.HELP. If neither a CBT nor a HELP entry for the selected item exists,
then the opening frame of the help for PROC REPORT is displayed.

Alias=
By entering a name in the Alias field, you create an alias for the report item that
you are defining. Aliases let you distinguish between different uses of the same
report item. When you refer in a compute block to a report item that has an alias,
you must use the alias (see Example 3 on page 1043).

Options

NOPRINT
suppresses the display of the item that you are defining. Use this option

� if you do not want to show the item in the report but you need to use the values
in it to calculate other values that you use in the report

� to establish the order of rows in the report
� if you do not want to use the item as a column but want to have access to its

values in summaries (see Example 9 on page 1060).

Interaction: Even though the columns that you define with NOPRINT do not
appear in the report, you must count them when you are referencing columns by
number (see “Four Ways to Reference Report Items in a Compute Block” on page
951).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOPRINT.

NOZERO
suppresses the display of the item that you are defining if its values are all zero or
missing.
Interaction: Even though the columns that you define with NOZERO do not appear

in the report, you must count them when you are referencing columns by number
(see “Four Ways to Reference Report Items in a Compute Block” on page 951).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOZERO.

DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, order,
or across variable.

PAGE
inserts a page break just before printing the first column containing values of the
selected item.
Interaction: PAGE is ignored if you use WRAP in the PROC REPORT statement or

in the ROPTIONS window.

FLOW
wraps the value of a character variable in its column. The FLOW option honors the
split character. If the text contains no split character, then PROC REPORT tries to
split text at a blank.

ID column
specifies that the item that you are defining is an ID variable. An ID variable and all
columns to its left appear at the left of every page of a report. ID ensures that you
can identify each row of the report when the report contains more columns than will
fit on one page.



The REPORT Procedure � DISPLAY PAGE 1011

Color
From the list of colors, select the one to use in the REPORT window for the column

header and the values of the item that you are defining.

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some
operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item.

Buttons

Apply
applies the information in the open window to the report and keeps the window open.

Edit Program
opens the COMPUTE window and enables you to associate a compute block with the
variable that you are defining.

OK
applies the information in the DEFINITION window to the report and closes the
window.

Cancel
closes the DEFINITION window without applying changes made with APPLY .

DISPLAY PAGE

Displays a particular page of the report.

Path

View � Display Page

Description
You can get to the last page of the report by entering a large number for the page

number. When you are on the last page of the report, PROC REPORT sends a note to
the message line of the REPORT window.



1012 EXPLORE � Chapter 38

EXPLORE

Lets you experiment with your data.

Restriction: You cannot open the EXPLORE window unless your report contains at least
one group or order variable.

Path

Edit � Explore Data

Description

In the EXPLORE window you can

� subset the data with list boxes

� suppress the display of a column with the Remove Column check box

� change the order of the columns with Rotate columns .

Note: The results of your manipulations in the EXPLORE window appear in the
REPORT window but are not saved in report definitions. �

Window Features

list boxes
The EXPLORE window contains three list boxes. These boxes contain the value All
levels as well as actual values for the first three group or order variables in your
report. The values reflect any WHERE clause processing that is in effect. For
example, if you use a WHERE clause to subset the data so that it includes only the
northeast and northwest sectors, then the only values that appear in the list box for
Sector are All levels, Northeast, and Northwest. Selecting All levels in this
case displays rows of the report for only the northeast and northwest sectors. To see
data for all the sectors, you must clear the WHERE clause before you open the
EXPLORE window.

Selecting values in the list boxes restricts the display in the REPORT window to
the values that you select. If you select incompatible values, then PROC REPORT
returns an error.

Remove Column
Above each list box in the EXPLORE window is a check box labeled Remove Column.
Selecting this check box and applying the change removes the column from the
REPORT window. You can easily restore the column by clearing the check box and
applying that change.

Buttons

OK
applies the information in the EXPLORE window to the report and closes the window.



The REPORT Procedure � LOAD REPORT 1013

Apply
applies the information in the EXPLORE window to the report and keeps the window
open.

Rotate columns
changes the order of the variables displayed in the list boxes. Each variable that can
move one column to the left does; the leftmost variable moves to the third column.

Cancel
closes the EXPLORE window without applying changes made with APPLY .

FORMATS

Displays a list of formats and provides a sample of each one.

Path
From the DEFINE window, type a question mark (?) in the Format field and select

any of the Buttons except Cancel, or press RETURN.

Description
When you select a format in the FORMATS window, a sample of that format appears

in the Sample: field. Select the format that you want to use for the variable that you
are defining.

Buttons

OK
writes the format that you have selected into the Format field in the DEFINITION
window and closes the FORMATS window. To see the format in the report, select
Apply in the DEFINITION window.

Cancel
closes the FORMATS window without writing a format into the Format field.

LOAD REPORT

Loads a stored report definition.

Path

File � Open Report

Description
The first list box in the LOAD REPORT window lists all the librefs that are defined

for your SAS session. The second list box lists all the catalogs that are in the selected



1014 MESSAGES � Chapter 38

library. The third list box lists descriptions of all the stored report definitions (entry
types of REPT) that are in the selected catalog. If there is no description for an entry,
then the list box contains the entry’s name.

Buttons

OK
loads the current data into the selected report definition.

Cancel
closes the LOAD REPORT window without loading a new report definition.

Note: Issuing the END command in the REPORT window returns you to the
previous report definition (with the current data). �

MESSAGES

Automatically opens to display notes, warnings, and errors returned by PROC REPORT.

You must close the MESSAGES window by selecting OK before you can continue to
use PROC REPORT.

PROFILE

Customizes some features of the PROC REPORT environment by creating a report profile.

Path

Tools � Report Profile

Description
The PROFILE window creates a report profile that
� specifies the SAS library, catalog, and entry that define alternative menus to use

in the REPORT and COMPUTE windows. Use PROC PMENU to create catalog
entries of type PMENU that define these menus. PMENU entries for both
windows must be in the same catalog.

� sets defaults for WINDOWS, PROMPT, and COMMAND. PROC REPORT uses the
default option whenever you start the procedure unless you specifically override
the option in the PROC REPORT statement.

Specify the catalog that contains the profile to use with the PROFILE= option in the
PROC REPORT statement (see the discussion of PROFILE= on page 969).



The REPORT Procedure � PROMPTER 1015

Buttons

OK
stores your profile in a file that is called SASUSER.PROFILE.REPORT.PROFILE.

Note: Use PROC CATALOG or the EXPLORER window to copy the profile to
another location. �

Cancel
closes the window without storing the profile.

PROMPTER

Prompts you for information as you add items to a report.

Path
Specify the PROMPT option when you start PROC REPORT or select PROMPT from

the ROPTIONS window. The PROMPTER window opens the next time that you add an
item to the report.

Description
The prompter guides you through parts of the windows that are most commonly used

to build a report. As the content of the PROMPTER window changes, the title of the
window changes to the name of the window that you would use to perform a task if you
were not using the prompter. The title change is to help you begin to associate the
windows with their functions and to learn what window to use if you later decide to
change something.

If you start PROC REPORT with prompting, then the first window gives you a
chance to limit the number of observations that are used during prompting. When you
exit the prompter, PROC REPORT removes the limit.

Buttons

OK
applies the information in the open window to the report and continues the
prompting process.

Note: When you select OK from the last prompt window, PROC REPORT
removes any limit on the number of observations that it is working with. �

Apply
applies the information in the open window to the report and keeps the window open.

Backup
returns you to the previous PROMPTER window.

Exit Prompter
closes the PROMPTER window without applying any more changes to the report. If
you have limited the number of observations to use during prompting, then PROC
REPORT removes the limit.



1016 REPORT � Chapter 38

REPORT

Is the surface on which the report appears.

Path
Use WINDOWS or PROMPT in the PROC REPORT statement.

Description
You cannot write directly in any part of the REPORT window except column headers.

To change other aspects of the report, you select a report item (for example, a column
heading) as the target of the next command and issue the command. To select an item,
use a mouse or cursor keys to position the cursor over it. Then click the mouse button
or press ENTER. To execute a command, make a selection from the menu bar at the top
of the REPORT window. PROC REPORT displays the effect of a command immediately
unless the DEFER option is on.

Note: Issuing the END command in the REPORT window returns you to the
previous report definition with the current data. If there is no previous report
definition, then END closes the REPORT window. �

ROPTIONS

Displays choices that control the layout and display of the entire report and identifies the SAS data
library and catalog containing CBT or HELP entries for items in the report.

Path

Tools � Options � Report

Description



The REPORT Procedure � ROPTIONS 1017

Modes

DEFER
stores the information for changes and makes the changes all at once when you turn
DEFER mode off or select

View � Refresh

DEFER is particularly useful when you know that you need to make several
changes to the report but do not want to see the intermediate reports.

By default, PROC REPORT redisplays the report in the REPORT window each
time you redefine the report by adding or deleting an item, by changing information
in the DEFINITION window, or by changing information in the BREAK window.

PROMPT
opens the PROMPTER window the next time that you add an item to the report.

Options

CENTER
centers the report and summary text (customized break lines). If CENTER is not
selected, then the report is left-justified.

PROC REPORT honors the first of these centering specifications that it finds:

� the CENTER or NOCENTER option in the PROC REPORT statement or the
CENTER toggle in the ROPTIONS window

� the CENTER or NOCENTER option stored in the report definition loaded with
REPORT= in the PROC REPORT statement

� the SAS system option CENTER or NOCENTER.

When PROC REPORT’s CENTER option is in effect, PROC REPORT ignores
spacing that precedes the leftmost variable in the report.

HEADLINE
underlines all column headers and the spaces between them at the top of each page
of the report.

HEADLINE underlines with the second formatting character. (See the discussion
of FORMCHAR= on page 963.)

Default: hyphen (-)



1018 ROPTIONS � Chapter 38

Tip: In traditional (monospace) SAS output, you can underline column headers
without underlining the spaces between them, by using ’--’ as the last line of
each column header instead of using HEADLINE.

HEADSKIP
writes a blank line beneath all column headers (or beneath the underlining that the
HEADLINE option writes) at the top of each page of the report.

NAMED
writes name= in front of each value in the report, where name is the column header
for the value.
Tip: Use NAMED in conjunction with WRAP to produce a report that wraps all

columns for a single row of the report onto consecutive lines rather than placing
columns of a wide report on separate pages.

Interaction: When you use NAMED, PROC REPORT automatically uses
NOHEADER.

NOHEADER
suppresses column headers, including those that span multiple columns.

Once you suppress the display of column headers in the windowing environment,
you cannot select any report items.

SHOWALL
overrides the parts of a definition that suppress the display of a column (NOPRINT
and NOZERO). You define a report item with a DEFINE statement or in the
DEFINITION window.

WRAP
displays one value from each column of the report, on consecutive lines if necessary,
before displaying another value from the first column. By default, PROC REPORT
displays values for only as many columns as it can fit on one page. It fills a page
with values for these columns before starting to display values for the remaining
columns on the next page.
Interaction: When WRAP is in effect, PROC REPORT ignores PAGE in any item

definitions.
Tip: Typically, you use WRAP in conjunction with NAMED to avoid wrapping

column headers.

BOX
uses formatting characters to add line-drawing characters to the report. These
characters

� surround each page of the report
� separate column headers from the body of the report
� separate rows and columns from each other.

Interaction: You cannot use BOX if you use WRAP in the PROC REPORT
statement or ROPTIONS window or if you use FLOW in any item’s definition.

See also: For information about formatting characters, see the discussion of
FORMCHAR= on page 963.

MISSING
considers missing values as valid values for group, order, or across variables. Special
missing values that are used to represent numeric values (the letters A through Z
and the underscore (_) character) are each considered as a different value. A group
for each missing value appears in the report. If you omit the MISSING option, then
PROC REPORT does not include observations with a missing value for one or more
group, order, or across variables in the report.



The REPORT Procedure � ROPTIONS 1019

Attributes

Linesize
specifies the line size for a report. PROC REPORT honors the first of these line-size
specifications that it finds:

� LS= in the PROC REPORT statement or Linesize= in the ROPTIONS window
� the LS= setting stored in the report definition loaded with REPORT= in the

PROC REPORT statement
� the SAS system option LINESIZE=.

Range: 64-256 (integer)
Tip: If the line size is greater than the width of the REPORT window, then use SAS

windowing environment commands RIGHT and LEFT to display portions of the
report that are not currently in the display.

Pagesize
specifies the page size for a report. PROC REPORT honors the first of these page
size specifications that it finds:

� PS= in the PROC REPORT statement or Pagesize= in the ROPTIONS window
� the PS= setting stored in the report definition loaded with REPORT= in the

PROC REPORT statement
� the SAS system option PAGESIZE=.

Range: 15-32,767 (integer)

Colwidth
specifies the default number of characters for columns containing computed variables
or numeric data set variables.
Range: 1 to the linesize
Default: 9
Interaction: When setting the width for a column, PROC REPORT first looks at

WIDTH= in the definition for that column. If WIDTH= is not present, then PROC
REPORT uses a column width large enough to accommodate the format for the
item. (For information about formats, see the discussion of Format= on page
1007.) If no format is associated with the item, then the column width depends on
variable type:

If the variable is a… Then the column width is the…

character variable in the input data set length of the variable

numeric variable in the input data set value of the COLWIDTH= option

computed variable (numeric or character) value of the COLWIDTH= option

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, the sum
of its width and the blank characters between it and the column to its left cannot
exceed the line size.



1020 ROPTIONS � Chapter 38

Default: 2
Interaction: PROC REPORT separates all columns in the report by the number of

blank characters specified by SPACING= in the PROC REPORT statement or the
ROPTIONS window unless you use SPACING= in the definition of a particular
item to change the spacing to the left of that item.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

SPLIT=’character’
specifies the split character. PROC REPORT breaks a column header when it
reaches that character and continues the header on the next line. The split character
itself is not part of the column header although each occurrence of the split character
counts toward the 40-character maximum for a label.

Default: slash (/)
Interaction: The FLOW option in the DEFINE statement honors the split character.

Note: If you are typing over a header (rather than entering one from the
PROMPTER or DEFINITION window), then you do not see the effect of the split
character until you refresh the screen by adding or deleting an item, by changing
the contents of a DEFINITION or a BREAK window, or by selecting

View � Refresh

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report is
less than half of the line size, then you can display the data in multiple sets of
columns so that rows that would otherwise appear on multiple pages appear on the
same page. Each set of columns is a panel. A familiar example of this kind of report
is a telephone book, which contains multiple panels of names and telephone numbers
on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before
beginning the next.

The number of panels that fits on a page depends on the
� width of the panel

� space between panels
� line size.

Default: 1

Tip: If number-of-panels is larger than the number of panels that can fit on the
page, then PROC REPORT creates as many panels as it can. Let PROC REPORT
put your data in the maximum number of panels that can fit on the page by
specifying a large number of panels (for example, 99).

See also: For information about specifying the space between panels see the
discussion of PSPACE= on page 1020. For information about setting the linesize,
see the discussion of Linesize on page 1019).

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT separates
all panels in the report by the same number of blank characters. For each panel, the
sum of its width and the number of blank characters separating it from the panel to
its left cannot exceed the line size.
Default: 4

User Help



The REPORT Procedure � SAVE DEFINITION 1021

identifies the library and catalog containing user-defined help for the report. This
help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry for
each item in the report with the BUILD procedure in SAS/AF software. You must
store all such entries for a report in the same catalog.

Specify the entry name for help for a particular report item in the DEFINITION
window for that report item or in a DEFINE statement.

SAVE DATA SET

Lets you specify an output data set in which to store the data from the current report.

Path

File � Save Data Set

Description
To specify an output data set, enter the name of the SAS data library and the name

of the data set (called member in the window) that you want to create in the Save Data
Set window.

Buttons

OK
Creates the output data set and closes the Save Data Set window.

Cancel
Closes the Save Data Set window without creating an output data set.

SAVE DEFINITION

Saves a report definition for subsequent use with the same data set or with a similar data set.

Path

File � Save Report

Description
The SAVE DEFINITION window prompts you for the complete name of the catalog

entry in which to store the definition of the current report and for an optional
description of the report. This description shows up in the LOAD REPORT window and
helps you to select the appropriate report.



1022 SOURCE � Chapter 38

SAS stores the report definition as a catalog entry of type REPT. You can use a report
definition to create an identically structured report for any SAS data set that contains
variables with the same names as those used in the report definition.

Buttons

OK
Creates the report definition and closes the SAVE DEFINITION window.

Cancel
Closes the SAVE DEFINITION window without creating a report definition.

SOURCE

Lists the PROC REPORT statements that build the current report.

Path

Tools � Report Statements

STATISTICS

Displays statistics that are available in PROC REPORT.

Path

Edit � Add item � Statistic

After you select Statistic, PROC REPORT prompts you for the location of the
statistic relative to the column that you have selected. After you select a location, the
STATISTICS window opens.

Description
Select the statistics that you want to include in your report and close the window.

When you select the first statistic, it moves to the top of the list in the window. If you
select multiple statistics, then subsequent selections move to the bottom of the list of
selected statistics. An asterisk (*) indicates each selected statistic. The order of selected
statistics from top to bottom determines their order in the report from left to right.

Note: If you double-click on a statistic, then PROC REPORT immediately adds it to
the report. The STATISTICS window remains open. �



The REPORT Procedure � WHERE ALSO 1023

To compute standard error and the Student’s t test you must use the default value of
VARDEF= which is DF.

To add all selected statistics to the report, select

File � Accept Selection

Selecting

File � Close

closes the STATISTICS window without adding the selected statistics to the report.

WHERE

Selects observations from the data set that meet the conditions that you specify.

Path

Subset � Where

Description
Enter a where-expression in the Enter where clause field. A where-expression is an

arithmetic or logical expression that generally consists of a sequence of operands and
operators. For information about constructing a where-expression, see the
documentation of the WHERE statement in the section on statements in SAS Language
Reference: Dictionary.

Note: You can clear all where-expressions by leaving the Enter where clause field
empty and by selecting OK . �

Buttons

OK
Applies the where-expression to the report and closes the WHERE window.

Cancel
Closes the WHERE window without altering the report.

WHERE ALSO

Selects observations from the data set that meet the conditions that you specify and any other
conditions that are already in effect.



1024 How PROC REPORT Builds a Report � Chapter 38

Path

Subset � Where Also

Description
Enter a where-expression in the Enter where also clause field. A

where-expression is an arithmetic or logical expression that generally consists of a
sequence of operands and operators. For information about constructing a
where-expression, see the documentation of the WHERE statement in the chapter on
statements in SAS Language Reference: Dictionary.

Buttons

OK
Adds the where-expression to any other where-expressions that are already in effect
and applies them all to the report. It also closes the WHERE ALSO window.

Cancel
Closes the WHERE ALSO window without altering the report.

How PROC REPORT Builds a Report
This section first explains the process of building a report. Following this explanation

are illustrations of how PROC REPORT creates two sample reports. The examples use
programming statements; you can construct the same reports in the windowing
environment.

To understand the process of building a report, you must understand the difference
between report variables and DATA step variables. Variables that appear only in one or
more compute blocks are DATA step variables. Variables that appear in one or more
columns of the report are report variables. A report variable may or may not appear in
a compute block.

Sequence of Events
PROC REPORT constructs a report as follows:

1 It consolidates the data by group, order, and across variables. It calculates all
statistics for the report, those for detail rows as well as those for summary lines in
breaks. Statistics include those computed for analysis variables. PROC REPORT
calculates statistics for summary lines whether or not they appear in the report. It
stores all this information in a temporary file.

2 It initializes all DATA step variables to missing.
3 It begins constructing the rows of the report.

a At the beginning of each row, it initializes all report variables to missing.
b It fills in values for report variables from left to right.

� Values for computed variables come from executing the statements in
the corresponding compute blocks.



The REPORT Procedure � Sequence of Events 1025

� Values for all other variables come from the temporary file created at
the beginning of the report-building process.

c Whenever it comes to a break, PROC REPORT first constructs the break
lines created with the BREAK or RBREAK statement or with options in the
BREAK window. It then executes the statements in the compute block
attached to the break (if there is one).

Note: Because of the way PROC REPORT builds a report, you can

� use group statistics in compute blocks for a break before the group variable.

� use statistics for the whole report in a compute block at the beginning of the
report.

This document references these statistics with the appropriate compound name.
For information about referencing report items in a compute block, see “Four Ways
to Reference Report Items in a Compute Block” on page 951. �

Construction of Summary Lines
PROC REPORT constructs a summary line for a break if either of the following

conditions is true:

� You summarize numeric variables in the break.
� You use a compute block at the break. (You can attach a compute block to a break

without using a BREAK or RBREAK statement or without selecting any options in
the BREAK window.)

For more information about using compute blocks, see “Using Compute Blocks”
on page 949 and “COMPUTE Statement” on page 983.

The summary line that PROC REPORT constructs at this point is preliminary. If no
compute block is attached to the break, then the preliminary summary line becomes the
final summary line. However, if a compute block is attached to the break, then the
statements in the compute block can alter the values in the preliminary summary line.

PROC REPORT prints the summary line only if you summarize numeric variables in
the break.

Using Compound Names
When you use a statistic in a report, you generally refer to it in compute blocks by a

compound name like Sales.sum. However, in different parts of the report, that same
name has different meanings. Consider the report in Output 38.1 on page 1026. The
statements that create the output follow. The user-defined formats that are used are
created by a PROC FORMAT step on page 1039.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery nowindows;
column sector manager sales;
define sector / group format=$sctrfmt.;
define sales / analysis sum

format=dollar9.2;
define manager / group format=$mgrfmt.;
break after sector / summarize skip ol;



1026 Building a Report That Uses Groups and a Report Summary � Chapter 38

rbreak after / summarize dol dul;
compute after;

sector=’Total:’;
endcomp;

run;

Output 38.1 Three Different Meanings of Sales.sum

The SAS System 1

Sector Manager Sales
Northeast Alomar $786.00 u

Andrews $1,045.00
--------- ---------
Northeast $1,831.00 v

Northwest Brown $598.00
Pelfrey $746.00
Reveiz $1,110.00

--------- ---------
Northwest $2,454.00

Southeast Jones $630.00
Smith $350.00

--------- ---------
Southeast $980.00

Southwest Adams $695.00
Taylor $353.00

--------- ---------
Southwest $1,048.00

========= =========
Total: $6,313.00 w
========= =========

Here Sales.sum has three different meanings:
u In detail rows, the value is the sales for one manager’s store in a sector of the city.

For example, the first detail row of the report shows that the sales for the store
that Alomar manages were $786.00.

v In the group summary lines, the value is the sales for all the stores in one sector.
For example, the first group summary line shows that sales for the Northeast
sector were $1,831.00.

w In the report summary line, the value ($6,313.00) is the sales for all stores in the
city.

Note: Unless you use the NOALIAS option in the PROC REPORT statement, when
you refer in a compute block to a statistic that has an alias, you do not use a compound
name. Generally, you must use the alias. However, if the statistic shares a column with
an across variable, then you must reference it by column number (see “Four Ways to
Reference Report Items in a Compute Block” on page 951). �

Building a Report That Uses Groups and a Report Summary
The report in Output 38.2 on page 1027 contains five columns:
� Sector and Department are group variables.
� Sales is an analysis variable that is used to calculate the Sum statistic.



The REPORT Procedure � Building a Report That Uses Groups and a Report Summary 1027

� Profit is a computed variable whose value is based on the value of Department.

� The N statistic indicates how many observations each row represents.

At the end of the report a break summarizes the statistics and computed variables in
the report and assigns to Sector the value of TOTALS:.

The following statements produce Output 38.2 on page 1027. The user-defined
formats that are used are created by a PROC FORMAT step on page 1039.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery headline headskip;
column sector department sales Profit N;
define sector / group format=$sctrfmt.;
define department / group format=$deptfmt.;
define sales / analysis sum

format=dollar9.2;
define profit / computed format=dollar9.2;

compute profit;
if department=’np1’ or department=’np2’

then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;

rbreak after / dol dul summarize;
compute after;

sector=’TOTALS:’;
endcomp;

where sector contains ’n’;
title ’Report for Northeast and Northwest Sectors’;

run;

Output 38.2 Report with Groups and a Report Summary

Report for Northeast and Northwest Sectors 1

Sector Department Sales Profit N
------------------------------------------------------

Northeast Canned $840.00 $336.00 2
Meat/Dairy $490.00 $122.50 2
Paper $290.00 $116.00 2
Produce $211.00 $52.75 2

Northwest Canned $1,070.00 $428.00 3
Meat/Dairy $1,055.00 $263.75 3
Paper $150.00 $60.00 3
Produce $179.00 $44.75 3

========= ========= ========= =========
TOTALS: $4,285.00 $1,071.25 20
========= ========= ========= =========



1028 Building a Report That Uses Groups and a Report Summary � Chapter 38

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and
Department are group variables) and by calculating the statistics (Sales.sum and
N) for each detail row and for the break at the end of the report. It stores these
values in a temporary file.

2 Now, PROC REPORT is ready to start building the first row of the report. This
report does not contain a break at the beginning of the report or a break before
any groups, so the first row of the report is a detail row. The procedure initializes
all report variables to missing, as Figure 38.9 on page 1028 illustrates. Missing
values for a character variable are represented by a blank, and missing values for
a numeric variable are represented by a period.

Figure 38.9 First Detail Row with Values Initialized

Sector Department Sales Profit N

. . .

3 Figure 38.10 on page 1028 illustrates the construction of the first three columns of
the row. PROC REPORT fills in values for the row from left to right. Values come
from the temporary file that is created at the beginning of the report-building
process.

Figure 38.10 First Detail Row with Values Filled in from Left to Right

Sector Department Sales Profit N

Northeast . . .

Sector Department Sales Profit N

Northeast Canned . . .

Sector Department Sales Profit N

Northeast Canned $840.00 . .

4 The next column in the report contains the computed variable Profit. When it gets
to this column, PROC REPORT executes the statements in the compute block that
is attached to Profit. Nonperishable items (which have a value of np1 or np2)
return a profit of 40%; perishable items (which have a value of p1 or p2) return a
profit of 25%.



The REPORT Procedure � Building a Report That Uses Groups and a Report Summary 1029

if department=’np1’ or department=’np2’
then profit=0.4*sales.sum;

else profit=0.25*sales.sum;

The row now looks like Figure 38.11 on page 1029.
Note: The position of a computed variable is important. PROC REPORT

assigns values to the columns in a row of a report from left to right. Consequently,
you cannot base the calculation of a computed variable on any variable that
appears to its right in the report. �

Figure 38.11 A Computed Variable Added to the First Detail Row

Sector Department Sales Profit N

Northeast Canned $840.00 $336.00 .

5 Next, PROC REPORT fills in the value for the N statistic. The value comes from
the temporary file created at the beginning of the report-building process. Figure
38.12 on page 1029 illustrates the completed row.

Figure 38.12 First Complete Detail Row

Sector Department Sales Profit N

Northeast Canned $840.00 $336.00 2

6 The procedure writes the completed row to the report.
7 PROC REPORT repeats steps 2, 3, 4, 5, and 6 for each detail row in the report.
8 At the break at the end of the report, PROC REPORT constructs the break lines

described by the RBREAK statement. These lines include double underlining,
double overlining, and a preliminary version of the summary line. The statistics
for the summary line were calculated earlier (see step 1). The value for the
computed variable is calculated when PROC REPORT reaches the appropriate
column, just as it is in detail rows. PROC REPORT uses these values to create the
preliminary version of the summary line (see Figure 38.13 on page 1029).

Figure 38.13 Preliminary Summary Line

Sector Department Sales Profit N

$4,285.00 $1,071.25 20



1030 Building a Report That Uses DATA Step Variables � Chapter 38

9 If no compute block is attached to the break, then the preliminary version of the
summary line is the same as the final version. However, in this example, a
compute block is attached to the break. Therefore, PROC REPORT now executes
the statements in that compute block. In this case, the compute block contains one
statement:

sector=’TOTALS:’;

This statement replaces the value of Sector, which in the summary line is
missing by default, with the word TOTALS:. After PROC REPORT executes the
statement, it modifies the summary line to reflect this change to the value of Sector.
The final version of the summary line appears in Figure 38.14 on page 1030.

Figure 38.14 Final Summary Line

Sector Department Sales Profit N

TOTALS: $4,285.00 $1,071.25 20

10 Finally, PROC REPORT writes all the break lines, with underlining, overlining,
and the final summary line, to the report.

Building a Report That Uses DATA Step Variables
PROC REPORT initializes report variables to missing at the beginning of each row of

the report. The value for a DATA step variable is initialized to missing before PROC
REPORT begins to construct the rows of the report, and it remains missing until you
specifically assign a value to it. PROC REPORT retains the value of a DATA step
variable from the execution of one compute block to another.

Because all compute blocks share the current values of all variables, you can
initialize DATA step variables at a break at the beginning of the report or at a break
before a break variable. This report initializes the DATA step variable Sctrtot at a
break before Sector.

Note: PROC REPORT creates a preliminary summary line for a break before it
executes the corresponding compute block. If the summary line contains computed
variables, then the computations are based on the values of the contributing variables
in the preliminary summary line. If you want to recalculate computed variables based
on values that you set in the compute block, then you must do so explicitly in the
compute block. This report illustrates this technique.

If no compute block is attached to a break, then the preliminary summary line
becomes the final summary line. �

The report in Output 38.3 on page 1033 contains five columns:

� Sector and Department are group variables.

� Sales is an analysis variable that is used twice in this report: once to calculate the
Sum statistic, and once to calculate the Pctsum statistic.

� Sctrpct is a computed variable whose values are based on the values of Sales and a
DATA step variable, Sctrtot, which is the total sales for a sector.



The REPORT Procedure � Building a Report That Uses DATA Step Variables 1031

At the beginning of the report, a customized report summary tells what the sales for
all stores are. At a break before each group of observations for a department, a default
summary summarizes the data for that sector. At the end of each group a break inserts
a blank line.

The following statements produce Output 38.3 on page 1033. The user-defined
formats that are used are created by a PROC FORMAT step on page 1039.

Note: Calculations of the percentages do not multiply their results by 100 because
PROC REPORT prints them with the PERCENT. format. �

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery noheader nowindows;
column sector department sales

Sctrpct sales=Salespct;

define sector / ’Sector’ group
format=$sctrfmt.;

define department / group format=$deptfmt.;
define sales / analysis sum

format=dollar9.2 ;
define sctrpct / computed

format=percent9.2 ;
define salespct / pctsum format=percent9.2;

compute before;
line ’ ’;
line @16 ’Total for all stores is ’

sales.sum dollar9.2;
line ’ ’;
line @29 ’Sum of’ @40 ’Percent’

@51 ’Percent of’;
line @6 ’Sector’ @17 ’Department’

@29 ’Sales’
@40 ’of Sector’ @51 ’All Stores’;

line @6 55*’=’;
line ’ ’;

endcomp;

break before sector / summarize ul;
compute before sector;

sctrtot=sales.sum;
sctrpct=sales.sum/sctrtot;

endcomp;

compute sctrpct;
sctrpct=sales.sum/sctrtot;

endcomp;

break after sector/skip;



1032 Building a Report That Uses DATA Step Variables � Chapter 38

where sector contains ’n’;
title ’Report for Northeast and Northwest Sectors’;

run;



The REPORT Procedure � Building a Report That Uses DATA Step Variables 1033

Output 38.3 Report with DATA Step Variables

Report for Northeast and Northwest Sectors 1

Total for all stores is $4,285.00

Sum of Percent Percent of
Sector Department Sales of Sector All Stores
=======================================================

Northeast $1,831.00 100.00% 42.73%
--------- --------- --------- ---------
Northeast Canned $840.00 45.88% 19.60%

Meat/Dairy $490.00 26.76% 11.44%
Paper $290.00 15.84% 6.77%
Produce $211.00 11.52% 4.92%

Northwest $2,454.00 100.00% 57.27%
--------- --------- --------- ---------
Northwest Canned $1,070.00 43.60% 24.97%

Meat/Dairy $1,055.00 42.99% 24.62%
Paper $150.00 6.11% 3.50%
Produce $179.00 7.29% 4.18%

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and
Department are group variables) and by calculating the statistics (Sales.sum and
Sales.pctsum) for each detail row, for the break at the beginning of the report, for
the breaks before each group, and for the breaks after each group. It stores these
values in a temporary file.

2 PROC REPORT initializes the DATA step variable, Sctrtot, to missing (see Figure
38.15 on page 1033).

Figure 38.15 Initialized DATA Step Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

. . . .

DATA Step
Variable

Report Variables

3 Because this PROC REPORT step contains a COMPUTE BEFORE statement, the
procedure constructs a preliminary summary line for the break at the beginning of
the report. This preliminary summary line contains values for the statistics
(Sales.sum and Sales.pctsum) and the computed variable (Sctrpct).

At this break, Sales.sum is the sales for all stores, and Sales.pctsum is the
percentage those sales represent for all stores (100%). PROC REPORT takes the
values for these statistics from the temporary file that it created at the beginning
of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding
compute block. Because the value of Sctrtot is missing, PROC REPORT cannot
calculate a value for Sctrpct. Therefore, in the preliminary summary line (which is



1034 Building a Report That Uses DATA Step Variables � Chapter 38

not printed in this case), this variable also has a missing value (see Figure 38.16
on page 1034).

The statements in the COMPUTE BEFORE block do not alter any variables.
Therefore, the final summary line is the same as the preliminary summary line.

Note: The COMPUTE BEFORE statement creates a break at the beginning of
the report. You do not need to use an RBREAK statement. �

Figure 38.16 Preliminary and Final Summary Line for the Break at the Beginning
of the Report

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

$4,285.00 . 100.00% .

DATA Step
Variable

Report Variables

4 Because the program does not include an RBREAK statement with the
SUMMARIZE option, PROC REPORT does not write the final summary line to the
report. Instead, it uses LINE statements to write a customized summary that
embeds the value of Sales.sum into a sentence and to write customized column
headers. (The NOHEADER option in the PROC REPORT statement suppresses
the default column headers, which would have appeared before the customized
summary.)

5 Next, PROC REPORT constructs a preliminary summary line for the break before
the first group of observations. (This break both uses the SUMMARIZE option in
the BREAK statement and has a compute block attached to it. Either of these
conditions generates a summary line.) The preliminary summary line contains
values for the break variable (Sector), the statistics (Sales.sum and Sales.pctsum),
and the computed variable (Sctrpct). At this break, Sales.sum is the sales for one
sector (the northeast sector). PROC REPORT takes the values for Sector,
Sales.sum, and Sales.pctsum from the temporary file that it created at the
beginning of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding
compute blocks. Because the value of Sctrtot is still missing, PROC REPORT
cannot calculate a value for Sctrpct. Therefore, in the preliminary summary line,
Sctrpct has a missing value (see Figure 38.17 on page 1034).

Figure 38.17 Preliminary Summary Line for the Break before the First Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast $1,831.00 . 42.73% .

DATA Step
Variable

Report Variables

6 PROC REPORT creates the final version of the summary line by executing the
statements in the COMPUTE BEFORE SECTOR compute block. These
statements execute once each time the value of Sector changes.

� The first statement assigns the value of Sales.sum, which in that part of the
report represents total sales for one Sector, to the variable Sctrtot.



The REPORT Procedure � Building a Report That Uses DATA Step Variables 1035

� The second statement completes the summary line by recalculating Sctrpct
from the new value of Sctrtot. Figure 38.18 on page 1035 shows the final
summary line.

Note: In this example, you must recalculate the value for Sctrpct in the final
summary line. If you do not recalculate the value for Sctrpct, then it will be
missing because the value of Sctrtot is missing at the time that the COMPUTE
Sctrpct block executes. �

Figure 38.18 Final Summary Line for the Break before the First Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast $1,831.00 100.00% 42.73% $1,831.00

DATA Step
Variable

Report Variables

7 Because the program contains a BREAK BEFORE statement with the
SUMMARIZE option, PROC REPORT writes the final summary line to the report.
The UL option in the BREAK statement underlines the summary line.

8 Now, PROC REPORT is ready to start building the first detail row of the report. It
initializes all report variables to missing. Values for DATA step variables do not
change. Figure 38.19 on page 1035 illustrates the first detail row at this point.

Figure 38.19 First Detail Row with Initialized Values

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

. . . $1,831.00

DATA Step
Variable

Report Variables

9 Figure 38.20 on page 1035 illustrates the construction of the first three columns of
the row. PROC REPORT fills in values for the row from left to right. The values
come from the temporary file that it created at the beginning of the report-building
process.

Figure 38.20 Filling in Values from Left to Right

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast . . . $1,831.00

DATA Step
Variable

Report Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned . . . $1,831.00

DATA Step
Variable

Report Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 . . $1,831.00

DATA Step
Variable

Report Variables



1036 Building a Report That Uses DATA Step Variables � Chapter 38

10 The next column in the report contains the computed variable Sctrpct. When it
gets to this column, PROC REPORT executes the statement in the compute block
attached to Sctrpct. This statement calculates the percentage of the sector’s total
sales that this department accounts for:

sctrpct=sales.sum/sctrtot;

The row now looks like Figure 38.21 on page 1036.

Figure 38.21 First Detail Row with the First Computed Variable Added

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 45.88% . $1,831.00

DATA Step
Variable

Report Variables

11 The next column in the report contains the statistic Sales.pctsum. PROC REPORT
gets this value from the temporary file. The first detail row is now complete (see
Figure 38.22 on page 1036).

Figure 38.22 First Complete Detail Row

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 45.88% 19.60% $1,831.00

DATA Step
Variable

Report Variables

12 PROC REPORT writes the detail row to the report. It repeats steps 8, 9, 10, 11,
and 12 for each detail row in the group.

13 After writing the last detail row in the group to the report, PROC REPORT
constructs the default group summary. Because no compute block is attached to
this break and because the BREAK AFTER statement does not include the
SUMMARIZE option, PROC REPORT does not construct a summary line. The
only action at this break is that the SKIP option in the BREAK AFTER statement
writes a blank line after the last detail row of the group.

14 Now the value of the break variable changes from Northeast to Northwest.
PROC REPORT constructs a preliminary summary line for the break before this
group of observations. As at the beginning of any row, PROC REPORT initializes
all report variables to missing but retains the value of the DATA step variable.
Next, it completes the preliminary summary line with the appropriate values for
the break variable (Sector), the statistics (Sales.sum and Sales.pctsum), and the
computed variable (Sctrpct). At this break, Sales.sum is the sales for the
Northwest sector. Because the COMPUTE BEFORE Sector block has not yet
executed, the value of Sctrtot is still $1,831.00, the value for the Northeast sector.
Thus, the value that PROC REPORT calculates for Sctrpct in this preliminary
summary line is incorrect (see Figure 38.23 on page 1037). The statements in the
compute block for this break calculate the correct value (see the following step).



The REPORT Procedure � Example 1: Selecting Variables for a Report 1037

Figure 38.23 Preliminary Summary Line for the Break before the Second Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northwest $2,454.00 134.00% 57.27% $1,831.00

DATA Step
Variable

Report Variables

CAUTION:
Synchronize values for computed variables in break lines to prevent incorrect results.
If the PROC REPORT step does not recalculate Sctrpct in the compute block
that is attached to the break, then the value in the final summary line will not
be synchronized with the other values in the summary line, and the report will
be incorrect. �

15 PROC REPORT creates the final version of the summary line by executing the
statements in the COMPUTE BEFORE Sector compute block. These statements
execute once each time the value of Sector changes.

� The first statement assigns the value of Sales.sum, which in that part of the
report represents sales for the Northwest sector, to the variable Sctrtot.

� The second statement completes the summary line by recalculating Sctrpct
from the new, appropriate value of Sctrtot. Figure 38.24 on page 1037 shows
the final summary line.

Figure 38.24 Final Summary Line for the Break before the Second Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northwest $2,454.00 100.00% 57.27% $2,454.00

DATA Step
Variable

Report Variables

Because the program contains a BREAK BEFORE statement with the
SUMMARIZE option, PROC REPORT writes the final summary line to the report.
The UL option in the BREAK statement underlines the summary line.

16 Now, PROC REPORT is ready to start building the first row for this group of
observations. It repeats steps 8 through 16 until it has processed all observations
in the input data set (stopping with step 14 for the last group of observations).

Examples: REPORT Procedure

Example 1: Selecting Variables for a Report
Procedure features:



1038 Program � Chapter 38

PROC REPORT statement options:
NOWD

COLUMN statement
default variable usage

RBREAK statement options:
DOL
SUMMARIZE

Other features:
FORMAT statement
FORMAT procedure:

LIBRARY=
SAS system options:

FMTSEARCH=
Automatic macro variables:

SYSDATE

This example uses a permanent data set and permanent formats to create a report
that contains

� one row for every observation
� a default summary for the whole report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

Create the GROCERY data set. GROCERY contains one day’s sales figures for eight stores in
the Grocery Mart chain. Each observation contains one day’s sales data for one department in
one store.

data grocery;
input Sector $ Manager $ Department $ Sales @@;
datalines;

se 1 np1 50 se 1 p1 100 se 1 np2 120 se 1 p2 80
se 2 np1 40 se 2 p1 300 se 2 np2 220 se 2 p2 70
nw 3 np1 60 nw 3 p1 600 nw 3 np2 420 nw 3 p2 30
nw 4 np1 45 nw 4 p1 250 nw 4 np2 230 nw 4 p2 73
nw 9 np1 45 nw 9 p1 205 nw 9 np2 420 nw 9 p2 76
sw 5 np1 53 sw 5 p1 130 sw 5 np2 120 sw 5 p2 50



The REPORT Procedure � Program 1039

sw 6 np1 40 sw 6 p1 350 sw 6 np2 225 sw 6 p2 80
ne 7 np1 90 ne 7 p1 190 ne 7 np2 420 ne 7 p2 86
ne 8 np1 200 ne 8 p1 300 ne 8 np2 420 ne 8 p2 125
;

Create the $SCTRFMT., $MGRFMT., and $DEPTFMT. formats. PROC FORMAT creates
permanent formats for Sector, Manager, and Department. The LIBRARY= option specifies a
permanent storage location so that the formats are available in subsequent SAS sessions. These
formats are used for examples throughout this section.

proc format library=proclib;
value $sctrfmt ’se’ = ’Southeast’

’ne’ = ’Northeast’
’nw’ = ’Northwest’
’sw’ = ’Southwest’;

value $mgrfmt ’1’ = ’Smith’ ’2’ = ’Jones’
’3’ = ’Reveiz’ ’4’ = ’Brown’
’5’ = ’Taylor’ ’6’ = ’Adams’
’7’ = ’Alomar’ ’8’ = ’Andrews’
’9’ = ’Pelfrey’;

value $deptfmt ’np1’ = ’Paper’
’np2’ = ’Canned’
’p1’ = ’Meat/Dairy’
’p2’ = ’Produce’;

run;

Specify the format search library. The SAS system option FMTSEARCH= adds the SAS
data library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. The NOWD option runs the REPORT procedure without the
REPORT window and sends its output to the open output destination(s).

proc report data=grocery nowd;

Specify the report columns. The report contains a column for Manager, Department, and
Sales. Because there is no DEFINE statement for any of these variables, PROC REPORT uses
the character variables (Manager and Department) as display variables and the numeric
variable (Sales) as an analysis variable that is used to calculate the sum statistic.

column manager department sales;

Produce a report summary. The RBREAK statement produces a default summary at the end
of the report. DOL writes a line of equal signs (=) above the summary information.
SUMMARIZE sums the value of Sales for all observations in the report.



1040 Output � Chapter 38

rbreak after / dol summarize;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Format the report columns. The FORMAT statement assigns formats to use in the report.
You can use the FORMAT statement only with data set variables.

format manager $mgrfmt. department $deptfmt.
sales dollar11.2;

Specify the titles. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE2 statement uses double rather than single quotation
marks so that the macro variable resolves.

title ’Sales for the Southeast Sector’;
title2 "for &sysdate";

run;

Output

Sales for the Southeast Sector 1
for 04JAN02

Manager Department Sales
Smith Paper $50.00
Smith Meat/Dairy $100.00
Smith Canned $120.00
Smith Produce $80.00
Jones Paper $40.00
Jones Meat/Dairy $300.00
Jones Canned $220.00
Jones Produce $70.00

===========
$980.00

Example 2: Ordering the Rows in a Report

Procedure features:
PROC REPORT statement options:

COLWIDTH=
HEADLINE
HEADSKIP
SPACING=

BREAK statement options:



The REPORT Procedure � Program 1041

OL
SKIP
SUMMARIZE

COMPUTE statement arguments:

AFTER

DEFINE statement options:

ANALYSIS
FORMAT=
ORDER
ORDER=
SUM

ENDCOMP statement

LINE statement:

with quoted text
with variable values

Data set: GROCERY on page 1038

Formats: $MGRFMT. and $DEPTFMT. on page 1039

This example

� arranges the rows alphabetically by the formatted values of Manager and the
internal values of Department (so that sales for the two departments that sell
nonperishable goods precede sales for the two departments that sell perishable
goods)

� controls the default column width and the spacing between columns

� underlines the column headers and writes a blank line beneath the underlining

� creates a default summary of Sales for each manager

� creates a customized summary of Sales for the whole report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);



1042 Program � Chapter 38

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). COLWIDTH=10 sets the default
column width to 10 characters. SPACING= puts five blank characters between columns.
HEADLINE underlines all column headers and the spaces between them at the top of each page
of the report. HEADSKIP writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd
colwidth=10
spacing=5
headline headskip;

Specify the report columns. The report contains a column for Manager, Department, and
Sales.

column manager department sales;

Define the sort order variables. The values of all variables with the ORDER option in the
DEFINE statement determine the order of the rows in the report. In this report, PROC
REPORT arranges the rows first by the value of Manager (because it is the first variable in the
COLUMN statement) and then by the values of Department.

ORDER= specifies the sort order for a variable. This report arranges the rows according to the
formatted values of Manager and the internal values of Department (np1, np2, p1, and p2).
FORMAT= specifies the formats to use in the report.

define manager / order order=formatted format=$mgrfmt.;
define department / order order=internal format=$deptfmt.;

Define the analysis variable. Sum calculates the sum statistic for all observations that are
represented by the current row. In this report each row represents only one observation.
Therefore, the Sum statistic is the same as the value of Sales for that observation in the input
data set. Using Sales as an analysis variable in this report enables you to summarize the values
for each group and at the end of the report.

define sales / analysis sum format=dollar7.2;

Produce a report summary. This BREAK statement produces a default summary after the
last row for each manager. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales (the only analysis or computed variable) in the summary line. PROC
REPORT sums the values of Sales for each manager because Sales is an analysis variable that
is used to calculate the Sum statistic. SKIP writes a blank line after the summary line.

break after manager / ol
summarize
skip;

Produce a customized summary. This COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. The LINE statement places the quoted
text and the value of Sales.sum (with the DOLLAR9.2 format) in the summary. An ENDCOMP
statement must end the compute block.



The REPORT Procedure � Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable 1043

compute after;
line ’Total sales for these stores were: ’

sales.sum dollar9.2;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Output

Sales for the Southeast Sector 1

Manager Department Sales
----------------------------------

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

------- -------
Jones $630.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

------- -------
Smith $350.00

Total sales for these stores were: $980.00

Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable

Procedure features:
COLUMN statement:

with aliases
COMPUTE statement arguments:

AFTER
DEFINE statement options:

ANALYSIS
MAX
MIN



1044 Program � Chapter 38

NOPRINT
customizing column headers

LINE statement:

pointer controls
quoted text
repeating a character string
variable values and formats
writing a blank line

Other features:
automatic macro variables:

SYSDATE

Data set: GROCERY on page 1038

Formats: $MGRFMT. and $DEPTFMT. on page 1039

The customized summary at the end of this report displays the minimum and
maximum values of Sales over all departments for stores in the southeast sector. To
determine these values, PROC REPORT needs the MIN and MAX statistic for Sales in
every row of the report. However, to keep the report simple, the display of these
statistics is suppressed.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headers and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd headline headskip;

Specify the report columns. The report contains columns for Manager and Department. It
also contains three columns for Sales. The column specifications SALES=SALESMIN and
SALES=SALESMAX create aliases for Sales. These aliases enable you to use a separate
definition of Sales for each of the three columns.



The REPORT Procedure � Program 1045

column manager department sales
sales=salesmin
sales=salesmax;

Define the sort order variables. The values of all variables with the ORDER option in the
DEFINE statement determine the order of the rows in the report. In this report, PROC REPORT
arranges the rows first by the value of Manager (because it is the first variable in the COLUMN
statement) and then by the values of Department. The ORDER= option specifies the sort order
for a variable. This report arranges the values of Manager by their formatted values and
arranges the values of Department by their internal values (np1, np2, p1, and p2). FORMAT=
specifies the formats to use in the report. Text in quotation marks specifies column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’;

define department / order
order=internal
format=$deptfmt.
’Department’;

Define the analysis variable. The value of an analysis variable in any row of a report is the
value of the statistic that is associated with it (in this case Sum), calculated for all observations
that are represented by that row. In a detail report each row represents only one observation.
Therefore, the Sum statistic is the same as the value of Sales for that observation in the input
data set.

define sales / analysis sum format=dollar7.2 ’Sales’;

Define additional analysis variables for use in the summary. These DEFINE statements
use aliases from the COLUMN statement to create separate columns for the MIN and MAX
statistics for the analysis variable Sales. NOPRINT suppresses the printing of these statistics.
Although PROC REPORT does not print these values in columns, it has access to them so that
it can print them in the summary.

define salesmin / analysis min noprint;
define salesmax / analysis max noprint;

Print a horizontal line at the end of the report. This COMPUTE statement begins a
compute block that executes at the end of the report. The first LINE statement writes a blank
line. The second LINE statement writes 53 hyphens (-), beginning in column 7. Note that the
pointer control (@) has no effect on ODS destinations other than traditional SAS monospace
output.

compute after;
line ’ ’;
line @7 53*’-’;



1046 Output � Chapter 38

Produce a customized summary. The first line of this LINE statement writes the text in
quotation marks, beginning in column 7. The second line writes the value of Salesmin with the
DOLLAR7.2 format, beginning in the next column. The cursor then moves one column to the
right (+1), where PROC REPORT writes the text in quotation marks. Again, the cursor moves
one column to the right, and PROC REPORT writes the value of Salesmax with the DOLLAR7.2
format. (Note that the program must reference the variables by their aliases.) The third line
writes the text in quotation marks, beginning in the next column. Note that the pointer control
(@) is designed for the Listing destination (traditional SAS output). It has no effect on ODS
destinations other than traditional SAS monospace output. The ENDCOMP statement ends the
compute block.

line @7 ’| Departmental sales ranged from’
salesmin dollar7.2 +1 ’to’ +1 salesmax dollar7.2
’. |’;

line @7 53*’-’;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the titles. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE2 statement uses double rather than single quotation
marks so that the macro variable resolves.

title ’Sales for the Southeast Sector’;
title2 "for &sysdate";

run;

Output

Sales for the Southeast Sector 1
for 04JAN02

Manager Department Sales
----------------------------

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

-----------------------------------------------------
| Departmental sales ranged from $40.00 to $300.00. |
-----------------------------------------------------



The REPORT Procedure � Program 1047

Example 4: Consolidating Multiple Observations into One Row of a Report

Procedure features:
BREAK statement options:

OL
SKIP
SUMMARIZE
SUPPRESS

CALL DEFINE statement
Compute block

associated with a data set variable
COMPUTE statement arguments:

AFTER
a data set variable as report-item

DEFINE statement options:
ANALYSIS
GROUP
SUM
customizing column headers

LINE statement:
quoted text
variable values

Data set: GROCERY on page 1038

Formats: $MGRFMT. and $DEPTFMT. on page 1039

This example creates a summary report that

� consolidates information for each combination of Sector and Manager into one row
of the report

� contains default summaries of sales for each sector
� contains a customized summary of sales for all sectors

� uses one format for sales in detail rows and a different format in summary rows

� uses customized column headers.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.



1048 Program � Chapter 38

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd headline headskip;

Specify the report columns. The report contains columns for Sector, Manager, and Sales.

column sector manager sales;

Define the group and analysis variables. In this report, Sector and Manager are group
variables. Sales is an analysis variable that is used to calculate the Sum statistic. Each detail
row represents a set of observations that have a unique combination of formatted values for all
group variables. The value of Sales in each detail row is the sum of Sales for all observations in
the group. FORMAT= specifies the format to use in the report. Text in quotation marks in a
DEFINE statement specifies the column heading.

define sector / group
format=$sctrfmt.
’Sector’;

define manager / group
format=$mgrfmt.
’Manager’;

define sales / analysis sum
format=comma10.2
’Sales’;

Produce a report summary. This BREAK statement produces a default summary after the
last row for each sector. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales in the summary line. PROC REPORT sums the values of Sales for
each manager because Sales is an analysis variable used to calculate the Sum statistic.
SUPPRESS prevents PROC REPORT from displaying the value of Sector in the summary line.
SKIP writes a blank line after the summary line.

break after sector / ol
summarize
suppress
skip;

Produce a customized summary. This compute block creates a customized summary at the
end of the report. The LINE statement writes the quoted text and the value of Sales.sum (with a
format of DOLLAR9.2) in the summary. An ENDCOMP statement must end the compute block.

compute after;
line ’Combined sales for the northern sectors were ’



The REPORT Procedure � Example 5: Creating a Column for Each Value of a Variable 1049

sales.sum dollar9.2 ’.’;
endcomp;

Specify a format for the summary rows. In detail rows, PROC REPORT displays the value
of Sales with the format that is specified in its definition (COMMA10.2). The compute block
specifies an alternate format to use in the current column on summary rows. Summary rows are
identified as a value other than a blank for _BREAK_.

compute sales;
if _break_ ne ’ ’ then
call define(_col_,"format","dollar11.2");

endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the northeast and northwest sectors. The TITLE statement specifies
the title.

where sector contains ’n’;

Specify the title.

title ’Sales Figures for Northern Sectors’;
run;

Output

Sales Figures for Northern Sectors 1

Sector Manager Sales
------------------------------

Northeast Alomar 786.00
Andrews 1,045.00

----------
$1,831.00

Northwest Brown 598.00
Pelfrey 746.00
Reveiz 1,110.00

----------
$2,454.00

Combined sales for the northern sectors were $4,285.00.

Example 5: Creating a Column for Each Value of a Variable

Procedure features:
PROC REPORT statement options:

SPLIT=



1050 Program � Chapter 38

BREAK statement options:
SKIP

COLUMN statement:
stacking variables

COMPUTE statement arguments:
with a computed variable as report-item
AFTER

DEFINE statement options:
ACROSS
ANALYSIS
COMPUTED
SUM

LINE statement:
pointer controls

Data set: GROCERY on page 1038
Formats: $SCTRFMT., $MGRFMT., and $DEPTFMT. on page 1039

The report in this example
� consolidates multiple observations into one row
� contains a column for each value of Department that is selected for the report (the

departments that sell perishable items)
� contains a variable that is not in the input data set
� uses customized column headers, some of which contain blank lines
� double-spaces between detail rows
� uses pointer controls to control the placement of text and variable values in a

customized summary.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines the
column headings. HEADSKIP writes a blank line beneath the underlining that HEADLINE
writes. SPLIT= defines the split character as an asterisk (*) because the default split character
(/) is part of the name of a department.



The REPORT Procedure � Program 1051

proc report data=grocery nowd
headline
headskip
split=’*’;

Specify the report columns. Department and Sales are separated by a comma in the
COLUMN statement, so they collectively determine the contents of the column that they define.
Each item generates a header, but the header for Sales is set to blank in its definition. Because
Sales is an analysis variable, its values fill the cells that are created by these two variables.

column sector manager department,sales perish;

Define the group variables. In this report, Sector and Manager are group variables. Each
detail row of the report consolidates the information for all observations with the same values of
the group variables. FORMAT= specifies the formats to use in the report. Text in quotation
marks in the DEFINE statements specifies column headings. These statements illustrate two
ways to write a blank line in a column header. ’Sector’ ’’ writes a blank line because each
quoted string is a line of the column heading. The two adjacent quotation marks write a blank
line for the second line of the heading. ’Manager* ’ writes a blank line because the split
character (*) starts a new line of the heading. That line contains only a blank.

define sector / group format=$sctrfmt. ’Sector’ ’’;
define manager / group format=$mgrfmt. ’Manager* ’;

Define the across variable. PROC REPORT creates a column and a column heading for each
formatted value of the across variable Department. PROC REPORT orders the columns by these
values. PROC REPORT also generates a column heading that spans all these columns. Quoted
text in the DEFINE statement for Department customizes this heading. In traditional
(monospace) SAS output, PROC REPORT expands the heading with underscores to fill all
columns that are created by the across variable.

define department / across format=$deptfmt. ’_Department_’;

Define the analysis variable. Sales is an analysis variable that is used to calculate the sum
statistic. In each case, the value of Sales is the sum of Sales for all observations in one
department in one group. (In this case, the value represents a single observation.)

define sales / analysis sum format=dollar11.2 ’ ’;

Define the computed variable. The COMPUTED option indicates that PROC REPORT must
compute values for Perish. You compute the variable’s values in a compute block that is
associated with Perish.

define perish / computed format=dollar11.2
’Perishable*Total’;



1052 Program � Chapter 38

Produce a report summary. This BREAK statement creates a default summary after the last
row for each value of Manager. The only option that is in use is SKIP, which writes a blank line.
You can use this technique to double-space in many reports that contains a group or order
variable.

break after manager / skip;

Calculate values for the computed variable. This compute block computes the value of
Perish from the values for the Meat/Dairy department and the Produce department. Because
the variables Sales and Department collectively define these columns, there is no way to
identify the values to PROC REPORT by name. Therefore, the assignment statement uses
column numbers to unambiguously specify the values to use. Each time PROC REPORT needs a
value for Perish, it sums the values in the third and fourth columns of that row of the report.

compute perish;
perish=sum(_c3_, _c4_);

endcomp;

Produce a customized summary. This compute block creates a customized summary at the
end of the report. The first LINE statement writes 57 hyphens (-) starting in column 4.
Subsequent LINE statements write the quoted text in the specified columns and the values of
the variables _C3_, _C4_, and _C5_ with the DOLLAR11.2 format. Note that the pointer control
(@) is designed for the Listing destination. It has no effect on ODS destinations other than
traditional SAS monospace output.

compute after;
line @4 57*’-’;
line @4 ’| Combined sales for meat and dairy : ’

@46 _c3_ dollar11.2 ’ |’;
line @4 ’| Combined sales for produce : ’

@46 _c4_ dollar11.2 ’ |’;
line @4 ’|’ @60 ’|’;
line @4 ’| Combined sales for all perishables: ’

@46 _c5_ dollar11.2 ’ |’;
line @4 57*’-’;

endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for departments p1 and p2 in stores in the northeast or northwest sector.

where sector contains ’n’
and (department=’p1’ or department=’p2’);

Specify the title.

title ’Sales Figures for Perishables in Northern Sectors’;
run;



The REPORT Procedure � Program 1053

Output

Sales Figures for Perishables in Northern Sectors 1

_______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total
---------------------------------------------------------

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

---------------------------------------------------------
| Combined sales for meat and dairy : $1,545.00 |
| Combined sales for produce : $390.00 |
| |
| Combined sales for all perishables: $1,935.00 |
---------------------------------------------------------

Example 6: Displaying Multiple Statistics for One Variable

Procedure features:
PROC REPORT statement options:

LS=
PS=

COLUMN statement:
specifying statistics for stacked variables

DEFINE statement options:
FORMAT=
GROUP
ID

Data set: GROCERY on page 1038
Formats: $MGRFMT. on page 1039

The report in this example displays six statistics for the sales for each manager’s
store. The output is too wide to fit all the columns on one page, so three of the statistics
appear on the second page of the report. In order to make it easy to associate the
statistics on the second page with their group, the report repeats the values of Manager
and Sector on every page of the report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.



1054 Program � Chapter 38

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes. LS= sets the line size for
the report to 66, and PS= sets the page size to 18.

proc report data=grocery nowd headline headskip
ls=66 ps=18;

Specify the report columns. This COLUMN statement creates a column for Sector, Manager,
and each of the six statistics that are associated with Sales.

column sector manager (Sum Min Max Range Mean Std),sales;

Define the group variables and the analysis variable. ID specifies that Manager is an ID
variable. An ID variable and all columns to its left appear at the left of every page of a report.
In this report, Sector and Manager are group variables. Each detail row of the report
consolidates the information for all observations with the same values of the group variables.
FORMAT= specifies the formats to use in the report.

define manager / group format=$mgrfmt. id;
define sector / group format=$sctrfmt.;
define sales / format=dollar11.2 ;

Specify the title.

title ’Sales Statistics for All Sectors’;
run;



The REPORT Procedure � Example 7: Storing and Reusing a Report Definition 1055

Output

Sales Statistics for All Sectors 1

Sum Min Max
Sector Manager Sales Sales Sales
---------------------------------------------------------

Northeast Alomar $786.00 $86.00 $420.00
Andrews $1,045.00 $125.00 $420.00

Northwest Brown $598.00 $45.00 $250.00
Pelfrey $746.00 $45.00 $420.00
Reveiz $1,110.00 $30.00 $600.00

Southeast Jones $630.00 $40.00 $300.00
Smith $350.00 $50.00 $120.00

Southwest Adams $695.00 $40.00 $350.00
Taylor $353.00 $50.00 $130.00

Sales Statistics for All Sectors 2

Range Mean Std
Sector Manager Sales Sales Sales
---------------------------------------------------------

Northeast Alomar $334.00 $196.50 $156.57
Andrews $295.00 $261.25 $127.83

Northwest Brown $205.00 $149.50 $105.44
Pelfrey $375.00 $186.50 $170.39
Reveiz $570.00 $277.50 $278.61

Southeast Jones $260.00 $157.50 $123.39
Smith $70.00 $87.50 $29.86

Southwest Adams $310.00 $173.75 $141.86
Taylor $80.00 $88.25 $42.65

Example 7: Storing and Reusing a Report Definition

Procedure features:
PROC REPORT statement options:

NAMED
OUTREPT=
REPORT=
WRAP

Other features:
TITLE statement
WHERE statement

Data set: GROCERY on page 1038
Formats: $SCTRFMT., $MGRFMT. and $DEPTFMT. on page 1039

The first PROC REPORT step in this example creates a report that displays one
value from each column of the report, using two rows to do so, before displaying another
value from the first column. (By default, PROC REPORT displays values for only as



1056 Program to Store a Report Definition � Chapter 38

many columns as it can fit on one page. It fills a page with values for these columns
before starting to display values for the remaining columns on the next page.)

Each item in the report is identified in the body of the report rather than in a column
header.

The report definition created by the first PROC REPORT step is stored in a catalog
entry. The second PROC REPORT step uses it to create a similar report for a different
sector of the city.

Program to Store a Report Definition

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). NAMED writes name= in front
of each value in the report, where name= is the column heading for the value. When you use
NAMED, PROC REPORT suppresses the display of column headings at the top of each page.

proc report data=grocery nowd
named
wrap
ls=64 ps=36
outrept=proclib.reports.namewrap;

Specify the report columns. The report contains a column for Sector, Manager, Department,
and Sales.

column sector manager department sales;

Define the display and analysis variables. Because no usage is specified in the DEFINE
statements, PROC REPORT uses the defaults. The character variables (Sector, Manager, and
Department) are display variables. Sales is an analysis variable that is used to calculate the
sum statistic. FORMAT= specifies the formats to use in the report.

define sector / format=$sctrfmt.;
define manager / format=$mgrfmt.;
define department / format=$deptfmt.;
define sales / format=dollar11.2;



The REPORT Procedure � Program to Use a Report Definition 1057

Select the observations to process. A report definition might differ from the SAS program
that creates the report. In particular, PROC REPORT stores neither WHERE statements nor
TITLE statements.

where manager=’1’;

Specify the title. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE statement uses double rather than single quotation
marks so that the macro variable resolves.

title "Sales Figures for Smith on &sysdate";
run;

Output

This is the output from the first PROC REPORT step, which creates the
report definition.

Sales Figures for Smith on 04JAN02 1

Sector=Southeast Manager=Smith Department=Paper
Sales= $50.00
Sector=Southeast Manager=Smith Department=Meat/Dairy
Sales= $100.00
Sector=Southeast Manager=Smith Department=Canned
Sales= $120.00
Sector=Southeast Manager=Smith Department=Produce
Sales= $80.00

Program to Use a Report Definition

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats.

options nodate pageno=1 fmtsearch=(proclib);

Specify the report options, load the report definition, and select the observations to
process. REPORT= uses the report definition that is stored in
PROCLIB.REPORTS.NAMEWRAP to produce the report. The second report differs from the
first one because it uses different WHERE and TITLE statements.

proc report data=grocery report=proclib.reports.namewrap
nowd;

where sector=’sw’;
title "Sales Figures for the Southwest Sector on &sysdate";

run;



1058 Output � Chapter 38

Output

Sales Figures for the Southwest Sector on 04JAN02 1

Sector=Southwest Manager=Taylor Department=Paper
Sector=Southwest Manager=Taylor Department=Meat/Dairy
Sector=Southwest Manager=Taylor Department=Canned
Sector=Southwest Manager=Taylor Department=Produce
Sector=Southwest Manager=Adams Department=Paper
Sector=Southwest Manager=Adams Department=Meat/Dairy
Sector=Southwest Manager=Adams Department=Canned
Sector=Southwest Manager=Adams Department=Produce

Sales Figures for the Southwest Sector on 04JAN02 2

Sales= $53.00
Sales= $130.00
Sales= $120.00
Sales= $50.00
Sales= $40.00
Sales= $350.00
Sales= $225.00
Sales= $80.00

Example 8: Condensing a Report into Multiple Panels

Procedure features:
PROC REPORT statement options:

FORMCHAR=
HEADLINE
LS=
PANELS=
PS=
PSPACE=

BREAK statement options:

SKIP

Other features:
SAS system option FORMCHAR=

Data set: GROCERY on page 1038

Formats: $MGRFMT. and $DEPTFMT. on page 1039

The report in this example

� uses panels to condense a two-page report to one page. Panels compactly present
information for long, narrow reports by placing multiple rows of information side
by side.

� uses a default summary to place a blank line after the last row for each manager.

� changes the default underlining character for the duration of this PROC REPORT
step.



The REPORT Procedure � Program 1059

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each panel of the report.
FORMCHAR= sets the value of the second formatting character (the one that HEADLINE
uses) to the tilde (~). Therefore, the tilde underlines the column headings in the output.
HEADSKIP writes a blank line beneath the underlining that HEADLINE writes. LS= sets the
line size for the report to 64, and PS= sets the page size to 18. PANELS= creates a multipanel
report. Specifying PANELS=99 ensures that PROC REPORT fits as many panels as possible on
one page. PSPACE=6 places six spaces between panels.

proc report data=grocery nowd headline
formchar(2)=’~’
panels=99 pspace=6
ls=64 ps=18;

Specify the report columns. The report contains a column for Manager, Department, and
Sales.

column manager department sales;

Define the sort order and analysis columns. The values of all variables with the ORDER
option in the DEFINE statement determine the order of the rows in the report. In this report,
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement) and then, within each value of Manager, by the values of
Department. The ORDER= option specifies the sort order for a variable. This report arranges
the values of Manager by their formatted values and arranges the values of Department by their
internal values (np1, np2, p1, and p2). FORMAT= specifies the formats to use in the report.

define manager / order
order=formatted
format=$mgrfmt.;

define department / order
order=internal
format=$deptfmt.;



1060 Output � Chapter 38

define sales / format=dollar7.2;

Produce a report summary. This BREAK statement produces a default summary after the
last row for each manager. Because SKIP is the only option in the BREAK statement, each
break consists of only a blank line.

break after manager / skip;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the northwest or southwest sector.

where sector=’nw’ or sector=’sw’;

Specify the title.

title ’Sales for the Western Sectors’;
run;

Output

Sales for the Western Sectors 1

Manager Department Sales Manager Department Sales
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Adams Paper $40.00

Canned $225.00 Reveiz Paper $60.00
Meat/Dairy $350.00 Canned $420.00
Produce $80.00 Meat/Dairy $600.00

Produce $30.00
Brown Paper $45.00

Canned $230.00 Taylor Paper $53.00
Meat/Dairy $250.00 Canned $120.00
Produce $73.00 Meat/Dairy $130.00

Produce $50.00
Pelfrey Paper $45.00

Canned $420.00
Meat/Dairy $205.00
Produce $76.00

Example 9: Writing a Customized Summary on Each Page

Procedure features:
BREAK statement options:

OL
PAGE
SUMMARIZE

COMPUTE statement arguments:



The REPORT Procedure � Program 1061

with a computed variable as report-item
BEFORE break-variable
AFTER break-variable with conditional logic
BEFORE _PAGE_

DEFINE statement options:
NOPRINT

LINE statement:
pointer controls
quoted text
repeating a character string
variable values and formats

Data set: GROCERY on page 1038
Formats: $SCTRFMT., $MGRFMT., and $DEPTFMT. on page 1039

The report in this example displays a record of one day’s sales for each store. The
rows are arranged so that all the information about one store is together, and the
information for each store begins on a new page. Some variables appear in columns.
Others appear only in the page header that identifies the sector and the store’s manager.

The header that appears at the top of each page is created with the _PAGE_
argument in the COMPUTE statement.

Profit is a computed variable based on the value of Sales and Department.
The text that appears at the bottom of the page depends on the total of Sales for the

store. Only the first two pages of the report appear here.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=30
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). NOHEADER in the PROC
REPORT statement suppresses the default column headings.

proc report data=grocery nowd
headline headskip;

Specify the title.



1062 Program � Chapter 38

title ’Sales for Individual Stores’;

Specify the report columns. The report contains a column for Sector, Manager, Department,
Sales, and Profit, but the NOPRINT option suppresses the printing of the columns for Sector and
Manager. The page heading (created later in the program) includes their values. To get these
variable values into the page heading, Sector and Manager must be in the COLUMN statement.

column sector manager department sales Profit;

Define the group, computed, and analysis variables. In this report, Sector, Manager, and
Department are group variables. Each detail row of the report consolidates the information for
all observations with the same values of the group variables. Profit is a computed variable
whose values are calculated in the next section of the program. FORMAT= specifies the formats
to use in the report.

define sector / group noprint;
define manager / group noprint;
define profit / computed format=dollar11.2;
define sales / analysis sum format=dollar11.2;
define department / group format=$deptfmt.;

Calculate the computed variable. Profit is computed as a percentage of Sales. For
nonperishable items, the profit is 40% of the sale price. For perishable items the profit is 25%.
Notice that in the compute block you must reference the variable Sales with a compound name
(Sales.sum) that identifies both the variable and the statistic that you calculate with it.

compute profit;
if department=’np1’ or department=’np2’

then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;

Create a customized page header. This compute block executes at the top of each page, after
PROC REPORT writes the title. It writes the page heading for the current manager’s store. The
LEFT option left-justifies the text in the LINE statements. Each LINE statement writes the
text in quotation marks just as it appears in the statement. The first two LINE statements
write a variable value with the format specified immediately after the variable’s name.

compute before _page_ / left;
line sector $sctrfmt. ’ Sector’;
line ’Store managed by ’ manager $mgrfmt.;
line ’ ’;
line ’ ’;
line ’ ’;

endcomp;



The REPORT Procedure � Program 1063

Produce a report summary. This BREAK statement creates a default summary after the last
row for each manager. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales (the only analysis or computed variable) in the summary line. The
PAGE option starts a new page after each default summary so that the page heading that is
created in the preceding compute block always pertains to the correct manager.

break after manager / ol summarize page;

Produce a customized summary. This compute block places conditional text in a customized
summary that appears after the last detail row for each manager.

compute after manager;

Specify the length of the customized summary text. The LENGTH statement assigns a
length of 35 to the DATA step variable TEXT. In this particular case, the LENGTH statement is
unnecessary because the longest version appears in the first IF/THEN statement. However,
using the LENGTH statement ensures that even if the order of the conditional statements
changes, TEXT will be long enough to hold the longest version.

length text $ 35;

Specify the conditional logic for the customized summary text. You cannot use the LINE
statement in conditional statements (IF-THEN, IF-THEN/ELSE, and SELECT) because it does
not take effect until PROC REPORT has executed all other statements in the compute block.
These IF-THEN/ELSE statements assign a value to TEXT based on the value of Sales.sum in
the summary row. A LINE statement writes that variable, whatever its value happens to be.

if sales.sum lt 500 then
text=’Sales are below the target region.’;

else if sales.sum ge 500 and sales.sum lt 1000 then
text=’Sales are in the target region.’;

else if sales.sum ge 1000 then
text=’Sales exceeded goal!’;

line ’ ’;
line text $35.;

endcomp;
run;



1064 Output � Chapter 38

Output

Sales for Individual Stores 1

Northeast Sector
Store managed by Alomar

Department Sales Profit
------------------------------------

Canned $420.00 $168.00
Meat/Dairy $190.00 $47.50
Paper $90.00 $36.00
Produce $86.00 $21.50

----------- -----------
$786.00 $196.50

Sales are in the target region.

Sales for Individual Stores 2

Northeast Sector
Store managed by Andrews

Department Sales Profit
------------------------------------

Canned $420.00 $168.00
Meat/Dairy $300.00 $75.00
Paper $200.00 $80.00
Produce $125.00 $31.25

----------- -----------
$1,045.00 $261.25

Sales exceeded goal!

Example 10: Calculating Percentages
Procedure features:

COLUMN statement arguments:
PCTSUM
SUM
spanning headers

COMPUTE statement options:
CHAR
LENGTH=

DEFINE statement options:
COMPUTED
FLOW
WIDTH=

RBREAK statement options:
OL



The REPORT Procedure � Program 1065

SUMMARIZE
Other features:

TITLE statement

Data set: GROCERY on page 1038

Formats: $MGRFMT. and $DEPTFMT. on page 1039

The summary report in this example shows the total sales for each store and the
percentage that these sales represent of sales for all stores. Each of these columns has
its own header. A single header also spans all the columns. This header looks like a
title, but it differs from a title because it would be stored in a report definition. You
must submit a null TITLE statement whenever you use the report definition, or the
report will contain both a title and the spanning header.

The report includes a computed character variable, COMMENT, that flags stores
with an unusually high percentage of sales. The text of COMMENT wraps across
multiple rows. It makes sense to compute COMMENT only for individual stores.
Therefore, the compute block that does the calculation includes conditional code that
prevents PROC REPORT from calculating COMMENT on the summary line.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. The null
TITLE statement suppresses the title of the report.

proc report data=grocery nowd headline;
title;

Specify the report columns. The COLUMN statement uses the text in quotation marks as a
spanning heading. The heading spans all the columns in the report because they are all
included in the pair of parentheses that contains the heading. The COLUMN statement
associates two statistics with Sales: Sum and Pctsum. The Sum statistic sums the values of
Sales for all observations that are included in a row of the report. The Pctsum statistic shows
what percentage of Sales that sum is for all observations in the report.



1066 Program � Chapter 38

column (’Individual Store Sales as a Percent of All Sales’
sector manager sales,(sum pctsum) comment);

Define the group and analysis columns. In this report, Sector and Manager are group
variables. Each detail row represents a set of observations that have a unique combination of
formatted values for all group variables. Sales is, by default, an analysis variable that is used to
calculate the Sum statistic. However, because statistics are associated with Sales in the column
statement, those statistics override the default. FORMAT= specifies the formats to use in the
report. Text between quotation marks specifies the column heading.

define manager / group
format=$mgrfmt.;

define sector / group
format=$sctrfmt.;

define sales / format=dollar11.2
’’;

define sum / format=dollar9.2
’Total Sales’;

Define the percentage and computed columns. The DEFINE statement for Pctsum
specifies a column heading, a format, and a column width of 8. The PERCENT. format presents
the value of Pctsum as a percentage rather than a decimal. The DEFINE statement for
COMMENT defines it as a computed variable and assigns it a column width of 20 and a blank
column heading. The FLOW option wraps the text for COMMENT onto multiple lines if it
exceeds the column width.

define pctsum / ’Percent of Sales’ format=percent6. width=8;
define comment / computed width=20 ’’ flow;

Calculate the computed variable. Options in the COMPUTE statement define COMMENT
as a character variable with a length of 40.

compute comment / char length=40;

Specify the conditional logic for the computed variable. For every store where sales
exceeded 15% of the sales for all stores, this compute block creates a comment that says Sales
substantially above expectations. Of course, on the summary row for the report, the
value of Pctsum is 100. However, it is inappropriate to flag this row as having exceptional sales.
The automatic variable _BREAK_ distinguishes detail rows from summary rows. In a detail row,
the value of _BREAK_ is blank. The THEN statement executes only on detail rows where the
value of Pctsum exceeds 0.15.

if sales.pctsum gt .15 and _break_ = ’ ’
then comment=’Sales substantially above expectations.’;
else comment=’ ’;

endcomp;



The REPORT Procedure � Program with Data Set with No Missing Values 1067

Produce the report summary. This RBREAK statement creates a default summary at the
end of the report. OL writes a row of hyphens above the summary line. SUMMARIZE writes the
values of Sales.sum and Sales.pctsum in the summary line.

rbreak after / ol summarize;
run;

Output

1

Individual Store Sales as a Percent of All Sales

Total Percent
Sector Manager Sales of Sales
-------------------------------------------------------------
Northeast Alomar $786.00 12%

Andrews $1,045.00 17% Sales substantially
above expectations.

Northwest Brown $598.00 9%
Pelfrey $746.00 12%
Reveiz $1,110.00 18% Sales substantially

above expectations.
Southeast Jones $630.00 10%

Smith $350.00 6%
Southwest Adams $695.00 11%

Taylor $353.00 6%
--------- --------
$6,313.00 100%

Example 11: How PROC REPORT Handles Missing Values
Procedure features:

PROC REPORT statement options:
MISSING

COLUMN statement
with the N statistic

Other features:
TITLE statement

Formats: $MGRFMT. on page 1039

This example illustrates the difference between the way PROC REPORT handles
missing values for group (or order or across) variables with and without the MISSING
option. The differences in the reports are apparent if you compare the values of N for
each row and compare the totals in the default summary at the end of the report.

Program with Data Set with No Missing Values

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.



1068 Program with Data Set with No Missing Values � Chapter 38

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Create the GROCMISS data set. GROCMISS is identical to GROCERY except that it
contains some observations with missing values for Sector, Manager, or both.

data grocmiss;
input Sector $ Manager $ Department $ Sales @@;

datalines;
se 1 np1 50 . 1 p1 100 se . np2 120 se 1 p2 80
se 2 np1 40 se 2 p1 300 se 2 np2 220 se 2 p2 70
nw 3 np1 60 nw 3 p1 600 . 3 np2 420 nw 3 p2 30
nw 4 np1 45 nw 4 p1 250 nw 4 np2 230 nw 4 p2 73
nw 9 np1 45 nw 9 p1 205 nw 9 np2 420 nw 9 p2 76
sw 5 np1 53 sw 5 p1 130 sw 5 np2 120 sw 5 p2 50
. . np1 40 sw 6 p1 350 sw 6 np2 225 sw 6 p2 80
ne 7 np1 90 ne . p1 190 ne 7 np2 420 ne 7 p2 86
ne 8 np1 200 ne 8 p1 300 ne 8 np2 420 ne 8 p2 125
;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them.

proc report data=grocmiss nowd headline;

Specify the report columns. The report contains columns for Sector, Manager, the N statistic,
and Sales.

column sector manager N sales;

Define the group and analysis variables. In this report, Sector and Manager are group
variables. Sales is, by default, an analysis variable that is used to calculate the Sum statistic.
Each detail row represents a set of observations that have a unique combination of formatted
values for all group variables. The value of Sales in each detail row is the sum of Sales for all
observations in the group. In this PROC REPORT step, the procedure does not include
observations with a missing value for the group variable. FORMAT= specifies formats to use in
the report.

define sector / group format=$sctrfmt.;
define manager / group format=$mgrfmt.;



The REPORT Procedure � Program with Data Set with Missing Values 1069

define sales / format=dollar9.2;

Produce a report summary. This RBREAK statement creates a default summary at the end
of the report. DOL writes a row of equal signs above the summary line. SUMMARIZE writes the
values of N and Sales.sum in the summary line.

rbreak after / dol summarize;

Specify the title.

title ’Summary Report for All Sectors and Managers’;
run;

Output with No Missing Values

Summary Report for All Sectors and Managers 1

Sector Manager N Sales
----------------------------------------
Northeast Alomar 3 $596.00

Andrews 4 $1,045.00
Northwest Brown 4 $598.00

Pelfrey 4 $746.00
Reveiz 3 $690.00

Southeast Jones 4 $630.00
Smith 2 $130.00

Southwest Adams 3 $655.00
Taylor 4 $353.00

========= =========
31 $5,443.00

Program with Data Set with Missing Values

Include the missing values. The MISSING option in the second PROC REPORT step includes
the observations with missing values for the group variable.

proc report data=grocmiss nowd headline missing;
column sector manager N sales;
define sector / group format=$sctrfmt.;
define manager / group format=$mgrfmt.;
define sales / format=dollar9.2;
rbreak after / dol summarize;

run;



1070 Output with Missing Values � Chapter 38

Output with Missing Values

Summary Report for All Sectors and Managers 2

Sector Manager N Sales
----------------------------------------

1 $40.00
Reveiz 1 $420.00
Smith 1 $100.00

Northeast 1 $190.00
Alomar 3 $596.00
Andrews 4 $1,045.00

Northwest Brown 4 $598.00
Pelfrey 4 $746.00
Reveiz 3 $690.00

Southeast 1 $120.00
Jones 4 $630.00
Smith 2 $130.00

Southwest Adams 3 $655.00
Taylor 4 $353.00

========= =========
36 $6,313.00

Example 12: Creating and Processing an Output Data Set
Procedure features:

PROC REPORT statement options:
BOX
OUT=

DEFINE statement options:
ANALYSIS
GROUP
NOPRINT
SUM

Other features:
Data set options:

WHERE=
Data set: GROCERY on page 1038
Formats: $MGRFMT. on page 1039

This example uses WHERE processing as it builds an output data set. This
technique enables you to do WHERE processing after you have consolidated multiple
observations into a single row.

The first PROC REPORT step creates a report (which it does not display) in which
each row represents all the observations from the input data set for a single manager.
The second PROC REPORT step builds a report from the output data set. This report
uses line-drawing characters to separate the rows and columns.

Program to Create Output Data Set



The REPORT Procedure � Output Showing the Output Data Set 1071

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options and columns. The NOWD option runs PROC REPORT without
the REPORT window and sends its output to the open output destination(s). OUT= creates the
output data set TEMP. The output data set contains a variable for each column in the report
(Manager and Sales) as well as for the variable _BREAK_, which is not used in this example.
Each observation in the data set represents a row of the report. Because Manager is a group
variable and Sales is an analysis variable that is used to calculate the Sum statistic, each row
in the report (and therefore each observation in the output data set) represents multiple
observations from the input data set. In particular, each value of Sales in the output data set is
the total of all values of Sales for that manager. The WHERE= data set option in the OUT=
option filters those rows as PROC REPORT creates the output data set. Only those observations
with sales that exceed $1,000 become observations in the output data set.

proc report data=grocery nowd
out=temp( where=(sales gt 1000) );

column manager sales;

Define the group and analysis variables. Because the definitions of all report items in this
report include the NOPRINT option, PROC REPORT does not print a report. However, the
PROC REPORT step does execute and create an output data set.

define manager / group noprint;
define sales / analysis sum noprint;

run;

Output Showing the Output Data Set

This is the output data set that PROC REPORT creates. It is used as
the input set in the second PROC REPORT step.

The Data Set TEMP 1

Manager Sales _____________BREAK______________
3 1110
8 1045



1072 Program That Uses the Output Data Set � Chapter 38

Program That Uses the Output Data Set

Specify the report options and columns, define the group and analysis columns, and
specify the titles. DATA= specifies the output data set from the first PROC REPORT step as
the input data set for this report. The BOX option draws an outline around the output,
separates the column headings from the body of the report, and separates rows and columns of
data. The TITLE statements specify a title for the report.

proc report data=temp box nowd;
column manager sales;
define manager / group format=$mgrfmt.;
define sales / analysis sum format=dollar11.2;
title ’Managers with Daily Sales’;
title2 ’of over’;
title3 ’One Thousand Dollars’;

run;

Report Based on the Output Data Set

Managers with Daily Sales 1
of over

One Thousand Dollars

----------------------
|Manager Sales|
|--------------------|
|Andrews| $1,045.00|
|-------+------------|
|Reveiz | $1,110.00|
----------------------

Example 13: Storing Computed Variables as Part of a Data Set

Procedure features:
PROC REPORT statement options:

OUT=
COMPUTE statement:

with a computed variable as report-item
DEFINE statement options:

COMPUTED
Other features: CHART procedure
Data set: GROCERY on page 1038
Formats: $SCTRFMT. on page 1039

The report in this example
� creates a computed variable



The REPORT Procedure � Program That Creates the Output Data Set 1073

� stores it in an output data set
� uses that data set to create a chart based on the computed variable.

Program That Creates the Output Data Set

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Delete any existing titles.

title;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). OUT= creates the output data
set PROFIT.

proc report data=grocery nowd out=profit;

Specify the report columns. The report contains columns for Manager, Department, Sales,
and Profit, which is not in the input data set. Because the purpose of this report is to generate
an output data set to use in another procedure, the report layout simply uses the default usage
for all the data set variables to list all the observations. DEFINE statements for the data set
variables are unnecessary.

column sector manager department sales Profit;

Define the computed column. The COMPUTED option tells PROC REPORT that Profit is
defined in a compute block somewhere in the PROC REPORT step.

define profit / computed;

Calculate the computed column. Profit is computed as a percentage of Sales. For
nonperishable items, the profit is 40% of the sale price. For perishable items the profit is 25%.
Notice that in the compute block, you must reference the variable Sales with a compound name
(Sales.sum) that identifies both the variable and the statistic that you calculate with it.



1074 The Output Data Set � Chapter 38

/* Compute values for Profit. */
compute profit;

if department=’np1’ or department=’np2’ then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;
run;

The Output Data Set

This is the output data set that is created by PROC REPORT. It is used
as input for PROC CHART.

The Data Set PROFIT 1

Sector Manager Department Sales Profit _BREAK__
se 1 np1 50 20
se 1 p1 100 25
se 1 np2 120 48
se 1 p2 80 20
se 2 np1 40 16
se 2 p1 300 75
se 2 np2 220 88
se 2 p2 70 17.5
nw 3 np1 60 24
nw 3 p1 600 150
nw 3 np2 420 168
nw 3 p2 30 7.5
nw 4 np1 45 18
nw 4 p1 250 62.5
nw 4 np2 230 92
nw 4 p2 73 18.25
nw 9 np1 45 18
nw 9 p1 205 51.25
nw 9 np2 420 168
nw 9 p2 76 19
sw 5 np1 53 21.2
sw 5 p1 130 32.5
sw 5 np2 120 48
sw 5 p2 50 12.5
sw 6 np1 40 16
sw 6 p1 350 87.5
sw 6 np2 225 90
sw 6 p2 80 20
ne 7 np1 90 36
ne 7 p1 190 47.5
ne 7 np2 420 168
ne 7 p2 86 21.5
ne 8 np1 200 80
ne 8 p1 300 75
ne 8 np2 420 168
ne 8 p2 125 31.25

Program That Uses the Output Data Set



The REPORT Procedure � Example 14: Using a Format to Create Groups 1075

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Chart the data in the output data set. PROC CHART uses the output data set from the
previous PROC REPORT step to chart the sum of Profit for each sector.

proc chart data=profit;
block sector / sumvar=profit;
format sector $sctrfmt.;
format profit dollar7.2;
title ’Sum of Profit by Sector’;

run;

Output from Processing the Output Data Set

Sum of Profit by Sector 1

Sum of Profit by Sector

___
/_ /|

___ |**| |
/_ /| |**| |

|**| | |**| |
|**| | |**| |
|**| | |**| | ___ ___

-|**| |--------|**| |---------/_ /|---------/_ /|-------
/ |**| | / |**| | / |**| | / |**| | /

/ |**| | / |**| | / |**| | / |**| | /
/ |**| | / |**| | / |**| | / |**| | /

/ |**|/ / |**|/ / |**|/ / |**|/ /
/ / / / /

/ $627.25 / $796.50 / $309.50 / $327.70 /
/-------------/-------------/-------------/-------------/

Northeast Northwest Southeast Southwest

Sector

Example 14: Using a Format to Create Groups
Procedure features:

DEFINE statement options:
GROUP

Other features: FORMAT procedure
Data set: GROCERY on page 1038



1076 Program � Chapter 38

Formats: $MGRFMT. on page 1039

This example shows how to use formats to control the number of groups that PROC
REPORT creates. The program creates a format for Department that classifies the four
departments as one of two types: perishable or nonperishable. Consequently, when
Department is an across variable, PROC REPORT creates only two columns instead of
four. The column header is the formatted value of the variable.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Create the $PERISH. format. PROC FORMAT creates a format for Department. This
variable has four different values in the data set, but the format has only two values.

proc format;
value $perish ’p1’,’p2’=’Perishable’

’np1’,’np2’=’Nonperishable’;
run;

Specify the report options. The NOWD option runs the REPORT procedure without the
REPORT window and sends its output to the open output destination(s). HEADLINE underlines
all column headings and the spaces between them at the top of each page of the report.
HEADSKIP writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd
headline
headskip;

Specify the report columns. Department and Sales are separated by a comma in the
COLUMN statement, so they collectively determine the contents of the column that they define.
Because Sales is an analysis variable, its values fill the cells that are created by these two
variables. The report also contains a column for Manager and a column for Sales by itself
(which is the sales for all departments).

column manager department,sales sales;



The REPORT Procedure � Program 1077

Define the group and across variables. Manager is a group variable. Each detail row of the
report consolidates the information for all observations with the same value of Manager.
Department is an across variable. PROC REPORT creates a column and a column heading for
each formatted value of Department. ORDER=FORMATTED arranges the values of Manager
and Department alphabetically according to their formatted values. FORMAT= specifies the
formats to use. The empty quotation marks in the definition of Department specify a blank
column heading, so no heading spans all the departments. However, PROC REPORT uses the
formatted values of Department to create a column heading for each individual department.

define manager / group order=formatted
format=$mgrfmt.;

define department / across order=formatted
format=$perish. ’’;

Define the analysis variable. Sales is an analysis variable that is used to calculate the Sum
statistic. Sales appears twice in the COLUMN statement, and the same definition applies to both
occurrences. FORMAT= specifies the format to use in the report. WIDTH= specifies the width of
the column. Notice that the column headings for the columns that both Department and Sales
create are a combination of the heading for Department and the (default) heading for Sales.

define sales / analysis sum
format=dollar9.2 width=13;

Produce a customized summary. This COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. The LINE statement places the quoted
text and the value of Sales.sum (with the DOLLAR9.2 format) in the summary. An ENDCOMP
statement must end the compute block.

compute after;
line ’ ’;
line ’Total sales for these stores were: ’

sales.sum dollar9.2;
endcomp;

Specify the title.

title ’Sales Summary for All Stores’;
run;



1078 Output � Chapter 38

Output

Sales Summary for All Stores 1

Nonperishable Perishable
Manager Sales Sales Sales
----------------------------------------------------

Adams $265.00 $430.00 $695.00
Alomar $510.00 $276.00 $786.00
Andrews $620.00 $425.00 $1,045.00
Brown $275.00 $323.00 $598.00
Jones $260.00 $370.00 $630.00
Pelfrey $465.00 $281.00 $746.00
Reveiz $480.00 $630.00 $1,110.00
Smith $170.00 $180.00 $350.00
Taylor $173.00 $180.00 $353.00

Total sales for these stores were: $6,313.00

Example 15: Specifying Style Elements for ODS Output in the PROC REPORT
Statement

Procedure features: STYLE= option in the PROC REPORT statement
Other features:

ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: GROCERY on page 1038
Formats: $MGRFMT. and $DEPTFMT. on page 1039

This example creates HTML, PDF, and RTF files and sets the style elements for each
location in the report in the PROC REPORT statement.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1 fmtsearch=(proclib);

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC REPORT goes to each of these files.



The REPORT Procedure � Program 1079

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;
ods rtf file=’external-RTF-file’;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window. In this case, SAS writes the output to the traditional procedure output, the HTML body
file, and the RTF and PDF files.

proc report data=grocery nowd headline headskip

Specify the style attributes for the report. This STYLE= option sets the style element for
the structural part of the report. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for CELLSPACING=,
BORDERWIDTH=, and BORDERCOLOR=.

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]

Specify the style attributes for the column headings. This STYLE= option sets the style
element for all column headings. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(header)=[foreground=yellow
font_style=italic font_size=6]

Specify the style attributes for the report columns. This STYLE= option sets the style
element for all the cells in all the columns. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(column)=[foreground=moderate brown
font_face=helvetica font_size=4]

Specify the style attributes for the compute block lines. This STYLE= option sets the
style element for all the LINE statements in all compute blocks. Because no style element is
specified, PROC REPORT uses all the style attributes of the default style element for this
location except for those that are specified here.

style(lines)=[foreground=white background=black
font_style=italic font_weight=bold font_size=5]

Specify the style attributes for report summaries. This STYLE= option sets the style
element for all the default summary lines. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(summary)=[foreground=cx3e3d73 background=cxaeadd9
font_face=helvetica font_size=3 just=r];

Specify the report columns. The report contains columns for Manager, Department, and
Sales.

column manager department sales;



1080 Program � Chapter 38

Define the sort order variables. In this report Manager and Department are order variables.
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement), then by the value of Department. For Manager, ORDER= specifies
that values of Manager are arranged according to their formatted values; similarly, for
Department, ORDER= specifies that values of Department are arranged according to their
internal values. FORMAT= specifies the format to use for each variable. Text in quotation
marks specifies the column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’;

define department / order
order=internal
format=$deptfmt.
’Department’;

Produce a report summary. The BREAK statement produces a default summary after the last
row for each manager. SUMMARIZE writes the values of Sales (the only analysis or computed
variable in the report) in the summary line. PROC REPORT sums the values of Sales for each
manager because Sales is an analysis variable that is used to calculate the Sum statistic.

break after manager / summarize;

Produce a customized summary. The COMPUTE statement begins a compute block that
produces a customized summary after each value of Manager. The LINE statement places the
quoted text and the values of Manager and Sales.sum (with the formats $MGRFMT. and
DOLLAR7.2) in the summary. An ENDCOMP statement must end the compute block.

compute after manager;
line ’Subtotal for ’ manager $mgrfmt. ’is ’

sales.sum dollar7.2 ’.’;
endcomp;

Produce a customized end-of-report summary. This COMPUTE statement begins a
compute block that executes at the end of the report. The LINE statement writes the quoted
text and the value of Sales.sum (with the DOLLAR7.2 format). An ENDCOMP statement must
end the compute block.

compute after;
line ’Total for all departments is: ’

sales.sum dollar7.2 ’.’;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Close the ODS destinations.



The REPORT Procedure � HTML Output 1081

ods html close;
ods pdf close;
ods rtf close;

HTML Output



1082 PDF Output � Chapter 38

PDF Output



The REPORT Procedure � Example 16: Specifying Style Elements for ODS Output in Multiple Statements 1083

RTF Output

Example 16: Specifying Style Elements for ODS Output in Multiple
Statements

Procedure features:
STYLE= option in

PROC REPORT statement
CALL DEFINE statement
COMPUTE statement
DEFINE statement

Other features:



1084 Program � Chapter 38

ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: GROCERY on page 1038
Formats: $MGRFMT. on page 1039 and $DEPTFMT. on page 1039

This example creates HTML, PDF, and RTF files and sets the style elements for each
location in the report in the PROC REPORT statement. It then overrides some of these
settings by specifying style elements in other statements.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1 fmtsearch=(proclib);

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC REPORT goes to each of these files.

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;
ods rtf file=’external-RTF-file’;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window. In this case, SAS writes the output to the traditional procedure output, the HTML body
file, and the RTF and PDF files.

proc report data=grocery nowd headline headskip

Specify the style attributes for the report. This STYLE= option sets the style element for
the structural part of the report. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]

Specify the style attributes for the column headings. This STYLE= option sets the style
element for all column headings. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(header)=[foreground=yellow
font_style=italic font_size=6]



The REPORT Procedure � Program 1085

Specify the style attributes for the report columns. This STYLE= option sets the style
element for all the cells in all the columns. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(column)=[foreground=moderate brown
font_face=helvetica font_size=4]

Specify the style attributes for the compute block lines. This STYLE= option sets the
style element for all the LINE statements in all compute blocks. Because no style element is
specified, PROC REPORT uses all the style attributes of the default style element for this
location except for those that are specified here.

style(lines)=[foreground=white background=black
font_style=italic font_weight=bold font_size=5]

Specify the style attributes for the report summaries. This STYLE= option sets the style
element for all the default summary lines. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(summary)=[foreground=cx3e3d73 background=cxaeadd9
font_face=helvetica font_size=3 just=r];

Specify the report columns. The report contains columns for Manager, Department, and
Sales.

column manager department sales;

Define the first sort order variable. In this report Manager is an order variable. PROC
REPORT arranges the rows first by the value of Manager (because it is the first variable in the
COLUMN statement). ORDER= specifies that values of Manager are arranged according to
their formatted values. FORMAT= specifies the format to use for this variable. Text in quotation
marks specifies the column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’

Specify the style attributes for the first sort order variable column heading. The
STYLE= option sets the foreground and background colors of the column heading for Manager.
The other style attributes for the column heading will match those that were established for the
HEADER location in the PROC REPORT statement.

style(header)=[foreground=white
background=black];

Define the second sort order variable. In this report Department is an order variable.
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement), then by the value of Department. ORDER= specifies that values of
Department are arranged according to their internal values. FORMAT= specifies the format to
use for this variable. Text in quotation marks specifies the column heading.

define department / order
order=internal



1086 Program � Chapter 38

format=$deptfmt.
’Department’

Specify the style attributes for the second sort order variable column.The STYLE=
option sets the font of the cells in the column Department to italic. The other style attributes for
the cells will match those that were established for the COLUMN location in the PROC
REPORT statement.

style(column)=[font_style=italic];

Produce a report summary. The BREAK statement produces a default summary after the last
row for each manager. SUMMARIZE writes the values of Sales (the only analysis or computed
variable in the report) in the summary line. PROC REPORT sums the values of Sales for each
manager because Sales is an analysis variable that is used to calculate the Sum statistic.

break after manager / summarize;

Produce a customized summary. The COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. This STYLE= option specifies the style
element to use for the text that is created by the LINE statement in this compute block. This
style element switches the foreground and background colors that were specified for the LINES
location in the PROC REPORT statement. It also changes the font style, the font weight, and
the font size.

compute after manager
/ style=[font_style=roman font_size=3 font_weight=bold

background=white foreground=black];

Specify the text for the customized summary. The LINE statement places the quoted text
and the values of Manager and Sales.sum (with the formats $MGRFMT. and DOLLAR7.2) in
the summary. An ENDCOMP statement must end the compute block.

line ’Subtotal for ’ manager $mgrfmt. ’is ’
sales.sum dollar7.2 ’.’;

endcomp;

Produce a customized background for the analysis column. This compute block specifies
a background color and a bold font for all cells in the Sales column that contain values of 100 or
greater and that are not summary lines.

compute sales;
if sales.sum>100 and _break_=’ ’ then
call define(_col_, "style",

"style=[background=yellow
font_face=helvetica
font_weight=bold]");

endcomp;

Produce a customized end-of-report summary. This COMPUTE statement begins a
compute block that executes at the end of the report. The LINE statement writes the quoted
text and the value of Sales.sum (with the DOLLAR7.2 format). An ENDCOMP statement must
end the compute block.

compute after;
line ’Total for all departments is: ’

sales.sum dollar7.2 ’.’;



The REPORT Procedure � Program 1087

endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Close the ODS destinations.

ods html close;
ods pdf close;
ods rtf close;



1088 HTML Body File � Chapter 38

HTML Body File



The REPORT Procedure � PDF Output 1089

PDF Output



1090 RTF Output � Chapter 38

RTF Output



1091

C H A P T E R

39
The SORT Procedure

Overview: SORT Procedure 1091
Syntax: SORT Procedure 1093

PROC SORT Statement 1093

BY Statement 1099

Concepts: SORT Procedure 1100

Multi-threaded Sorting 1100
Sorting Orders for Numeric Variables 1100

Sorting Orders for Character Variables 1101

EBCDIC Order 1101

ASCII Order 1101

Specifying Sorting Orders for Character Variables 1101

Stored Sort Information 1102
Integrity Constraints: SORT Procedure 1102

Results: SORT Procedure 1102

Procedure Output 1103

Output Data Set 1103

Examples: SORT Procedure 1103
Example 1: Sorting by the Values of Multiple Variables 1103

Example 2: Sorting in Descending Order 1105

Example 3: Maintaining the Relative Order of Observations in Each BY Group 1107

Example 4: Retaining the First Observation of Each BY Group 1110

Overview: SORT Procedure
The SORT procedure sorts observations in a SAS data set by one or more character

or numeric variables. The SORT procedure either replaces the original data set or
creates a new data set. PROC SORT produces only an output data set. For more
information, see “Procedure Output” on page 1103.

Operating Environment Information: The sorting capabilities that are described in this
chapter are available for all operating environments. In addition, if you use the HOST
value of the SAS system option SORTPGM=, you might be able to use other sorting
options that are available only for your operating environment. Refer to the SAS
documentation for your operating environment for information about other sorting
capabilities �

In the following example, the original data set was in alphabetical order by last
name. PROC SORT replaces the original data set with a data set that is sorted by
employee identification number. Output 39.1 on page 1092 shows the log that results
from running this PROC SORT step. Output 39.2 on page 1092 shows the results of the
PROC PRINT step. The statements that produce the output follow:



1092 Overview: SORT Procedure � Chapter 39

proc sort data=employee;
by idnumber;

run;

proc print data=employee;
run;

Output 39.1 SAS Log Generated by PROC SORT

NOTE: There were 6 observations read from the data set WORK.EMPLOYEE.
NOTE: The data set WORK.EMPLOYEE has 6 observations and 3 variables.
NOTE: PROCEDURE SORT used:

real time 0.01 seconds
cpu time 0.01 seconds

Output 39.2 Observations Sorted by the Values of One Variable

The SAS System 1

Obs Name IDnumber

1 Belloit 1988
2 Wesley 2092
3 Lemeux 4210
4 Arnsbarger 5466
5 Pierce 5779
6 Capshaw 7338

The following output shows the results of a more complicated sort by three variables.
The businesses in this example are sorted by town, then by debt from highest amount
to lowest amount, then by account number. For an explanation of the program that
produces this output, see Example 2 on page 1105.



The SORT Procedure � PROC SORT Statement 1093

Output 39.3

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Syntax: SORT Procedure
Requirements: BY statement

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC SORT <collating-sequence-option> <other option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;

PROC SORT Statement

PROC SORT <collating-sequence-option> <other option(s)>;

To do this Use this option

Specify the collating sequence

Specify ASCII ASCII

Specify EBCDIC EBCDIC

Specify Danish DANISH

Specify Finnish FINNISH



1094 PROC SORT Statement � Chapter 39

To do this Use this option

Specify Norwegian NORWEGIAN

Specify Swedish SWEDISH

Specify a customized sequence NATIONAL

Specify any of these collating sequences: ASCII,
EBCDIC, DANISH, FINNISH, ITALIAN,
NORWEGIAN, SPANISH, SWEDISH

SORTSEQ=

Specify the input data set DATA=

Sort a SAS data set without changing the created and
modified dates

DATECOPY

Create an output data set OUT=

Specify the output order

Reverse the collation order for character
variables

REVERSE

Maintain relative order within BY groups EQUALS

Do not maintain relative order within BY groups NOEQUALS

Eliminate duplicate observations

Delete observations with duplicate BY values NODUPKEY

Delete duplicate observations NODUPRECS

Specify the available memory SORTSIZE=

Force redundant sorting FORCE

Reduce temporary disk usage TAGSORT

Override SAS system option THREADS

Enable multi-threaded sorting THREADS

Prevent multi-threaded sorting NOTHREADS

Options
Options can include one collating-sequence-option and multiple other options. The

order of the two types of options does not matter and both types are not necessary in
the same PROC SORT step.

Collating-Sequence-Options

Operating Environment Information: For information about behavior specific to
your operating environment for the DANISH, FINNISH, NORWEGIAN, or
SWEDISH collating-sequence-option, see the SAS documentation for your operating
environment. �

Restriction: You can specify only one collating-sequence-option in a PROC SORT
step.

ASCII



The SORT Procedure � PROC SORT Statement 1095

sorts character variables using the ASCII collating sequence. You need this option
only when you sort by ASCII on a system where EBCDIC is the native collating
sequence.
See also: “Sorting Orders for Character Variables” on page 1101

DANISH
NORWEGIAN

sort characters according to the Danish and Norwegian national standard.
The Danish and Norwegian collating sequence is shown in Figure 39.1 on page

1096.

EBCDIC
sorts character variables using the EBCDIC collating sequence. You need this option
only when you sort by EBCDIC on a system where ASCII is the native collating
sequence.
See also: “Sorting Orders for Character Variables” on page 1101

FINNISH
SWEDISH

sorts characters according to the Finnish and Swedish national standard. The
Finnish and Swedish collating sequence is shown in Figure 39.1 on page 1096.

NATIONAL
sorts character variables using an alternate collating sequence, as defined by your
installation, to reflect a country’s National Use Differences. To use this option, your
site must have a customized national sort sequence defined. Check with the SAS
Installation Representative at your site to determine if a customized national sort
sequence is available.

NORWEGIAN
See DANISH.

SORTSEQ=collating-sequence
specifies the collating sequence. The value of collating-sequence can be any one of the
collating-sequence-options in the PROC SORT statement, or the value can be the
name of a translation table, either a default translation table or one that you have
created in the TRANTAB procedure. For an example of using PROC TRANTAB and
PROC SORT with SORTSEQ=, see Example 6 on page 1429. The available
translation tables are

Danish
Finnish
Italian
Norwegian
Spanish
Swedish
To see how the alphanumeric characters in each language will sort, refer to Figure

39.1 on page 1096.



1096 PROC SORT Statement � Chapter 39

Figure 39.1 National Collating Sequences of Alphanumeric Characters

SWEDISH
See FINNISH.

Other Options

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

DATECOPY
copies the SAS internal date and time when the SAS data set was created and the
date and time when it was last modified prior to the sort to the resulting sorted data
set. Note that the operating environment date and time are not preserved.
Restriction: DATECOPY can be used only when the resulting data set uses the V8

or V9 engine.
Tip: You can alter the file creation date and time with the DTC= option in the

MODIFY statement in PROC DATASETS. For more information, see “MODIFY
Statement” on page 366.

EQUALS | NOEQUALS
specifies the order of the observations in the output data set. For observations with
identical BY-variable values, EQUALS maintains the relative order of the
observations within the input data set in the output data set. NOEQUALS does not
necessarily preserve this order in the output data set.
Default: EQUALS
Interaction: When you use NODUPRECS or NODUPKEY to remove observations

in the output data set, the choice of EQUALS or NOEQUALS can have an effect
on which observations are removed.

Tip: Using NOEQUALS can save CPU time and memory.
Interaction: The EQUALS option is supported by the multi-threaded sort.

However, I/O performance may be reduced when using the EQUALS option with
the multi-threaded sort because partitioned data sets will be processed as if they
are non-partitioned data sets.

Interaction: The NOEQUALS option is supported by the multi-threaded sort. The
order of observations within BY groups returned by the multi-threaded sort may
not be consistent between runs. Therefore, using the NOEQUALS option can
produce inconsistent results in your output data sets.

FORCE
sorts and replaces an indexed data set when the OUT= option is not specified.
Without the FORCE option, PROC SORT does not sort and replace an indexed data



The SORT Procedure � PROC SORT Statement 1097

set because sorting destroys user-created indexes for the data set. When you specify
FORCE, PROC SORT sorts and replaces the data set and destroys all user-created
indexes for the data set. Indexes that were created or required by integrity
constraints are preserved.
Tip: PROC SORT checks for the sort information before it sorts a data set so that

data is not re-sorted unnecessarily. By default, PROC SORT does not sort a data
set if the sort information matches the requested sort. You can use FORCE to
override this behavior. You might need to use FORCE if SAS cannot verify the sort
specification in the data set option SORTEDBY=. For more information about
SORTEDBY=, see the chapter on SAS data set options in SAS Language
Reference: Dictionary.

Restriction: If you use PROC SORT with the FORCE option on data sets that were
created with the Version 5 compatibility engine or with a sequential engine such
as a tape format engine, you must also specify the OUT= option.

NODUPKEY
checks for and eliminates observations with duplicate BY values. If you specify this
option, then PROC SORT compares all BY values for each observation to those for
the previous observation that is written to the output data set. If an exact match is
found, then the observation is not written to the output data set.

Operating Environment Information: If you use the VMS operating environment
sort, then the observation that is written to the output data set is not always the
first observation of the BY group. �

Note: See NODUPRECS for information about eliminating duplicate
observations. �
Interaction: When you are removing observations with duplicate BY values with

NODUPKEY, the choice of EQUALS or NOEQUALS can have an effect on which
observations are removed.

Tip: Use the EQUALS option with the NODUPKEY option for consistent results in
your output data sets.

Featured in: Example 4 on page 1110

NODUPRECS
checks for and eliminates duplicate observations. If you specify this option, then
PROC SORT compares all variable values for each observation to those for the
previous observation that was written to the output data set. If an exact match is
found, then the observation is not written to the output data set.

Note: See NODUPKEY for information about eliminating observations with
duplicate BY values. �
Alias : NODUP
Interaction: When you are removing consecutive duplicate observations in the

output data set with NODUPRECS, the choice of EQUALS or NOEQUALS can
have an effect on which observations are removed.

Tip: Use the EQUALS option with the NODUPRECS option for consistent results
in your output data sets.

Interaction: The action of NODUPRECS is directly related to the setting of the
SORTDUP= system option. When SORTDUP= is set to LOGICAL, NODUPRECS
removes duplicate observations based on the examination of the variables that
remain after a DROP or KEEP operation on the input data set. Setting
SORTDUP=LOGICAL increases the number of duplicate observations that are
removed, because it eliminates variables before observation comparisons take
place. Also, setting SORTDUP=LOGICAL can improve performance, because



1098 PROC SORT Statement � Chapter 39

dropping variables before sorting reduces the amount of memory required to
perform the sort. When SORTDUP= is set to PHYSICAL, NODUPRECS examines
all variables in the data set, regardless of whether they have been kept or
dropped. For more information about SORTDUP=, see the chapter on SAS system
options in SAS Language Reference: Dictionary.

Tip: Because NODUPRECS checks only consecutive observations, some
nonconsecutive duplicate observations might remain in the output data set. You
can remove all duplicates with this option by sorting on all variables.

NOEQUALS
See EQUALS | NOEQUALS.

NOTHREADS
See THREADS|NOTHREADS.

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC SORT creates
it.

CAUTION:
Use care when you use PROC SORT without OUT=. Without OUT=, data could be lost
if your system failed during execution of PROC SORT. �

Default: Without OUT=, PROC SORT overwrites the original data set.
Tip : You can use data set options with OUT=.
Featured in: Example 1 on page 1103

REVERSE
sorts character variables using a collating sequence that is reversed from the normal
collating sequence.

Operating Environment Information: For information about the normal collating
sequence for your operating environment, see “EBCDIC Order” on page 1101, “ASCII
Order” on page 1101, and the SAS documentation for your operating environment. �

Interaction: Using REVERSE with the DESCENDING option in the BY statement
restores the sequence to the normal order.

Restriction: The REVERSE option cannot be used with a collating-sequence-option.
You can specify either a collating-sequence-option or the REVERSE option in a
PROC SORT, but you cannot specify both.

See also: The DESCENDING option in the BY statement. The difference is that the
DESCENDING option can be used with both character and numeric variables.

SORTSIZE=memory-specification
specifies the maximum amount of memory that is available to PROC SORT. Valid
values for memory-specification are as follows:

MAX
specifies that all available memory can be used.

n
specifies the amount of memory in bytes, where n is a real number.

nK
specifies the amount of memory in kilobytes, where n is a real number.

nM
specifies the amount of memory in megabytes, where n is a real number.

nG
specifies the amount of memory in gigabytes, where n is a real number.



The SORT Procedure � BY Statement 1099

Specifying the SORTSIZE= option in the PROC SORT statement temporarily
overrides the SAS system option SORTSIZE=. For more information about
SORTSIZE=, see the chapter on SAS system options in SAS Language Reference:
Dictionary.

Operating Environment Information: Some system sort utilities may treat this
option differently. Refer to the SAS documentation for your operating environment. �

Default: the value of the SAS system option SORTSIZE=

Tip: Setting the SORTSIZE= option in the PROC SORT statement to MAX or 0, or
not setting the SORTSIZE= option, limits the PROC SORT to the available
physical memory based on the settings of the SAS system options that relate to
memory and information regarding available memory that is gathered from the
operating environment.

Operating Environment Information: For information about the SAS system
options that relate to memory, see the SAS documentation for your operating
environment. �

TAGSORT
stores only the BY variables and the observation numbers in temporary files. The BY
variables and the observation numbers are called tags. At the completion of the
sorting process, PROC SORT uses the tags to retrieve records from the input data set
in sorted order.

Interaction: The TAGSORT option is not supported by the multi-threaded sort.

Tip: When the total length of BY variables is small compared with the record
length, TAGSORT reduces temporary disk usage considerably. However,
processing time may be much higher.

THREADS | NOTHREADS
enables or prevents the activation of multi-threaded sorting.

Default: the value of the SAS system option THREADS

Interaction: THREAD|NOTHREADS overrides the value of the SAS system option
THREADS. For more information about THREADS, see the chapter on SAS
system options in SAS Language Reference: Dictionary.

Interaction: The TAGSORT option is not supported by the multi-threaded sort.

Note: If THREADS is specified (either as a SAS system option or in the PROC
SORT statement) and another program has the input data set open for reading,
writing, or updating, then PROC SORT might fail to open the input data set. In
this case, PROC SORT stops processing and writes a message to the SAS log.

See also: “Multi-threaded Sorting” on page 1100

BY Statement

Specifies the sorting variables.

Featured in: Example 1 on page 1103, Example 2 on page 1105, and Example 4 on page
1110

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;



1100 Concepts: SORT Procedure � Chapter 39

Required Arguments

variable
specifies the variable by which PROC SORT sorts the observations. PROC SORT
first arranges the data set by the values in ascending order, by default, of the first
BY variable. PROC SORT then arranges any observations that have the same value
of the first BY variable by the values of the second BY variable in ascending order.
This sorting continues for every specified BY variable.

Option

DESCENDING
reverses the sort order for the variable that immediately follows in the statement so
that observations are sorted from the largest value to the smallest value.
Featured in: Example 2 on page 1105

Concepts: SORT Procedure

Multi-threaded Sorting
The SAS system option THREADS activates multi-threaded sorting, which is new

with Version 9. Multi-threaded sorting achieves a degree of parallelism in the sorting
operations. This parallelism is intended to reduce the real-time to completion for a given
operation at the possible cost of additional CPU resources. For more information, see
the chapter on “Support for Parallel Processing” in SAS Language Reference: Concepts.

The performance of the multi-threaded sort will be affected by the value of the SAS
system option CPUCOUNT=. CPUCOUNT= suggests how many system CPUs are
available for use by the multi-threaded sort.

The multi-threaded sort supports concurrent input from the partitions of a
partitioned data set.

Note: These partitioned data sets should not be confused with partitioned data sets
on OS/390. �

Operating Environment Information: For information about the support of partitioned
data sets in your operating environment, see the SAS documentation for your operating
environment. �

For more information about THREADS and CPUCOUNT=, see the chapter on SAS
system options in SAS Language Reference: Dictionary.

Sorting Orders for Numeric Variables
For numeric variables, the smallest-to-largest comparison sequence is
1 SAS missing values (shown as a period or special missing value)
2 negative numeric values
3 zero



The SORT Procedure � Sorting Orders for Character Variables 1101

4 positive numeric values.

Sorting Orders for Character Variables
By default PROC SORT uses either the EBCDIC or the ASCII collating sequence

when it compares character values, depending on the environment under which the
procedure is running.

EBCDIC Order
The OS/390 operating environment uses the EBCDIC collating sequence.
The sorting order of the English-language EBCDIC sequence is

blank . < ( + | & ! $ * ); - / , % _ > ?: # @ ’= "

a b c d e f g h i j k l m n o p q r ~ s t u v w x y z

{ A B C D E F G H I } J K L M N O P Q R \S T

U V W X Y Z

0 1 2 3 4 5 6 7 8 9

The main features of the EBCDIC sequence are that lowercase letters are sorted
before uppercase letters, and uppercase letters are sorted before digits. Note also that
some special characters interrupt the alphabetic sequences. The blank is the smallest
displayable character.

ASCII Order
The operating environments that use the ASCII collating sequence include
� UNIX and its derivatives
� OpenVMS
� Windows.

From the smallest to largest displayable character, the English-language ASCII
sequence is

blank ! " # $ % & ’( )* + , - . /0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[ \] _ˆ

a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

The main features of the ASCII sequence are that digits are sorted before uppercase
letters, and uppercase letters are sorted before lowercase letters. The blank is the
smallest displayable character.

Specifying Sorting Orders for Character Variables
The options EBCDIC, ASCII, NATIONAL, DANISH, SWEDISH, and REVERSE

specify collating sequences that are stored in the HOST catalog.



1102 Stored Sort Information � Chapter 39

If you want to provide your own collating sequences or change a collating sequence
provided for you, then use the TRANTAB procedure to create or modify translation
tables. For complete details about the TRANTAB procedure, see Chapter 47, “The
TRANTAB Procedure,” on page 1409. When you create your own translation tables,
they are stored in your PROFILE catalog, and they override any translation tables that
have the same name in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. Then all users can access the
new or modified translation table. �

Stored Sort Information
PROC SORT records the BY variables, collating sequence, and character set that it

uses to sort the data set. This information is stored with the data set to help avoid
unnecessary sorts.

Before PROC SORT sorts a data set, it checks the stored sort information. If you try
to sort a data set the way that it is currently sorted, then PROC SORT does not
perform the sort and writes a message to the log to that effect. To override this
behavior, use the FORCE option. If you try to sort a data set the way that it is
currently sorted and you specify an OUT= data set, then PROC SORT simply makes a
copy of the DATA= data set.

To override the sort information that PROC SORT stores, use the _NULL_ value
with the SORTEDBY= data set option. For more information about SORTEDBY=, see
the chapter on SAS data set options in SAS Language Reference: Dictionary.

If you want to change the sort information for an existing data set, then use the
SORTEDBY= data set option in the MODIFY statement in the DATASETS procedure.
For more information, see “MODIFY Statement” on page 366.

To access the sort information that is stored with a data set, use the CONTENTS
statement in PROC DATASETS. For more information, see “CONTENTS Statement” on
page 344.

Integrity Constraints: SORT Procedure
Sorting the input data set and replacing it with the sorted data set preserves both

referential and general integrity constraints, as well as any indexes that they may
require. A sort that creates a new data set will not preserve any integrity constraints or
indexes. For more information about implicit replacement, explicit replacement, and no
replacement with and without the OUT= option, see “Output Data Set” on page 1103.
For more information about integrity constraints, see the chapter on SAS data files in
SAS Language Reference: Concepts.

Results: SORT Procedure



The SORT Procedure � Example 1: Sorting by the Values of Multiple Variables 1103

Procedure Output
PROC SORT produces only an output data set. To see the output data set, you can

use PROC PRINT, PROC REPORT, or another of the many available methods of
printing in SAS.

Output Data Set
Without the OUT= option, PROC SORT replaces the original data set with the sorted

observations when the procedure executes without errors. When you specify the OUT=
option using a new data set name, PROC SORT creates a new data set that contains
the sorted observations.

To do this Use this statement

implicit replacement of input data set proc sort data=names;

explicit replacement of input data set proc sort data=names out=names;

no replacement of input data set proc sort data=names out=namesbyid;

With all three replacement options (implicit replacement, explicit replacement, and no
replacement) there must be at least enough space in the output data library for a copy
of the original data set.

You can also sort compressed data sets. If you specify a compressed data set as the
input data set and omit the OUT= option, then the input data set is sorted and remains
compressed. If you specify an OUT= data set, then the resulting data set is compressed
only if you choose a compression method with the COMPRESS= data set option. For
more information about COMPRESS=, see the chapter on SAS data set options in SAS
Language Reference: Dictionary.

Note: If the SAS system option NOREPLACE is in effect, then you cannot replace
an original permanent data set with a sorted version. You must either use the OUT=
option or specify the SAS system option REPLACE in an OPTIONS statement. The
SAS system option NOREPLACE does not affect temporary SAS data sets. �

Examples: SORT Procedure

Example 1: Sorting by the Values of Multiple Variables
Procedure features:

PROC SORT statement option:
OUT=

BY statement
Other features:



1104 Program � Chapter 39

PROC PRINT

This example
� sorts the observations by the values of two variables
� creates an output data set for the sorted observations
� prints the results.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set ACCOUNT. ACCOUNT contains the name of each business that
owes money, the amount of money that it owes on its account, the account number, and the town
where the business is located.

data account;
input Company $ 1-22 Debt 25-30 AccountNumber 33-36

Town $ 39-51;
datalines;

Paul’s Pizza 83.00 1019 Apex
World Wide Electronics 119.95 1122 Garner
Strickland Industries 657.22 1675 Morrisville
Ice Cream Delight 299.98 2310 Holly Springs
Watson Tabor Travel 37.95 3131 Apex
Boyd & Sons Accounting 312.49 4762 Garner
Bob’s Beds 119.95 4998 Morrisville
Tina’s Pet Shop 37.95 5108 Apex
Elway Piano and Organ 65.79 5217 Garner
Tim’s Burger Stand 119.95 6335 Holly Springs
Peter’s Auto Parts 65.79 7288 Apex
Deluxe Hardware 467.12 8941 Garner
Pauline’s Antiques 302.05 9112 Morrisville
Apex Catering 37.95 9923 Apex
;

Create the output data set BYTOWN. OUT= creates a new data set for the sorted
observations.

proc sort data=account out=bytown;

Sort by two variables. The BY statement specifies that the observations should be first
ordered alphabetically by town and then by company.



The SORT Procedure � Example 2: Sorting in Descending Order 1105

by town company;
run;

Print the output data set BYTOWN. PROC PRINT prints the data set BYTOWN.

proc print data=bytown;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var company town debt accountnumber;

Specify the titles.

title ’Customers with Past-Due Accounts’;
title2 ’Listed Alphabetically within Town’;

run;

Output

Customers with Past-Due Accounts 1
Listed Alphabetically within Town

Account
Obs Company Town Debt Number

1 Apex Catering Apex 37.95 9923
2 Paul’s Pizza Apex 83.00 1019
3 Peter’s Auto Parts Apex 65.79 7288
4 Tina’s Pet Shop Apex 37.95 5108
5 Watson Tabor Travel Apex 37.95 3131
6 Boyd & Sons Accounting Garner 312.49 4762
7 Deluxe Hardware Garner 467.12 8941
8 Elway Piano and Organ Garner 65.79 5217
9 World Wide Electronics Garner 119.95 1122

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Bob’s Beds Morrisville 119.95 4998
13 Pauline’s Antiques Morrisville 302.05 9112
14 Strickland Industries Morrisville 657.22 1675

Example 2: Sorting in Descending Order

Procedure features:
This example BY statement option:

DESCENDING
Other features



1106 Program � Chapter 39

PROC PRINT
Data set: ACCOUNT on page 1104

� sorts the observations by the values of three variables
� sorts one of the variables in descending order
� prints the results.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the output data set SORTED. OUT= creates a new data set for the sorted
observations.

proc sort data=account out=sorted;

Sort by three variables with one in descending order. The BY statement specifies that
observations should be first ordered alphabetically by town, then by descending value of amount
owed, then by ascending value of the account number.

by town descending debt accountnumber;
run;

Print the output data set SORTED. PROC PRINT prints the data set SORTED.

proc print data=sorted;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var company town debt accountnumber;

Specify the titles.

title ’Customers with Past-Due Accounts’;
title2 ’Listed by Town, Amount, Account Number’;

run;



The SORT Procedure � Program 1107

Output

Note that sorting last by AccountNumber puts the businesses in Apex with a debt of $37.95 in
order of account number.

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Example 3: Maintaining the Relative Order of Observations in Each BY Group

Procedure features:
PROC SORT statement option:

EQUALS|NOEQUALS

Other features: PROC PRINT

This example

� sorts the observations by the value of the first variable
� maintains the relative order with the EQUALS option

� does not maintain the relative order with the NOEQUALS option.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;



1108 Program � Chapter 39

Create the input data set INSURANCE. INSURANCE contains the number of years worked
by all insured employees and their insurance ids.

data insurance;
input YearsWorked 1 InsuranceID 3-5;
datalines;

5 421
5 336
1 209
1 564
3 711
3 343
4 212
4 616
;

Create the output data set BYYEARS1 with the EQUALS option. OUT= creates a new
data set for the sorted observations. The EQUALS option maintains the order of the
observations relative to each other.

proc sort data=insurance out=byyears1 equals;

Sort by the first variable. The BY statement specifies that the observations should be ordered
numerically by the number of years worked.

by yearsworked;
run;

Print the output data set BYYEARS1. PROC PRINT prints the data set BYYEARS1.

proc print data=byyears1;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var yearsworked insuranceid;

Specify the title.

title ’Sort with EQUALS’;
run;

Create the output data set BYYEARS2. OUT= creates a new data set for the sorted
observations. The NOEQUALS option will not maintain the order of the observations relative to
each other.

proc sort data=insurance out=byyears2 noequals;



The SORT Procedure � Output 1109

Sort by the first variable. The BY statement specifies that the observations should be ordered
numerically by the number of years worked.

by yearsworked;
run;

Print the output data set BYYEARS2. PROC PRINT prints the data set BYYEARS2.

proc print data=byyears2;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var yearsworked insuranceid;

Specify the title.

title ’Sort with NOEQUALS’;
run;

Output

Note that sorting with the EQUALS option versus sorting with the NOEQUALS option causes a
different sort order for the observations where YearsWorked=3.

Sort with EQUALS 1

Years Insurance
Obs Worked ID

1 1 209
2 1 564
3 3 711
4 3 343
5 4 212
6 4 616
7 5 421
8 5 336

Sort with NOEQUALS 1

Years Insurance
Obs Worked ID

1 1 209
2 1 564
3 3 343
4 3 711
5 4 212
6 4 616
7 5 421
8 5 336



1110 Example 4: Retaining the First Observation of Each BY Group � Chapter 39

Example 4: Retaining the First Observation of Each BY Group
Procedure features:

PROC SORT statement option:
NODUPKEY

BY statement
Other features:

PROC PRINT
Data set: ACCOUNT on page 1104
Interaction: The EQUALS option, which is the default, must be in effect to ensure that
the first observation for each BY group is the one that is retained by the NODUPKEY
option. If the NOEQUALS option has been specified, then one observation for each BY
group will still be retained by the NODUPKEY option, but not necessarily the first
observation.

In this example, PROC SORT creates an output data set that contains only the first
observation of each BY group. The NODUPKEY option prevents an observation from
being written to the output data set when its BY value is identical to the BY value of
the last observation written to the output data set. The resulting report contains one
observation for each town where the businesses are located.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the output data set TOWNS but include only the first observation of each BY
group. NODUPKEY writes only the first observation of each BY group to the new data set
TOWNS.

Operating Environment Information: If you use the VMS operating environment sort,
then the observation that is written to the output data set is not always the first
observation of the BY group. �

proc sort data=account out=towns nodupkey;

Sort by one variable. The BY statement specifies that observations should be ordered by town.

by town;
run;

Print the output data set TOWNS. PROC PRINT prints the data set TOWNS.



The SORT Procedure � Output 1111

proc print data=towns;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var town company debt accountnumber;

Specify the title.

title ’Towns of Customers with Past-Due Accounts’;
run;

Output

The output data set contains only four observations, one for each town in the input data set.

Towns of Customers with Past-Due Accounts 1

Account
Obs Town Company Debt Number

1 Apex Paul’s Pizza 83.00 1019
2 Garner World Wide Electronics 119.95 1122
3 Holly Springs Ice Cream Delight 299.98 2310
4 Morrisville Strickland Industries 657.22 1675



1112



1113

C H A P T E R

40
The SQL Procedure

Overview: SQL Procedure 1115
What Is the SQL Procedure? 1115

What Are PROC SQL Tables? 1115

What Are Views? 1115

SQL Procedure Coding Conventions 1116

Syntax: SQL Procedure 1117
PROC SQL Statement 1119

ALTER TABLE Statement 1124

CONNECT Statement 1128

CREATE INDEX Statement 1128

CREATE TABLE Statement 1130

CREATE VIEW Statement 1133
DELETE Statement 1135

DESCRIBE Statement 1136

DISCONNECT Statement 1137

DROP Statement 1138

EXECUTE Statement 1139
INSERT Statement 1139

RESET Statement 1141

SELECT Statement 1142

UPDATE Statement 1153

VALIDATE Statement 1154
SQL Procedure Component Dictionary 1154

BETWEEN condition 1155

BTRIM function 1155

CALCULATED 1156

CASE expression 1157

COALESCE Function 1158
column-definition 1159

column-modifier 1160

column-name 1161

CONNECTION TO 1162

CONTAINS condition 1162
EXISTS condition 1163

IN condition 1163

IS condition 1164

joined-table 1165

LIKE condition 1174
LOWER function 1176

query-expression 1176

sql-expression 1182



1114 Contents � Chapter 40

SUBSTRING function 1189
summary-function 1190

table-expression 1196

UPPER function 1197

Concepts: SQL Procedure 1197

Using SAS Data Set Options with PROC SQL 1197
Connecting to a DBMS Using the SQL Procedure Pass-Through Facility 1198

Return Codes 1198

Connecting to a DBMS Using the LIBNAME Statement 1198

Using the DICTIONARY Tables 1199

What Are DICTIONARY Tables? 1199

Retrieving Information about DICTIONARY Tables and SASHELP Views 1200
Using DICTIONARY Tables 1201

DICTIONARY Tables and Performance 1201

Using Macro Variables Set by PROC SQL 1202

Updating PROC SQL and SAS/ACCESS Views 1203

PROC SQL and the ANSI Standard 1204
SQL Procedure Enhancements 1204

Reserved Words 1204

Column Modifiers 1205

Alternate Collating Sequences 1205

ORDER BY Clause in a View Definition 1205
In-Line Views 1205

Outer Joins 1205

Arithmetic Operators 1205

Orthogonal Expressions 1205

Set Operators 1206

Statistical Functions 1206
SAS DATA Step Functions 1206

SQL Procedure Omissions 1206

COMMIT Statement 1206

ROLLBACK Statement 1206

Identifiers and Naming Conventions 1206
Granting User Privileges 1207

Three-Valued Logic 1207

Embedded SQL 1207

Examples: SQL Procedure 1207

Example 1: Creating a Table and Inserting Data into It 1207
Example 2: Creating a Table from a Query’s Result 1209

Example 3: Updating Data in a PROC SQL Table 1211

Example 4: Joining Two Tables 1213

Example 5: Combining Two Tables 1216

Example 6: Reporting from DICTIONARY Tables 1218

Example 7: Performing an Outer Join 1220
Example 8: Creating a View from a Query’s Result 1224

Example 9: Joining Three Tables 1227

Example 10: Querying an In-Line View 1230

Example 11: Retrieving Values with the SOUNDS-LIKE Operator 1231

Example 12: Joining Two Tables and Calculating a New Value 1233
Example 13: Producing All the Possible Combinations of the Values in a Column 1235

Example 14: Matching Case Rows and Control Rows 1238

Example 15: Counting Missing Values with a SAS Macro 1240



The SQL Procedure � What Are Views? 1115

Overview: SQL Procedure

What Is the SQL Procedure?
The SQL procedure implements Structured Query Language (SQL) for SAS. SQL is a

standardized, widely used language that retrieves data from and updates data in tables
and the views that are based on those tables.

The SAS SQL procedure enables you to
� retrieve and manipulate data that is stored in tables or views.

� create tables, views, and indexes on columns in tables.
� create SAS macro variables that contain values from rows in a query’s result.
� add or modify the data values in a table’s columns or insert and delete rows. You

can also modify the table itself by adding, modifying, or dropping columns.
� send DBMS-specific SQL statements to a database management system (DBMS)

and retrieve DBMS data.

The following figure summarizes the variety of source material that you can use with
PROC SQL and what the procedure can produce.

Figure 40.1 PROC SQL Input and Output

PROC SQL tables
(SAS data files)

SAS data views
(PROC SQL views)
(DATA step views)
(SAS/ACCESS views)

DBMS tables

DBMS tables

reports

PROC SQL views

PROC
SQL

PROC SQL tables
(SAS data files)

macro variables

What Are PROC SQL Tables?
A PROC SQL table is synonymous with a SAS data file and has a member type of

DATA. You can use PROC SQL tables as input into DATA steps and procedures.
You create PROC SQL tables from SAS data files, from SAS data views, or from

DBMS tables by using PROC SQL’s Pass-Through Facility or the SAS/ACCESS
LIBNAME statement. The Pass-Through Facility is described in “Connecting to a
DBMS Using the SQL Procedure Pass-Through Facility” on page 1198. The
SAS/ACCESS LIBNAME statement is described in “Connecting to a DBMS Using the
LIBNAME Statement” on page 1198.

In PROC SQL terminology, a row in a table is the same as an observation in a SAS
data file. A column is the same as a variable.

What Are Views?
A SAS data view defines a virtual data set that is named and stored for later use. A

view contains no data but describes or defines data that is stored elsewhere. There are
three types of SAS data views:



1116 SQL Procedure Coding Conventions � Chapter 40

� PROC SQL views

� SAS/ACCESS views

� DATA step views.

You can refer to views in queries as if they were tables. The view derives its data
from the tables or views that are listed in its FROM clause. The data that is accessed
by a view is a subset or superset of the data that is in its underlying table(s) or view(s).

A PROC SQL view is a SAS data set of type VIEW that is created by PROC SQL. A
PROC SQL view contains no data. It is a stored query expression that reads data
values from its underlying files, which can include SAS data files, SAS/ACCESS views,
DATA step views, other PROC SQL views, or DBMS data. When executed, a PROC
SQL view’s output can be a subset or superset of one or more underlying files.

SAS/ACCESS views and DATA step views are similar to PROC SQL views in that
they are both stored programs of member type VIEW. SAS/ACCESS views describe data
in DBMS tables from other software vendors. DATA step views are stored DATA step
programs.

Note: Starting in Version 9, PROC SQL views, the Pass-Through Facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational DBMS
data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See The
CV2VIEW Procedure in SAS/ACCESS for Relational Databases: Reference for more
information. �

You can update data through a PROC SQL or SAS/ACCESS view with certain
restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1203.

You can use all types of views as input to DATA steps and procedures.

Note: In this chapter, the term view collectively refers to PROC SQL views, DATA
step views, and SAS/ACCESS views, unless otherwise noted. �

Note: When the contents of an SQL view are processed (by a DATA step or a
procedure), the referenced data set must be opened to retrieve information about the
variables that is not stored in the view. If that data set has a libref associated with it
that is not defined in the current SAS code, then an error will result. �

SQL Procedure Coding Conventions
Because PROC SQL implements Structured Query Language, it works somewhat

differently from other base SAS procedures, as described here:

� When a PROC SQL statement is executed, PROC SQL continues to run until a
QUIT statement, a DATA step, or another SAS procedure is executed. Therefore,
you do not need to repeat the PROC SQL statement with each SQL statement.
You need to repeat the PROC SQL statement only if you execute a QUIT
statement, a DATA step, or another SAS procedure between SQL statements.

� SQL procedure statements are divided into clauses. For example, the most basic
SELECT statement contains the SELECT and FROM clauses. Items within
clauses are separated with commas in SQL, not with blanks as in other SAS code.
For example, if you list three columns in the SELECT clause, then the columns
are separated with commas.

� The SELECT statement, which is used to retrieve data, also automatically writes
the output data to the Output window unless you specify the NOPRINT option in
the PROC SQL statement. Therefore, you can display your output or send it to a
list file without specifying the PRINT procedure.



The SQL Procedure � Syntax: SQL Procedure 1117

� The ORDER BY clause sorts data by columns. In addition, tables do not need to
be presorted by a variable for use with PROC SQL. Therefore, you do not need to
use the SORT procedure with your PROC SQL programs.

� A PROC SQL statement runs when you submit it; you do not have to specify a
RUN statement. If you follow a PROC SQL statement with a RUN statement,
then SAS ignores the RUN statement and submits the statements as usual.

Syntax: SQL Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use any global statements. See Chapter 2, “Fundamental Concepts
for Using Base SAS Procedures,” on page 15 for a list.
Reminder: You can use data set options any time a table name or view name is specified.
See “Using SAS Data Set Options with PROC SQL” on page 1197 for details.
Note:

Regular type indicates the name of a component that is described in “SQL Procedure
Component Dictionary” on page 1154.

view-name indicates a SAS data view of any type.

PROC SQL <option(s)>;
ALTER TABLE table-name

<ADD <CONSTRAINT> constraint-clause<, … constraint-clause>>
<ADD column-definition<, … column-definition>>
<DROP CONSTRAINT constraint-name <, … constraint-name>>
<DROP column<, … column>>
<DROP FOREIGN KEY constraint-name> [Note: This is a DB2 extension.]
<DROP PRIMARY KEY> [Note: This is a DB2 extension.]
<MODIFY column-definition<, … column-definition>>

;
CREATE <UNIQUE> INDEX index-name

ON table-name ( column <, … column>);
CREATE TABLE table-name

(column-specification<, …column-specification | constraint-specification>)
;
CREATE TABLE table-name LIKE table-name2;
CREATE TABLE table-name AS query-expression

<ORDER BY order-by-item<, … order-by-item>>;
CREATE VIEW proc-sql-view AS query-expression

<ORDER BY order-by-item<, … order-by-item>>
<USING libname-clause<, … libname-clause>> ;

DELETE
FROM table-name|proc-sql-view |sas/access-view <AS alias>

<WHERE sql-expression>;
DESCRIBE TABLEtable-name <, … table-name>;
DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;



1118 Syntax: SQL Procedure � Chapter 40

DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;
DROP INDEX index-name <, … index-name>

FROM table-name;
DROP TABLE table-name <, … table-name>;
DROP VIEW view-name <, … view-name>;
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>;

INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>
VALUES (value <, … value>)

<… VALUES (value <, … value>)>;
INSERT INTO table-name|sas/access-view|proc-sql-view

<(column<, …column>)> query-expression;
RESET <option(s)>;
SELECT <DISTINCT> object-item <, …object-item>

<INTO macro-variable-specification
<, … macro-variable-specification>>

FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<, … group-by-item>>
<HAVING sql-expression>
<ORDER BY order-by-item

<, … order-by-item>>;
UPDATE table-name|sas/access-view|proc-sql-view <AS alias>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>

<WHERE sql-expression>;
VALIDATE query-expression;

To connect to a DBMS and send it a DBMS-specific nonquery SQL statement, use
this form:

PROC SQL;
CONNECT TO dbms-name <AS alias>

<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(dbms-argument-1=value <… dbms-argument-n=value>)>;

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

<DISCONNECT FROM dbms-name|alias;>

<QUIT;>

To connect to a DBMS and query the DBMS data, use this form:



The SQL Procedure � PROC SQL Statement 1119

PROC SQL;

CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(dbms-argument-1=value <… dbms-argument-n=value>)>;

SELECT column-list
FROM CONNECTION TO dbms-name|alias

(dbms-query)
optional PROC SQL clauses;

<DISCONNECT FROM dbms-name|alias;>
<QUIT;>

To do this Use this statement

Modify, add, or drop columns ALTER TABLE

Establish a connection with a DBMS CONNECT TO

Create an index on a column CREATE INDEX

Create a PROC SQL table CREATE TABLE

Create a PROC SQL view CREATE VIEW

Delete rows DELETE

Display a definition of a table or view DESCRIBE

Terminate the connection with a DBMS DISCONNECT FROM

Delete tables, views, or indexes DROP

Send a DBMS-specific nonquery SQL statement to a
DBMS

EXECUTE

Add rows INSERT

Reset options that affect the procedure environment
without restarting the procedure

RESET

Select and execute rows SELECT

Query a DBMS CONNECTION TO

Modify values UPDATE

Verify the accuracy of your query VALIDATE

PROC SQL Statement

PROC SQL <option(s)>;



1120 PROC SQL Statement � Chapter 40

To do this Use this option

Control output

Double-space the report DOUBLE|NODOUBLE

Write a statement to the SAS log that
expands the query

FEEDBACK|NOFEEDBACK

Flow characters within a column FLOW|NOFLOW

Include a column of row numbers NUMBER|NONUMBER

Specify whether PROC SQL prints the
query’s result

PRINT|NOPRINT

Specify whether PROC SQL should display
sorting information

SORTMSG|NOSORTMSG

Specify a collating sequence SORTSEQ=

Control execution

Specify the number of INSERT or UPDATE
statements that can be bundled together and
executed at once

CACHED_UPDATES=

Allow PROC SQL to use names other than
SAS names

DQUOTE=

Specify whether PROC SQL should stop
executing after an error

ERRORSTOP|NOERRORSTOP

Specify whether PROC SQL should execute
statements

EXEC|NOEXEC

Restrict the number of input rows INOBS=

Restrict the number of output rows OUTOBS=

Restrict the number of loops LOOPS=

Specify whether PROC SQL prompts you
when a limit is reached with the INOBS=,
OUTOBS=, or LOOPS= options

PROMPT|NOPROMPT

Specify whether PROC SQL writes timing
information for each statement to the SAS log

STIMER|NOSTIMER

Override the SAS system option
THREADS|NOTHREADS

THREADS|NOTHREADS

Specify how PROC SQL handles updates
when there is an interruption

UNDO_POLICY=

Options

CACHED_UPDATES=n
Specifies that n INSERT or UPDATE statements, operating on a single table from a
single PROC SQL step, can be bundled together and executed at one time. For PROC
SQL steps that have many INSERT or UPDATE statements, setting
CACHED_UPDATES= can enhance performance.



The SQL Procedure � PROC SQL Statement 1121

In order to qualify to be included in a single bundle, the statements
� must be either all INSERT statements or all UPDATE statements
� must appear consecutively, with no other statements among them
� must have the same target table with the same set of data set option values.

If fewer than n consecutive statements qualify for a single bundle, those statements
are executed at one time after the end of the last qualifying INSERT or UPDATE
statement.
Default: 1
Tip: While the maximum value is limited only by the largest integer that your

operating environment allows, the optimal value is typically between 20 and 30.
Tip: The CACHED_UPDATES= option is useful mainly for processes that generate

PROC SQL code with hundreds or thousands of INSERT or UPDATE statements.

DOUBLE|NODOUBLE
double-spaces the report.
Default: NODOUBLE
Featured in: Example 5 on page 1216

DQUOTE=ANSI|SAS
specifies whether PROC SQL treats values within double quotation marks (" ") as
variables or strings. With DQUOTE=ANSI, PROC SQL treats a quoted value as a
variable. This feature enables you to use the following as table names, column
names, or aliases:

� reserved words such as AS, JOIN, GROUP, and so on
� DBMS names and other names that are not normally permissible in SAS.

The quoted value can contain any character.
With DQUOTE=SAS, values within double quotation marks are treated as strings.

Default: SAS

ERRORSTOP|NOERRORSTOP
specifies whether PROC SQL stops executing if it encounters an error. In a batch or
noninteractive session, ERRORSTOP instructs PROC SQL to stop executing the
statements but to continue checking the syntax after it has encountered an error.

NOERRORSTOP instructs PROC SQL to execute the statements and to continue
checking the syntax after an error occurs.
Default: NOERRORSTOP in an interactive SAS session; ERRORSTOP in a batch

or noninteractive session
Interaction: This option is useful only when the EXEC option is in effect.
Tip: ERRORSTOP has an effect only when SAS is running in the batch or

noninteractive execution mode.
Tip: NOERRORSTOP is useful if you want a batch job to continue executing SQL

procedure statements after an error is encountered.

EXEC|NOEXEC
specifies whether a statement should be executed after its syntax is checked for
accuracy.
Default: EXEC
Tip: NOEXEC is useful if you want to check the syntax of your SQL statements

without executing the statements.
See also: ERRORSTOP on page 1121

FEEDBACK|NOFEEDBACK



1122 PROC SQL Statement � Chapter 40

specifies whether PROC SQL displays, in the SAS log, PROC SQL statements after
view references are expanded or certain other transformations of the statement are
made.

This option has the following effects:
� Any asterisk (for example, SELECT *) is expanded into the list of qualified

columns that it represents.
� Any PROC SQL view is expanded into the underlying query.
� Macro variables are resolved.
� Parentheses are shown around all expressions to further indicate their order of

evaluation.
� Comments are removed.

Default: NOFEEDBACK

FLOW<=n <m>>|NOFLOW
specifies that character columns longer than n are flowed to multiple lines. PROC
SQL sets the column width at n and specifies that character columns longer than n
are flowed to multiple lines. When you specify FLOW=n m, PROC SQL floats the
width of the columns between these limits to achieve a balanced layout. Specifying
FLOW without arguments is equivalent to specifying FLOW=12 200.
Default: NOFLOW

INOBS=n
restricts the number of rows (observations) that PROC SQL retrieves from any single
source.
Tip: This option is useful for debugging queries on large tables.

LOOPS=n
restricts PROC SQL to n iterations through its inner loop. You use the number of
iterations reported in the SQLOOPS macro variable (after each SQL statement is
executed) to discover the number of loops. Set a limit to prevent queries from
consuming excessive computer resources. For example, joining three large tables
without meeting the join-matching conditions could create a huge internal table that
would be inefficient to execute.
See also: “Using Macro Variables Set by PROC SQL” on page 1202

NODOUBLE
See DOUBLE|NODOUBLE on page 1121.

NOERRORSTOP
See ERRORSTOP|NOERRORSTOP on page 1121.

NOEXEC
See EXEC|NOEXEC on page 1121.

NOFEEDBACK
See FEEDBACK|NOFEEDBACK on page 1121.

NOFLOW
See FLOW|NOFLOW on page 1122.

NONUMBER
See NUMBER|NONUMBER on page 1123.

NOPRINT
See PRINT|NOPRINT on page 1123.

NOPROMPT
See PROMPT|NOPROMPT on page 1123.



The SQL Procedure � PROC SQL Statement 1123

NOSORTMSG
See SORTMSG|NOSORTMSG on page 1123.

NOSTIMER
See STIMER|NOSTIMER on page 1123.

NOTHREADS
See THREADS|NOTHREADS.

NUMBER|NONUMBER
specifies whether the SELECT statement includes a column called ROW, which is the
row (or observation) number of the data as the rows are retrieved.
Default: NONUMBER
Featured in: Example 4 on page 1213

OUTOBS=n
restricts the number of rows (observations) in the output. For example, if you specify
OUTOBS=10 and insert values into a table using a query-expression, then the SQL
procedure inserts a maximum of 10 rows. Likewise, OUTOBS=10 limits the output to
10 rows.

PRINT|NOPRINT
specifies whether the output from a SELECT statement is printed.
Default: PRINT
Tip: NOPRINT is useful when you are selecting values from a table into macro

variables and do not want anything to be displayed.

PROMPT|NOPROMPT
modifies the effect of the INOBS=, OUTOBS=, and LOOPS= options. If you specify
the PROMPT option and reach the limit specified by INOBS=, OUTOBS=, or
LOOPS=, then PROC SQL prompts you to stop or continue. The prompting repeats if
the same limit is reached again.
Default: NOPROMPT

SORTMSG|NOSORTMSG
Certain operations, such as ORDER BY, may sort tables internally using PROC
SORT. Specifying SORTMSG requests information from PROC SORT about the sort
and displays the information in the log.
Default: NOSORTMSG

SORTSEQ=sort-table
specifies the collating sequence to use when a query contains an ORDER BY clause.
Use this option only if you want a collating sequence other than your system’s or
installation’s default collating sequence.
See also: SORTSEQ= option in SAS Language Reference: Dictionary.

STIMER|NOSTIMER
specifies whether PROC SQL writes timing information to the SAS log for each
statement, rather than as a cumulative value for the entire procedure. For this
option to work, you must also specify the SAS system option STIMER. Some
operating environments require that you specify this system option when you invoke
SAS. If you use the system option alone, then you receive timing information for the
entire SQL procedure, not on a statement-by-statement basis.
Default: NOSTIMER

THREADS|NOTHREADS
overrides the SAS system option THREADS|NOTHREADS for a particular
invocation of PROC SQL. THREADS|NOTHREADS can also be specified in a



1124 ALTER TABLE Statement � Chapter 40

RESET statement for use in particular queries. When THREADS is specified, PROC
SQL uses parallel processing in order to increase the performance of sorting
operations that involve large amounts of data. For more information about parallel
processing, see SAS Language Reference: Concepts.
Default: value of SAS system option THREADS|NOTHREADS.

Note: When THREADS|NOTHREADS has been specified in a PROC SQL
statement or a RESET statement, there is no way to reset the option to its default
(that is, the value of the SAS system option THREADS|NOTHREADS) for that
invocation of PROC SQL. �

UNDO_POLICY=NONE|OPTIONAL|REQUIRED
specifies how PROC SQL handles updated data if errors occur while you are
updating data. You can use UNDO_POLICY= to control whether your changes will
be permanent:

NONE
keeps any updates or inserts.

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
reverses all inserts or updates that have been done to the point of the error. In
some cases, the UNDO operation cannot be done reliably. For example, when a
program uses a SAS/ACCESS view, it may not be able to reverse the effects of the
INSERT and UPDATE statements without reversing the effects of other changes
at the same time. In that case, PROC SQL issues an error message and does not
execute the statement. Also, when a SAS data set is accessed through a
SAS/SHARE server and is opened with the data set option CNTLLEV=RECORD,
you cannot reliably reverse your changes.

This option may enable other users to update newly inserted rows. If an error
occurs during the insert, then PROC SQL can delete a record that another user
updated. In that case, the statement is not executed, and an error message is
issued.

Default: REQUIRED
Note: Options can be added, removed, or changed between PROC SQL statements

with the RESET statement. �

ALTER TABLE Statement

Adds columns to, drops columns from, and changes column attributes in an existing table. Adds,
modifies, and drops integrity constraints from an existing table.

Restriction: You cannot use any type of view in an ALTER TABLE statement.
Restriction: You cannot use ALTER TABLE on a table that is accessed by an engine that
does not support UPDATE processing.
Restriction: You must use at least one ADD, DROP, or MODIFY clause in the ALTER
TABLE statement.
Featured in: Example 3 on page 1211

ALTER TABLE table-name



The SQL Procedure � ALTER TABLE Statement 1125

<ADD <CONSTRAINT> constraint-clause<, … constraint-clause>>
<ADD column-definition<, … column-definition>>
<DROP CONSTRAINT constraint-name <, … constraint-name>>
<DROP column<, … column>>

<DROP FOREIGN KEY constraint-name>
<DROP PRIMARY KEY>
<MODIFY column-definition<, … column-definition>>

;

Arguments

<ADD <CONSTRAINT> constraint-clause<, … constraint-clause>>
adds the integrity constraint that is specified in constraint-clause.

<ADD column-definition<, … column-definition>>
adds the column(s) that are specified in each column-definition.

column
names a column in table-name.

column-definition
See “column-definition” on page 1159.

constraint
is one of the following integrity constraints:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (column<, … column>)
REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is specified
for REFERENCES). The referential-actions are performed when the values of a
primary key column that is referenced by the foreign key are updated or deleted.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

PRIMARY KEY (column<, … column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.

UNIQUE (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-clause
consists of



1126 ALTER TABLE Statement � Chapter 40

constraint-name constraint <MESSAGE=’message-string’
<MSGTYPE=message-type>>

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �

<DROP column<, … column>>
deletes each column from the table.

<DROP CONSTRAINT constraint-name<, …) (constraint-name>>
deletes the integrity constraint that is referenced by each constraint-name. To find
the name of an integrity constraint, use the DESCRIBE TABLE CONSTRAINTS
clause (see “DESCRIBE Statement” on page 1136).

<DROP FOREIGN KEY constraint-name>
Removes the foreign key constraint that is referenced by constraint-name.

Note: The DROP FOREIGN KEY clause is a DB2 extension. �

<DROP PRIMARY KEY>
Removes the primary key constraint from table-name.

Note: The DROP PRIMARY KEY clause is a DB2 extension. �

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

<MODIFY column-definition<, … column-definition>>
changes one or more attributes of the column that is specified in each
column-definition.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
prevents the update or deletion of primary key data values if a matching value
exists in the foreign key. This referential action is the default.

SET NULL
allows primary key data values to be updated, and sets all matching foreign key
values to NULL.

table-name



The SQL Procedure � ALTER TABLE Statement 1127

� in the ALTER TABLE statement, refers to the name of the table that is to be
altered.

� in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the WHERE
clause.

Specifying Initial Values of New Columns
When the ALTER TABLE statement adds a column to the table, it initializes the

column’s values to missing in all rows of the table. Use the UPDATE statement to add
values to the new column(s).

Changing Column Attributes
If a column is already in the table, then you can change the following column

attributes by using the MODIFY clause: length, informat, format, and label. The values
in a table are either truncated or padded with blanks (if character data) as necessary to
meet the specified length attribute.

You cannot change a character column to numeric and vice versa. To change a
column’s data type, drop the column and then add it (and its data) again, or use the
DATA step.

Note: You cannot change the length of a numeric column with the ALTER TABLE
statement. Use the DATA step instead. �

Renaming Columns
To change a column’s name, you must use the SAS data set option RENAME=. You

cannot change this attribute with the ALTER TABLE statement. RENAME= is
described in the section on SAS data set options in SAS Language Reference: Dictionary.

Indexes on Altered Columns
When you alter the attributes of a column and an index has been defined for that

column, the values in the altered column continue to have the index defined for them. If
you drop a column with the ALTER TABLE statement, then all the indexes (simple and
composite) in which the column participates are also dropped. See “CREATE INDEX
Statement” on page 1128 for more information about creating and using indexes.

Integrity Constraints
Use ALTER TABLE to modify integrity constraints for existing tables. Use the

CREATE TABLE statement to attach integrity constraints to new tables. For more
information on integrity constraints, see the section on SAS files in SAS Language
Reference: Concepts.



1128 CONNECT Statement � Chapter 40

CONNECT Statement

Establishes a connection with a DBMS that is supported by SAS/ACCESS software.

Requirement: SAS/ACCESS software is required. For more information about this
statement, refer to your SAS/ACCESS documentation.

See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1198

CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(dbms-argument-1=value <… dbms-argument-n=value>)>;

Arguments

alias
specifies an alias that has 1 to 32 characters. The keyword AS must precede alias.
Some DBMSs allow more than one connection. The optional AS clause enables you to
name the connections so that you can refer to them later.

connect-statement-argument=value
specifies values for arguments that indicate whether you can make multiple
connections, shared or unique connections, and so on, to the database. These
arguments are optional, but if they are included, then they must be enclosed in
parentheses. See SAS/ACCESS for Relational Databases: Reference for more
information about these arguments.

database-connection-argument=value
specifies values for the DBMS-specific arguments that are needed by PROC SQL in
order to connect to the DBMS. These arguments are optional for most databases, but
if they are included, then they must be enclosed in parentheses. For more
information, see the SAS/ACCESS documentation for your DBMS.

dbms-name
identifies the DBMS that you want to connect to (for example, ORACLE or DB2).

CREATE INDEX Statement

Creates indexes on columns in tables.

Restriction: You cannot use CREATE INDEX on a table that is accessed with an engine
that does not support UPDATE processing.

CREATE <UNIQUE> INDEX index-name

ON table-name ( column <, … column>);



The SQL Procedure � CREATE INDEX Statement 1129

Arguments

column
specifies a column in table-name.

index-name
names the index that you are creating. If you are creating an index on one column
only, then index-name must be the same as column. If you are creating an index on
more than one column, then index-name cannot be the same as any column in the
table.

table-name
specifies a PROC SQL table.

Indexes in PROC SQL
An index stores both the values of a table’s columns and a system of directions that

enable access to rows in that table by index value. Defining an index on a column or set
of columns enables SAS, under certain circumstances, to locate rows in a table more
quickly and efficiently. Indexes enable PROC SQL to execute the following classes of
queries more efficiently:

� comparisons against a column that is indexed

� an IN subquery where the column in the inner subquery is indexed

� correlated subqueries, where the column being compared with the correlated
reference is indexed

� join-queries, where the join-expression is an equals comparison and all the
columns in the join-expression are indexed in one of the tables being joined.

SAS maintains indexes for all changes to the table, whether the changes originate
from PROC SQL or from some other source. Therefore, if you alter a column’s definition
or update its values, then the same index continues to be defined for it. However, if an
indexed column in a table is dropped, then the index on it is also dropped.

You can create simple or composite indexes. A simple index is created on one column
in a table. A simple index must have the same name as that column. A composite index
is one index name that is defined for two or more columns. The columns can be
specified in any order, and they can have different data types. A composite index name
cannot match the name of any column in the table. If you drop a composite index, then
the index is dropped for all the columns named in that composite index.

UNIQUE Keyword
The UNIQUE keyword causes SAS to reject any change to a table that would cause

more than one row to have the same index value. Unique indexes guarantee that data
in one column, or in a composite group of columns, remain unique for every row in a
table. For this reason, a unique index cannot be defined for a column that includes
NULL or missing values.

Managing Indexes
You can use the CONTENTS statement in the DATASETS procedure to display a

table’s index names and the columns for which they are defined. You can also use the
DICTIONARY tables INDEXES, TABLES, and COLUMNS to list information about
indexes. For more information, see “Using the DICTIONARY Tables” on page 1199.



1130 CREATE TABLE Statement � Chapter 40

See the section on SAS files in SAS Language Reference: Dictionary for a further
description of when to use indexes and how they affect SAS statements that handle
BY-group processing.

CREATE TABLE Statement

Creates PROC SQL tables.

Featured in: Example 1 on page 1207 and Example 2 on page 1209

u CREATE TABLE table-name

(column-specification<, …column-specification | constraint-specification>)
;

v CREATE TABLE table-name LIKE table-name2;

w CREATE TABLE table-name AS query-expression

<ORDER BY order-by-item<, … order-by-item>>;

Arguments

column-constraint
is one of the following:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT
specifies that the values of the column must be unique. This constraint is identical
to UNIQUE.

NOT NULL
specifies that the column does not contain a null or missing value, including
special missing values.

PRIMARY KEY
specifies that the column is a primary key column, that is, a column that does not
contain missing values and whose values are unique.

REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

specifies that the column is a foreign key, that is, a column whose values are
linked to the values of the primary key variable in another table (the table-name
that is specified for REFERENCES). The referential-actions are performed when
the values of a primary key column that is referenced by the foreign key are
updated or deleted.

UNIQUE
specifies that the values of the column must be unique. This constraint is identical
to DISTINCT.



The SQL Procedure � CREATE TABLE Statement 1131

Note: If you specify column-constraint, then SAS automatically assigns a name to
the constraint. The constraint name has the form

Default name Constraint type

_CKxxxx_ Check

_FKxxxx_ Foreign key

_NMxxxx_ Not Null

_PKxxxx_ Primary key

_UNxxxx_ Unique

where xxxx is a counter that begins at 0001.

�

column-definition
See “column-definition” on page 1159.

column-specification
consists of

column-definition <column-constraint>

constraint
is one of the following:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (<column<, … column>)
REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is specified
for REFERENCES). The referential-actions are performed when the values of a
primary key column that is referenced by the foreign key are updated or deleted.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

PRIMARY KEY (column<, … column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.

UNIQUE (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �



1132 CREATE TABLE Statement � Chapter 40

constraint-specification
consists of

CONSTRAINT constraint-name constraint <MESSAGE=’message-string’
<MSGTYPE=message-type>>

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

ORDER BY order-by-item
sorts the rows in table-name by the values of each order-by-item. See ORDER BY
Clause on page 1151.

query-expression
creates table-name from the results of a query. See “query-expression” on page 1176.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
occurs only if there are matching foreign key values. This referential action is the
default.

SET NULL
sets all matching foreign key values to NULL.

table-name
� in the CREATE TABLE statement, refers to the name of the table that is to be

created. You can use data set options by placing them in parentheses
immediately after table-name. See “Using SAS Data Set Options with PROC
SQL” on page 1197 for details.

� in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name2
creates table-name with the same column names and column attributes as
table-name2, but with no rows.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the WHERE
clause.

Creating a Table without Rows



The SQL Procedure � CREATE VIEW Statement 1133

u The first form of the CREATE TABLE statement creates tables that automatically
map SQL data types to those that are supported by SAS. Use this form when you
want to create a new table with columns that are not present in existing tables. It
is also useful if you are running SQL statements from an SQL application in
another SQL-based database.

v The second form uses a LIKE clause to create a table that has the same column
names and column attributes as another table. To drop any columns in the new
table, you can specify the DROP= data set option in the CREATE TABLE
statement. The specified columns are dropped when the table is created. Indexes
are not copied to the new table.

Both of these forms create a table without rows. You can use an INSERT
statement to add rows. Use an ALTER TABLE statement to modify column
attributes or to add or drop columns.

Creating a Table from a Query Expression

w The third form of the CREATE TABLE statement stores the results of any
query-expression in a table and does not display the output. It is a convenient way
to create temporary tables that are subsets or supersets of other tables.

When you use this form, a table is physically created as the statement is
executed. The newly created table does not reflect subsequent changes in the
underlying tables (in the query-expression). If you want to continually access the
most current data, then create a view from the query expression instead of a table.
See “CREATE VIEW Statement” on page 1133.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of a CREATE TABLE AS statement, doing
so can cause data integrity problems and incorrect results. Constructions such
as the following should be avoided:

proc sql;
create table a as

select var1, var2
from a;

�

Integrity Constraints
You can attach integrity constraints when you create a new table. To modify integrity

constraints, use the ALTER TABLE statement. For more information on integrity
constraints, see the section on SAS files in SAS Language Reference: Concepts.

CREATE VIEW Statement

Creates a PROC SQL view from a query-expression.

See also: “What Are Views?” on page 1115

Featured in: Example 8 on page 1224



1134 CREATE VIEW Statement � Chapter 40

CREATE VIEW proc-sql-view AS query-expression
<ORDER BY order-by-item<, … order-by-item>>
<USING libname-clause<, … libname-clause>> ;

Arguments

query-expression
See “query-expression” on page 1176.

libname-clause
is one of the following:

LIBNAME libref <engine> ’SAS-data-library’ <option(s)> <engine-host-option(s)>

LIBNAME libref SAS/ACCESS-engine-name
<SAS/ACCESS-engine-connection-option(s)>
<SAS/ACCESS-engine-LIBNAME-option(s)>

See the SAS Language Reference: Dictionary for information about the base SAS
LIBNAME statement and the SAS/ACCESS LIBNAME statement.

order-by-item
See ORDER BY Clause on page 1151.

proc-sql-view
specifies the name for the PROC SQL view that you are creating. See “What Are
Views?” on page 1115 for a definition of a PROC SQL view.

Sorting Data Retrieved by Views
PROC SQL enables you to specify the ORDER BY clause in the CREATE VIEW

statement. When a view with an ORDER BY clause is accessed, and the ORDER BY
clause directly affects the order of the results, its data is sorted and displayed as
specified by the ORDER BY clause. However, if the ORDER BY clause does not directly
affect the order of the results (for instance, if the view is specified as part of a join),
then PROC SQL ignores the ORDER BY clause in order to enhance performance.

Note: If you specify the NUMBER option in the PROC SQL statement when you
create your view, then the ROW column appears in the output. However, you cannot
order by the ROW column in subsequent queries. See the description of
NUMBER|NONUMBER on page 1123. �

Librefs and Stored Views
You can refer to a table name alone (without the libref) in the FROM clause of a

CREATE VIEW statement if the table and view reside in the same SAS data library, as
in this example:

create view proclib.view1 as
select *

from invoice
where invqty>10;

In this view, VIEW1 and INVOICE are stored permanently in the SAS data library
referenced by PROCLIB. Specifying a libref for INVOICE is optional.



The SQL Procedure � DELETE Statement 1135

Updating Views
You can update a view’s underlying data with some restrictions. See “Updating

PROC SQL and SAS/ACCESS Views” on page 1203.

Embedded LIBNAME Statements
The USING clause enables you to store DBMS connection information in a view by

embedding the SAS/ACCESS LIBNAME statement inside the view. When PROC SQL
executes the view, the stored query assigns the libref and establishes the DBMS
connection using the information in the LIBNAME statement. The scope of the libref is
local to the view, and will not conflict with any identically named librefs in the SAS
session. When the query finishes, the connection to the DBMS is terminated and the
libref is deassigned.

The USING clause must be the last clause in the CREATE VIEW statement. Multiple
LIBNAME statements can be specified, separated by commas. In the following example,
a connection is made and the libref ACCREC is assigned to an ORACLE database.

create view proclib.view1 as
select *

from accrec.invoices as invoices
using libname accrec oracle

user=username pass=password
path=’dbms-path’;

For more information on the SAS/ACCESS LIBNAME statement, see the SAS/ACCESS
documentation for your DBMS.

Note: Starting in Version 9, PROC SQL views, the Pass-Through Facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational DBMS
data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See “The
CV2VIEW Procedure” in SAS/ACCESS for Relational Databases: Reference for more
information. �

You can also embed a SAS LIBNAME statement in a view with the USING clause.
This enables you to store SAS libref information in the view. Just as in the embedded
SAS/ACCESS LIBNAME statement, the scope of the libref is local to the view, and it
will not conflict with an identically named libref in the SAS session.

create view work.tableview as
select * from proclib.invoices

using libname proclib ’sas-data-library’;

DELETE Statement

Removes one or more rows from a table or view that is specified in the FROM clause.

Restriction: You cannot use DELETE FROM on a table that is accessed by an engine
that does not support UPDATE processing.

Featured in: Example 5 on page 1216

DELETE



1136 DESCRIBE Statement � Chapter 40

FROM table-name|sas/access-view|proc-sql-view <AS alias>
<WHERE sql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view that you are deleting rows from.

proc-sql-view
specifies a PROC SQL view that you are deleting rows from. proc-sql-view can be a
one-level name, a two-level libref.view name, or a physical pathname that is enclosed
in single quotation marks.

sql-expression
See “sql-expression” on page 1182.

table-name
specifies the table that you are deleting rows from. table-name can be a one-level
name, a two-level libref.table name, or a physical pathname that is enclosed in single
quotation marks.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of a DELETE statement, doing so can cause
data integrity problems and incorrect results. Constructions such as the following
should be avoided:

proc sql;
delete from a

where var1 > (select min(var2) from a);

�

Deleting Rows through Views
You can delete one or more rows from a view’s underlying table, with some

restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1203.

CAUTION:
If you omit a WHERE clause, then the DELETE statement deletes all the rows from the
specified table or the table that is described by a view. �

DESCRIBE Statement

Displays a PROC SQL definition in the SAS log.

Restriction: PROC SQL views are the only type of view allowed in a DESCRIBE VIEW
statement.
Featured in: Example 6 on page 1218

DESCRIBE TABLE table-name <, … table-name>;



The SQL Procedure � DISCONNECT Statement 1137

DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;

DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;

Arguments

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Details

� The DESCRIBE TABLE statement writes a CREATE TABLE statement to the
SAS log for the table specified in the DESCRIBE TABLE statement, regardless of
how the table was originally created (for example, with a DATA step). If
applicable, SAS data set options are included with the table definition. If indexes
are defined on columns in the table, then CREATE INDEX statements for those
indexes are also written to the SAS log.

When you are transferring a table to a DBMS that is supported by
SAS/ACCESS software, it is helpful to know how it is defined. To find out more
information about a table, use the FEEDBACK option or the CONTENTS
statement in the DATASETS procedure.

� The DESCRIBE VIEW statement writes a view definition to the SAS log. If you
use a PROC SQL view in the DESCRIBE VIEW statement that is based on or
derived from another view, then you might want to use the FEEDBACK option in
the PROC SQL statement. This option displays in the SAS log how the underlying
view is defined and expands any expressions that are used in this view definition.
The CONTENTS statement in DATASETS procedure can also be used with a view
to find out more information.

� The DESCRIBE TABLE CONSTRAINTS statement lists the integrity constraints
that are defined for the specified table(s).

DISCONNECT Statement

Ends the connection with a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1198

DISCONNECT FROM dbms-name|alias;

Arguments



1138 DROP Statement � Chapter 40

alias
specifies the alias that is defined in the CONNECT statement.

dbms-name
specifies the DBMS from which you want to end the connection (for example, DB2 or
ORACLE). The name you specify should match the name that is specified in the
CONNECT statement.

Details

� An implicit COMMIT is performed before the DISCONNECT statement ends the
DBMS connection. If a DISCONNECT statement is not submitted, then implicit
DISCONNECT and COMMIT actions are performed and the connection to the
DBMS is broken when PROC SQL terminates.

� PROC SQL continues executing until you submit a QUIT statement, another SAS
procedure, or a DATA step.

DROP Statement

Deletes tables, views, or indexes.

Restriction: You cannot use DROP TABLE or DROP INDEX on a table that is accessed
by an engine that does not support UPDATE processing.

DROP TABLE table-name <, … table-name>;

DROP VIEW view-name <, … view-name>;

DROP INDEX index-name <, … index-name>
FROM table-name;

Arguments

index-name
specifies an index that exists on table-name.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

view-name
specifies a SAS data view of any type: PROC SQL view, SAS/ACCESS view, or DATA
step view. view-name can be a one-level name, a two-level libref.view name, or a
physical pathname that is enclosed in single quotation marks.

Details

� If you drop a table that is referenced in a view definition and try to execute the
view, then an error message is written to the SAS log that states that the table
does not exist. Therefore, remove references in queries and views to any table(s)
and view(s) that you drop.



The SQL Procedure � INSERT Statement 1139

� If you drop a table with indexed columns, then all the indexes are automatically
dropped. If you drop a composite index, then the index is dropped for all the
columns that are named in that index.

� You can use the DROP statement to drop a table or view in an external database
that is accessed with the Pass-Through Facility or SAS/ACCESS LIBNAME
statement, but not for an external database table or view that is described by a
SAS/ACCESS view.

EXECUTE Statement

Sends a DBMS-specific SQL statement to a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1198 and the SQL documentation for your DBMS.

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

Arguments

alias
specifies an optional alias that is defined in the CONNECT statement. Note that
alias must be preceded by the keyword BY.

dbms-name
identifies the DBMS to which you want to direct the DBMS statement (for example,
ORACLE or DB2).

dbms-SQL-statement
is any DBMS-specific SQL statement, except the SELECT statement, that can be
executed by the DBMS-specific dynamic SQL.

Details

� If your DBMS supports multiple connections, then you can use the alias that is
defined in the CONNECT statement. This alias directs the EXECUTE statements
to a specific DBMS connection.

� Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement completes.

INSERT Statement

Adds rows to a new or existing table or view.

Restriction: You cannot use INSERT INTO on a table that is accessed with an engine
that does not support UPDATE processing.
Featured in: Example 1 on page 1207



1140 INSERT Statement � Chapter 40

u INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>
SET column=sql-expression

<, … column=sql-expression>
<SET column=sql-expression

<, … column=sql-expression>>;

v INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>
VALUES (value <, … value>)

<… VALUES (value <, … value>)>;

w INSERT INTO table-name|sas/access-view|proc-sql-view
<(column<, …column>)> query-expression;

Arguments

column
specifies the column into which you are inserting rows.

proc-sql-view
specifies a PROC SQL view into which you are inserting rows. proc-sql-view can be a
one-level name, a two-level libref.view name, or a physical pathname that is enclosed
in single quotation marks.

query-expression
See “query-expression” on page 1176.

sas/access-view
specifies a SAS/ACCESS view into which you are inserting rows.

sql-expression
See “sql-expression” on page 1182.

table-name
specifies a PROC SQL table into which you are inserting rows. table-name can be a
one-level name, a two-level libref.table name, or a physical pathname that is enclosed
in single quotation marks.

value
is a data value.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of an INSERT statement, doing so can cause
data integrity problems and incorrect results. Constructions such as the following
should be avoided:

proc sql;
insert into a

select var1, var2
from a
where var1 > 0;

�

Methods for Inserting Values

u The first form of the INSERT statement uses the SET clause, which specifies or
alters the values of a column. You can use more than one SET clause per INSERT



The SQL Procedure � RESET Statement 1141

statement, and each SET clause can set the values in more than one column.
Multiple SET clauses are not separated by commas. If you specify an optional list
of columns, then you can set a value only for a column that is specified in the list
of columns to be inserted.

v The second form of the INSERT statement uses the VALUES clause. This clause
can be used to insert lists of values into a table. You can either give a value for
each column in the table or give values just for the columns specified in the list of
column names. One row is inserted for each VALUES clause. Multiple VALUES
clauses are not separated by commas. The order of the values in the VALUES
clause matches the order of the column names in the INSERT column list or, if no
list was specified, the order of the columns in the table.

w The third form of the INSERT statement inserts the results of a query-expression
into a table. The order of the values in the query-expression matches the order of
the column names in the INSERT column list or, if no list was specified, the order
of the columns in the table.

Note: If the INSERT statement includes an optional list of column names, then only
those columns are given values by the statement. Columns that are in the table but not
listed are given missing values. �

Inserting Rows through Views
You can insert one or more rows into a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1203.

Adding Values to an Indexed Column
If an index is defined on a column and you insert a new row into the table, then that

value is added to the index. You can display information about indexes with

� the CONTENTS statement in the DATASETS procedure. See “CONTENTS
Statement” on page 344.

� the DICTIONARY.INDEXES table. See “Using the DICTIONARY Tables” on page
1199 for more information.

For more information on creating and using indexes, see “CREATE INDEX
Statement” on page 1128.

RESET Statement

Resets PROC SQL options without restarting the procedure.

Featured in: Example 5 on page 1216

RESET <option(s)>;

The RESET statement enables you to add, drop, or change the options in PROC SQL
without restarting the procedure. See “PROC SQL Statement” on page 1119 for a
description of the options.



1142 SELECT Statement � Chapter 40

SELECT Statement

Selects columns and rows of data from tables and views.

Restriction: The clauses in the SELECT statement must appear in the order shown.
See also: “table-expression” on page 1196, “query-expression” on page 1176

SELECT <DISTINCT> object-item <, …object-item>
<INTO macro-variable-specification

<, … macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<, … group-by-item>>
<HAVING sql-expression>
<ORDER BY order-by-item

<, … order-by-item>>;

SELECT Clause

Lists the columns that will appear in the output.

See Also: “column-definition” on page 1159
Featured in: Example 1 on page 1207 and Example 2 on page 1209

SELECT <DISTINCT> object-item <, … object-item>

Arguments

alias
assigns a temporary, alternate name to the column.

DISTINCT
eliminates duplicate rows.
Featured in: Example 13 on page 1235

object-item
is one of the following:

*
represents all columns in a tables or views that are listed in the FROM clause.

case-expression <AS alias>
derives a column from a CASE expression. See “CASE expression” on page 1157.

column-name <<AS> alias>
<column-modifier <… column-modifier>>



The SQL Procedure � INTO Clause 1143

names a single column. See “column-name” on page 1161 and “column-modifier”
on page 1160.

sql-expression <AS alias>
<column-modifier <… column modifier>>

derives a column from an sql-expression. See “sql-expression” on page 1182 and
“column-modifier” on page 1160.

table-name.*
specifies all columns in the PROC SQL table that is specified in table-name.

table-alias.*
specifies all columns in the PROC SQL table that has the alias that is specified in
table-alias.

view-name.*
specifies all columns in the SAS data view that is specified in view-name.

view-alias.*
specifies all columns in the SAS data view that has the alias that is specified in
view-alias.

Asterisk (*) Notation
The asterisk (*) represents all columns of the table(s) listed in the FROM clause.

When an asterisk is not prefixed with a table name, all the columns from all tables in
the FROM clause are included; when it is prefixed (for example, table-name.* or
table-alias.*), all the columns from that table only are included.

Column Aliases
A column alias is a temporary, alternate name for a column. Aliases are specified in

the SELECT clause to name or rename columns so that the result table is clearer or
easier to read. Aliases are often used to name a column that is the result of an
arithmetic expression or summary function. An alias is one word only. If you need a
longer column name, then use the LABEL= column-modifier, as described in
“column-modifier” on page 1160. The keyword AS is not required with a column alias.

Column aliases are optional, and each column name in the SELECT clause can have
an alias. After you assign an alias to a column, you can use the alias to refer to that
column in other clauses.

If you use a column alias when creating a PROC SQL view, then the alias becomes
the permanent name of the column for each execution of the view.

INTO Clause

Stores the value of one or more columns for use later in another PROC SQL query or SAS
statement.

Restriction: An INTO clause cannot be used in a CREATE TABLE statement.
See also: “Using Macro Variables Set by PROC SQL” on page 1202

INTO macro-variable-specification
<, … macro-variable-specification>



1144 INTO Clause � Chapter 40

Arguments

macro-variable
specifies a SAS macro variable that stores the values of the rows that are returned.

macro-variable-specification
is one of the following:

:macro-variable <SEPARATED BY ’character(s)’ <NOTRIM>>
stores the values that are returned into a single macro variable.

:macro-variable-1 – :macro-variable-n <NOTRIM>
stores the values that are returned into a range of macro variables.

NOTRIM
protects the leading and trailing blanks from being deleted from values that are
stored in a range of macro variables or multiple values that are stored in a single
macro variable.

SEPARATED BY ’character’
specifies a character that separates the values of the rows.

Details

� Use the INTO clause only in the outer query of a SELECT statement and not in a
subquery.

� When storing a single value into a macro variable, PROC SQL preserves leading
or trailing blanks. However, when storing values into a range of macro variables,
or when using the SEPARATED BY option to store multiple values in one macro
variable, PROC SQL trims leading or trailing blanks unless you use the NOTRIM
option.

� You can put multiple rows of the output into macro variables. You can check the
PROC SQL macro variable SQLOBS to see the number of rows that are produced
by a query-expression. See “Using Macro Variables Set by PROC SQL” on page
1202 for more information on SQLOBS.

Examples
These examples use the PROCLIB.HOUSES table:

The SAS System 1

Style SqFeet
------------------
CONDO 900
CONDO 1000
RANCH 1200
RANCH 1400
SPLIT 1600
SPLIT 1800
TWOSTORY 2100
TWOSTORY 3000
TWOSTORY 1940
TWOSTORY 1860

With the macro-variable-specification, you can do the following:

� You can create macro variables based on the first row of the result.



The SQL Procedure � INTO Clause 1145

proc sql noprint;
select style, sqfeet

into :style, :sqfeet
from proclib.houses;

%put &style &sqfeet;

The results are written to the SAS log:

1 proc sql noprint;
2 select style, sqfeet
3 into :style, :sqfeet
4 from proclib.houses;
5
6 %put &style &sqfeet;
CONDO 900

� You can create one new macro variable per row in the result of the SELECT
statement. This example shows how you can request more values for one column
than for another. The hyphen (-) is used in the INTO clause to imply a range of
macro variables. You can use either of the keywords THROUGH or THRU instead
of a hyphen.

The following PROC SQL step puts the values from the first four rows of the
PROCLIB.HOUSES table into macro variables:

proc sql noprint;
select distinct Style, SqFeet

into :style1 - :style3, :sqfeet1 - :sqfeet4
from proclib.houses;

%put &style1 &sqfeet1;
%put &style2 &sqfeet2;
%put &style3 &sqfeet3;
%put &sqfeet4;

The %PUT statements write the results to the SAS log:

1 proc sql noprint;
2 select distinct style, sqfeet
3 into :style1 - :style3, :sqfeet1 - :sqfeet4
4 from proclib.houses;
5
6 %put &style1 &sqfeet1;
CONDO 900
7 %put &style2 &sqfeet2;
CONDO 1000
8 %put &style3 &sqfeet3;
RANCH 1200
9 %put &sqfeet4;
1400

� You can concatenate the values of one column into one macro variable. This form
is useful for building up a list of variables or constants.

proc sql noprint;
select distinct style

into :s1 separated by ’,’
from proclib.houses;



1146 INTO Clause � Chapter 40

%put &s1;

The results are written to the SAS log:

3 proc sql noprint;
4 select distinct style
5 into :s1 separated by ’,’
6 from proclib.houses;
7
8 %put &s1

CONDO,RANCH,SPLIT,TWOSTORY

� You can use leading zeros in order to create a range of macro variable names, as
shown in the following example:

proc sql noprint;
select SqFeet

into :sqfeet01 - :sqfeet10
from proclib.houses;

%put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
%put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;

The results are written to the SAS log:

11 proc sql noprint;
12 select sqfeet
13 into :sqfeet01 - :sqfeet10
14 from proclib.houses;

15 %put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
900 1000 1200 1400 1600
16 %put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;
1800 2100 3000 1940 1860

� You can prevent leading and trailing blanks from being trimmed from values that
are stored in macro variables. By default, when storing values in a range of macro
variables or when storing multiple values in one macro variable (with the
SEPARATED BY option), PROC SQL trims the leading and trailing blanks from
the values before creating the macro variables. If you do not want the blanks to be
trimmed, then add the NOTRIM option, as shown in the following example:

proc sql noprint;
select style, sqfeet

into :style1 - :style4 notrim,
:sqfeet separated by ’,’ notrim

from proclib.houses;

%put *&style1* *&sqfeet*;
%put *&style2* *&sqfeet*;
%put *&style3* *&sqfeet*;
%put *&style4* *&sqfeet*;



The SQL Procedure � FROM Clause 1147

The results are written to the SAS log, as shown in the following output:

3 proc sql noprint;
4 select style, sqfeet
5 into :style1 - :style4 notrim,
6 :sqfeet separated by ’,’ notrim
7 from proclib.houses;
8
9 %put *&style1* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860*
10 %put *&style2* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**
11 %put *&style3* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**
12 %put *&style4* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**

FROM Clause

Specifies source tables or views.

Featured in: Example 1 on page 1207, Example 4 on page 1213, Example 9 on page 1227,
and Example 10 on page 1230

FROM from-list

Arguments

alias
specifies a temporary, alternate name for a table, view, or in-line view that is
specified in the FROM clause.

column
names the column that appears in the output. The column names that you specify
are matched by position to the columns in the output.

from-list
is one of the following:

table-name <<AS> alias>
names a single PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation
marks.

view-name <<AS> alias>
names a single SAS data view. view-name can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation
marks.

joined-table
specifies a join. See “joined-table” on page 1165.



1148 WHERE Clause � Chapter 40

(query-expression) <<AS alias>
<(column <, … column>)>>

specifies an in-line view. See “query-expression” on page 1176.

CONNECTION TO
specifies a DBMS table. See “CONNECTION TO” on page 1162.

Note: With table-name and view-name, you can use data set options by placing
them in parentheses immediately after table-name or view-name. See “Using SAS
Data Set Options with PROC SQL” on page 1197 for details. �

Table Aliases
A table alias is a temporary, alternate name for a table that is specified in the FROM

clause. Table aliases are prefixed to column names to distinguish between columns that
are common to multiple tables. Column names in reflexive joins (joining a table with
itself) must be prefixed with a table alias in order to distinguish which copy of the table
the column comes from. Column names in other kinds of joins must be prefixed with
table aliases or table names unless the column names are unique to those tables.

The optional keyword AS is often used to distinguish a table alias from other table
names.

In-Line Views
The FROM clause can itself contain a query-expression that takes an optional table

alias. This kind of nested query-expression is called an in-line view. An in-line view is
any query-expression that would be valid in a CREATE VIEW statement. PROC SQL
can support many levels of nesting, but it is limited to 32 tables in any one query. The
32-table limit includes underlying tables that may contribute to views that are specified
in the FROM clause.

An in-line view saves you a programming step. Rather than creating a view and
referring to it in another query, you can specify the view in-line in the FROM clause.

Characteristics of in-line views include the following:
� An in-line view is not assigned a permanent name, although it can take an alias.
� An in-line view can be referred to only in the query in which it is defined. It

cannot be referenced in another query.
� You cannot use an ORDER BY clause in an in-line view.
� The names of columns in an in-line view can be assigned in the object-item list of

that view or with a parenthesized list of names following the alias. This syntax
can be useful for renaming columns. See Example 10 on page 1230 for an example.

� In order to visually separate an in-line view from the rest of the query, you can
enclose the in-line view in any number of pairs of parentheses. Note that if you
specify an alias for the in-line view, the alias specification must appear outside the
outermost pair of parentheses for that in-line view.

WHERE Clause

Subsets the output based on specified conditions.

Featured in: Example 4 on page 1213 and Example 9 on page 1227

WHERE sql-expression



The SQL Procedure � GROUP BY Clause 1149

Argument

sql-expression
See “sql-expression” on page 1182.

Details

� When a condition is met (that is, the condition resolves to true), those rows are
displayed in the result table; otherwise, no rows are displayed.

� You cannot use summary functions that specify only one column. For example:

where max(measure1) > 50;

However, this WHERE clause will work:

where max(measure1,measure2) > 50;

GROUP BY Clause

Specifies how to group the data for summarizing.

Featured in: Example 8 on page 1224 and Example 12 on page 1233

GROUP BY group-by-item <, …, group-by-item>

Arguments

group-by-item
is one of the following:

integer
is a positive integer that equates to a column’s position.

column-name
is the name of a column or a column alias. See “column-name” on page 1161.

sql-expression
See “sql-expression” on page 1182.

Details

� You can specify more than one group-by-item to get more detailed reports. Both
the grouping of multiple items and the BY statement of a PROC step are
evaluated in similar ways. If more than one group-by-item is specified, then the
first one determines the major grouping.

� Integers can be substituted for column names (that is, SELECT object-items) in
the GROUP BY clause. For example, if the group-by-item is 2, then the results are
grouped by the values in the second column of the SELECT clause list. Using



1150 HAVING Clause � Chapter 40

integers can shorten your coding and enable you to group by the value of an
unnamed expression in the SELECT list. Note that if you use a floating-point
value (for example, 2.3), then PROC SQL ignores the decimal portion.

� The data does not have to be sorted in the order of the group-by values because
PROC SQL handles sorting automatically. You can use the ORDER BY clause to
specify the order in which rows are displayed in the result table.

� If you specify a GROUP BY clause in a query that does not contain a summary
function, then your clause is transformed into an ORDER BY clause and a
message to that effect is written to the SAS log.

� You can group the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is grouped by
the integer portion of values of X:

select x, sum(y)
from table1
group by int(x);

Similarly, if Y is a character variable, then the output of the following is grouped
by the second character of values of Y:

select sum(x), y
from table1
group by substring(y from 2 for 1);

Note that an expression that contains only numeric literals (and functions of
numeric literals) or only character literals (and functions of character literals) is
ignored.

An expression in a GROUP BY clause cannot be a summary function. For
example, the following GROUP BY clause is not valid:

group by sum(x)

HAVING Clause

Subsets grouped data based on specified conditions.

Featured in: Example 8 on page 1224 and Example 12 on page 1233

HAVING sql-expression

Argument

sql-expression
See “sql-expression” on page 1182.

Subsetting Grouped Data
The HAVING clause is used with at least one summary function and an optional

GROUP BY clause to summarize groups of data in a table. A HAVING clause is any
valid SQL expression that is evaluated as either true or false for each group in a query.
Alternatively, if the query involves remerged data, then the HAVING expression is
evaluated for each row that participates in each group. The query must include one or
more summary functions.



The SQL Procedure � ORDER BY Clause 1151

Typically, the GROUP BY clause is used with the HAVING expression and defines
the group(s) to be evaluated. If you omit the GROUP BY clause, then the summary
function and the HAVING clause treat the table as one group.

The following PROC SQL step uses the PROCLIB.PAYROLL table (shown in
Example 2 on page 1209) and groups the rows by Gender to determine the oldest
employee of each gender. In SAS, dates are stored as integers. The lower the birth date
as an integer, the greater the age. The expression birth=min(birth)is evaluated for
each row in the table. When the minimum birth date is found, the expression becomes
true and the row is included in the output.

proc sql;
title ’Oldest Employee of Each Gender’;
select *

from proclib.payroll
group by gender
having birth=min(birth);

Note: This query involves remerged data because the values returned by a
summary function are compared to values of a column that is not in the GROUP BY
clause. See “Remerging Data” on page 1192 for more information about summary
functions and remerging data. �

ORDER BY Clause

Specifies the order in which rows are displayed in a result table.

See also: “query-expression” on page 1176
Featured in: Example 11 on page 1231

ORDER BY order-by-item <ASC|DESC><, … order-by-item <ASC|DESC>>;

Arguments

order-by-item
is one of the following:

integer
equates to a column’s position.

column-name
is the name of a column or a column alias. See “column-name” on page 1161.

sql-expression
See “sql-expression” on page 1182.

ASC
orders the data in ascending order. This is the default order; if neither ASC nor
DESC is specified, the data is ordered in ascending order.

DESC



1152 ORDER BY Clause � Chapter 40

orders the data in descending order.

Details

� The ORDER BY clause sorts the result of a query expression according to the
order specified in that query. When this clause is used, the default ordering
sequence is ascending, from the lowest value to the highest. You can use the
SORTSEQ= option to change the collating sequence for your output. See “PROC
SQL Statement” on page 1119.

� If an ORDER BY clause is omitted, then a particular order to the output rows,
such as the order in which the rows are encountered in the queried table, cannot
be guaranteed. Without an ORDER BY clause, the order of the output rows is
determined by the internal processing of PROC SQL, the default collating
sequence of SAS, and your operating environment. Therefore, if you want your
result table to appear in a particular order, then use the ORDER BY clause.

� If more than one order-by-item is specified (separated by commas), then the first
one determines the major sort order.

� Integers can be substituted for column names (that is, SELECT object-items) in
the ORDER BY clause. For example, if the order-by-item is 2 (an integer), then the
results are ordered by the values of the second column. If a query-expression
includes a set operator (for example, UNION), then use integers to specify the
order. Doing so avoids ambiguous references to columns in the table expressions.
Note that if you use a floating-point value (for example, 2.3) instead of an integer,
then PROC SQL ignores the decimal portion.

� In the ORDER BY clause, you can specify any column of a table or view that is
specified in the FROM clause of a query-expression, regardless of whether that
column has been included in the query’s SELECT clause. For example, this query
produces a report ordered by the descending values of the population change for
each country from 1990 to 1995:

proc sql;
select country

from census
order by pop95-pop90 desc;

NOTE: The query as specified involves
ordering by an item that
doesn’t appear in its SELECT clause.

� You can order the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is ordered by
the integer portion of values of X:

select x, y
from table1
order by int(x);

Similarly, if Y is a character variable, then the output of the following is ordered
by the second character of values of Y:

select x, y
from table1
order by substring(y from 2 for 1);



The SQL Procedure � UPDATE Statement 1153

Note that an expression that contains only numeric literals (and functions of
numeric literals) or only character literals (and functions of character literals) is
ignored.

UPDATE Statement

Modifies a column’s values in existing rows of a table or view.

Restriction: You cannot use UPDATE on a table that is accessed by an engine that does
not support UPDATE processing.
Featured in: Example 3 on page 1211

UPDATE table-name|sas/access-view|proc-sql-view <AS alias>
SET column=sql-expression

<, … column=sql-expression>
<SET column=sql-expression

<, … column=sql-expression>>
<WHERE sql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

column
specifies a column in table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view.

sql-expression
See “sql-expression” on page 1182.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Updating Tables through Views
You can update one or more rows of a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1203.

Details

� Any column that is not modified retains its original values, except in certain
queries using the CASE expression. See “CASE expression” on page 1157 for a
description of CASE expressions.



1154 VALIDATE Statement � Chapter 40

� To add, drop, or modify a column’s definition or attributes, use the ALTER TABLE
statement, described in “ALTER TABLE Statement” on page 1124.

� In the SET clause, a column reference on the left side of the equal sign can also
appear as part of the expression on the right side of the equal sign. For example,
you could use this expression to give employees a $1,000 holiday bonus:

set salary=salary + 1000

� If you omit the WHERE clause, then all the rows are updated. When you use a
WHERE clause, only the rows that meet the WHERE condition are updated.

� When you update a column and an index has been defined for that column, the
values in the updated column continue to have the index defined for them.

VALIDATE Statement

Checks the accuracy of a query-expression’s syntax and semantics without executing the
expression.

VALIDATE query-expression;

Argument

query-expression
See “query-expression” on page 1176.

Details

� The VALIDATE statement writes a message in the SAS log that states that the
query is valid. If there are errors, then VALIDATE writes error messages to the
SAS log.

� The VALIDATE statement can also be included in applications that use the macro
facility. When used in such an application, VALIDATE returns a value that
indicates the query-expression’s validity. The value is returned through the macro
variable SQLRC (a short form for SQL return code). For example, if a SELECT
statement is valid, then the macro variable SQLRC returns a value of 0. See
“Using Macro Variables Set by PROC SQL” on page 1202 for more information.

SQL Procedure Component Dictionary
This section describes the components that are used in SQL procedure statements.

Components are the items in PROC SQL syntax that appear in roman type.

Most components are contained in clauses within the statements. For example, the
basic SELECT statement is composed of the SELECT and FROM clauses, where each
clause contains one or more components. Components can also contain other
components.

For easy reference, components appear in alphabetical order, and some terms are
referred to before they are defined. Use the index or the “See Also” references to refer
to other statement or component descriptions that may be helpful.



The SQL Procedure � BTRIM function 1155

BETWEEN condition

Selects rows where column values are within a range of values.

sql-expression <NOT> BETWEEN sql-expression
AND sql-expression

Argument

sql-expression
is described in “sql-expression” on page 1182.

Details

� The sql-expressions must be of compatible data types. They must be either all
numeric or all character types.

� Because a BETWEEN condition evaluates the boundary values as a range, it is
not necessary to specify the smaller quantity first.

� You can use the NOT logical operator to exclude a range of numbers, for example,
to eliminate customer numbers between 1 and 15 (inclusive) so that you can
retrieve data on more recently acquired customers.

� PROC SQL supports the same comparison operators that the DATA step supports.
For example:

x between 1 and 3
x between 3 and 1
1<=x<=3
x>=1 and x<=3

BTRIM function

Removes blanks or specified characters from the beginning, the end, or both the beginning and
end of a character string.

BTRIM (<<btrim-specification> <’btrim-character’ FROM>> sql-expression)

Arguments

btrim-specification
is one of the following:

LEADING
removes the blanks or specified characters from the beginning of the character
string.

TRAILING
removes the blanks or specified characters from the end of the character string.

BOTH



1156 CALCULATED � Chapter 40

removes the blanks or specified characters from both the beginning and the end of
the character string.

Default: BOTH

btrim-character
is a single character that is to be removed from the character string. The default
character is a blank.

sql-expression
must resolve to a character string or character variable and is described in
“sql-expression” on page 1182.

Details
The BTRIM function operates on character strings. BTRIM removes one or more

instances of a single character (the value of btrim-character) from the beginning, the
end, or both the beginning and end of a string, depending whether LEADING,
TRAILING, or BOTH is specified. If btrim-specification is not specified, then BOTH is
used. If btrim-character is omitted, then blanks are removed.

Note: SAS adds trailing blanks to character values that are shorter than the length
of the variable. Suppose you have a character variable Z, with length 10, and a value
xxabcxx. SAS stores the value with three blanks after the last x (for a total length of
10). If you attempt to remove all the x characters with

btrim(both ’x’ from z)

then the result is abcxx because PROC SQL sees the trailing characters as blanks, not
the x character. In order to remove all the x characters, use

btrim(both ’x’ from btrim(z))

The inner BTRIM function removes the trailing blanks before passing the value to the
outer BTRIM function. �

CALCULATED

Refers to columns already calculated in the SELECT clause.

CALCULATED column-alias

Argument

column-alias
is the name that is assigned to the column in the SELECT clause.

Referencing a CALCULATED Column
CALCULATED enables you to use the results of an expression in the same SELECT

clause or in the WHERE clause. It is valid only when used to refer to columns that are
calculated in the immediate query expression.



The SQL Procedure � CASE expression 1157

CASE expression

Selects result values that satisfy specified conditions.

Featured in: Example 3 on page 1211 and Example 13 on page 1235

CASE <case-operand>

WHEN when-condition THEN result-expression

<…WHEN when-condition THEN result-expression>

<ELSE result-expression>

END

Arguments

case-operand
is a valid sql-expression that resolves to a table column whose values are compared
to all the when-conditions. See “sql-expression” on page 1182.

when-condition

� When case-operand is specified, when-condition is a shortened sql-expression
that assumes case-operand as one of its operands and that resolves to true or
false.

� When case-operand is not specified, when-condition is an sql-expression that
resolves to true or false.

result-expression
is an sql-expression that resolves to a value.

Details
The CASE expression selects values if certain conditions are met. A CASE expression

returns a single value that is conditionally evaluated for each row of a table (or view).
Use the WHEN-THEN clauses when you want to execute a CASE expression for some
but not all of the rows in the table that is being queried or created. An optional ELSE
expression gives an alternative action if no THEN expression is executed.

When you omit case-operand, when-condition is evaluated as a Boolean (true or false)
value. If when-condition returns a nonzero, nonmissing result, then the WHEN clause
is true. If case-operand is specified, then it is compared with when-condition for
equality. If case-operand equals when-condition, then the WHEN clause is true.

If the when-condition is true for the row being executed, then the result-expression
following THEN is executed. If when-condition is false, then PROC SQL evaluates the
next when-condition until they are all evaluated. If every when-condition is false, then
PROC SQL executes the ELSE expression, and its result becomes the CASE
expression’s result. If no ELSE expression is present and every when-condition is false,
then the result of the CASE expression is a missing value.

You can use CASE expressions in the SELECT, UPDATE, and INSERT statements,
and as either operand in an sql-expression.



1158 COALESCE Function � Chapter 40

Example
The following two PROC SQL steps show two equivalent CASE expressions that

create a character column with the strings in the THEN clause. The CASE expression
in the second PROC SQL step is a shorthand method that is useful when all the
comparisons are with the same column.

proc sql;
select *, case

when degrees > 80 then ’Hot’
when degrees < 40 then ’Cold’
else ’Mild’
end

from temperatures;

proc sql;
select *, case Degrees

when > 80 then ’Hot’
when < 40 then ’Cold’
else ’Mild’
end

from temperatures;

COALESCE Function

Returns the first nonmissing value from a list of columns.

Featured in: Example 7 on page 1220

COALESCE (column-name <, … column-name>)

Arguments

column-name
is described in “column-name” on page 1161.

Details
COALESCE accepts one or more column names of the same data type. The

COALESCE function checks the value of each column in the order in which they are
listed and returns the first nonmissing value. If only one column is listed, the
COALESCE function returns the value of that column. If all the values of all
arguments are missing, the COALESCE function returns a missing value.

In some SQL DBMSs, the COALESCE function is called the IFNULL function. See
“PROC SQL and the ANSI Standard” on page 1204 for more information.

Note: If your query contains a large number of COALESCE function calls, it might
be more efficient to use a natural join instead. See “Natural Joins” on page 1171. �



The SQL Procedure � column-definition 1159

column-definition

Defines PROC SQL’s data types and dates.

See also: “column-modifier” on page 1160
Featured in: Example 1 on page 1207

column data-type <column-modifier <… column-modifier>>

Arguments

column
is a column name.

column-modifier
is described in “column-modifier” on page 1160.

data-type
is one of the following data types:

CHARACTER|VARCHAR <(width)>
indicates a character column with a column width of width. The default column
width is eight characters.

INTEGER|SMALLINT
indicates an integer column.

DECIMAL|NUMERIC|FLOAT <(width<, ndec>)>
indicates a floating-point column with a column width of width and ndec decimal
places.

REAL|DOUBLE PRECISION
indicates a floating-point column.

DATE
indicates a date column.

Details

� SAS supports many but not all of the data types that SQL-based databases
support.

� For all the numeric data types (INTEGER, SMALLINT, DECIMAL, NUMERIC,
FLOAT, REAL, DOUBLE PRECISION, and DATE), the SQL procedure defaults to
the SAS data type NUMERIC. The width and ndec arguments are ignored; PROC
SQL creates all numeric columns with the maximum precision allowed by SAS. If
you want to create numeric columns that use less storage space, then use the
LENGTH statement in the DATA step. The various numeric data type names,
along with the width and ndec arguments, are included for compatibility with
other SQL software.

� For the character data types (CHARACTER and VARCHAR), the SQL procedure
defaults to the SAS data type CHARACTER. The width argument is honored.



1160 column-modifier � Chapter 40

� The CHARACTER, INTEGER, and DECIMAL data types can be abbreviated to
CHAR, INT, and DEC, respectively.

� A column that is declared with DATE is a SAS numeric variable with a date
informat or format. You can use any of the column-modifiers to set the appropriate
attributes for the column that is being defined. See SAS Language Reference:
Dictionary for more information on dates.

column-modifier

Sets column attributes.

See also: “column-definition” on page 1159 and SELECT Clause on page 1142
Featured in: Example 1 on page 1207 and Example 2 on page 1209

column-modifier

Arguments

column-modifier
is one of the following:

INFORMAT=informatw.d
specifies a SAS informat to be used when SAS accesses data from a table or view.
You can change one permanent informat to another by using the ALTER
statement. PROC SQL stores informats in its table definitions so that other SAS
procedures and the DATA step can use this information when they reference tables
created by PROC SQL.

See SAS Language Reference: Dictionary for more information about informats.

FORMAT=formatw.d
specifies a SAS format for determining how character and numeric values in a
column are displayed by the query-expression. If the FORMAT= modifier is used
in the ALTER, CREATE TABLE, or CREATE VIEW statements, then it specifies
the permanent format to be used when SAS displays data from that table or view.
You can change one permanent format to another by using the ALTER statement.

See SAS Language Reference: Dictionary for more information about formats.

LABEL=’label’
specifies a column label. If the LABEL= modifier is used in the ALTER, CREATE
TABLE, or CREATE VIEW statements, then it specifies the permanent label to be
used when displaying that column. You can change one permanent label to
another by using the ALTER statement.

A label can begin with the following characters: a through z, A through Z, 0
through 9, an underscore (_), or a blank space. If you begin a label with any other
character, such as pound sign (#), then that character is used as a split character
and it splits the label onto the next line wherever it appears. For example:

select dropout label=
’#Percentage of#Students Who#Dropped Out’

from educ(obs=5);

If a special character must appear as the first character in the output, then
precede it with a space or a forward slash (/).



The SQL Procedure � column-name 1161

You can omit the LABEL= part of the column-modifier and still specify a label.
Be sure to enclose the label in quotation marks, as in this example:

select empname "Names of Employees"
from sql.employees;

If an apostrophe must appear in the label, then type it twice so that SAS reads
the apostrophe as a literal. Alternatively, you can use single and double quotation
marks alternately (for example, “Date Rec’d”).

LENGTH=length
specifies the length of the column.

Details
If you refer to a labeled column in the ORDER BY or GROUP BY clause, then you

must use either the column name (not its label), the column’s alias, or its ordering
integer (for example, ORDER BY 2). See the section on SAS statements in SAS
Language Reference: Dictionary for more information about labels.

column-name

Specifies the column to select.

See also: “column-modifier” on page 1160 and SELECT Clause on page 1142

column-name

column-name
is one of the following:

column
is the name of a column.

table-name.column
is the name of a column in the table table-name.

table-alias.column
is the name of a column in the table that is referenced by table-alias.

view-name.column
is the name of a column in the view view-name.

view-alias.column
is the name of a column in the view that is referenced by view-alias.

Details
A column can be referred to by its name alone if it is the only column by that name

in all the tables or views listed in the current query-expression. If the same column
name exists in more than one table or view in the query-expression, then you must



1162 CONNECTION TO � Chapter 40

qualify each use of the column name by prefixing a reference to the table that contains
it. Consider the following examples:

SALARY /* name of the column */
EMP.SALARY /* EMP is the table or view name */
E.SALARY /* E is an alias for the table

or view that contains the
SALARY column */

CONNECTION TO

Retrieves and uses DBMS data in a PROC SQL query or view.

Tip: You can use CONNECTION TO in the SELECT statement’s FROM clause as part
of the from-list.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1198 and your SAS/ACCESS documentation.

CONNECTION TO dbms-name (dbms-query)

CONNECTION TO alias (dbms-query)

Arguments

alias
specifies an alias, if one was defined in the CONNECT statement.

dbms-name
identifies the DBMS that you are using.

dbms-query
specifies the query to send to a DBMS. The query uses the DBMS’s dynamic SQL.
You can use any SQL syntax that the DBMS understands, even if that is not valid for
PROC SQL. However, your DBMS query cannot contain a semicolon because that
represents the end of a statement to SAS.

The number of tables that you can join with dbms-query is determined by the
DBMS. Each CONNECTION TO component counts as one table toward the 32-table
PROC SQL limit for joins.

See SAS/ACCESS for Relational Databases: Reference for more information about
DBMS queries.

CONTAINS condition

Tests whether a string is part of a column’s value.

Restriction: The CONTAINS condition is used only with character operands.
Featured in: Example 7 on page 1220



The SQL Procedure � IN condition 1163

sql-expression <NOT> CONTAINS sql-expression

Argument

sql-expression
is described in “sql-expression” on page 1182.

EXISTS condition

Tests if a subquery returns one or more rows.

See also: “Query Expressions (Subqueries)” on page 1185

<NOT> EXISTS (query-expression)

Argument

query-expression
is described in “query-expression” on page 1176.

Details
The EXISTS condition is an operator whose right operand is a subquery. The result

of an EXISTS condition is true if the subquery resolves to at least one row. The result
of a NOT EXISTS condition is true if the subquery evaluates to zero rows. For example,
the following query subsets PROCLIB.PAYROLL (which is shown in Example 2 on page
1209) based on the criteria in the subquery. If the value for STAFF.IDNUM is on the
same row as the value CT in PROCLIB.STAFF (which is shown in Example 4 on page
1213), then the matching IDNUM in PROCLIB.PAYROLL is included in the output.
Thus, the query returns all the employees from PROCLIB.PAYROLL who live in CT.

proc sql;
select *

from proclib.payroll p
where exists (select *

from proclib.staff s
where p.idnumber=s.idnum

and state=’CT’);

IN condition

Tests set membership.

Featured in: Example 4 on page 1213



1164 IS condition � Chapter 40

sql-expression <NOT> IN (query-expression | constant <, … constant>)

Arguments

constant
is a number or a quoted character string (or other special notation) that indicates a
fixed value. Constants are also called literals.

query-expression
is described in “query-expression” on page 1176.

sql-expression
is described in “sql-expression” on page 1182.

Details
An IN condition tests if the column value that is returned by the sql-expression on

the left is a member of the set (of constants or values returned by the query-expression)
on the right. The IN condition is true if the value of the left-hand operand is in the set
of values that are defined by the right-hand operand.

IS condition

Tests for a missing value.

Featured in: Example 5 on page 1216

sql-expression IS <NOT> NULL | MISSING

Argument

sql-expression
is described in “sql-expression” on page 1182.

Details
IS NULL and IS MISSING are predicates that test for a missing value. IS NULL and

IS MISSING are used in the WHERE, ON, and HAVING expressions. Each predicate
resolves to true if the sql-expression’s result is missing and false if it is not missing.

SAS stores a numeric missing value as a period (.) and a character missing value as
a blank space. Unlike missing values in some versions of SQL, missing values in SAS
always appear first in the collating sequence. Therefore, in Boolean and comparison
operations, the following expressions resolve to true in a predicate:

3>null
-3>null

0>null



The SQL Procedure � joined-table 1165

The SAS way of evaluating missing values differs from that of the ANSI Standard for
SQL. According to the Standard, these expressions are NULL. See “sql-expression” on
page 1182 for more information on predicates and operators. See “PROC SQL and the
ANSI Standard” on page 1204 for more information on the ANSI Standard.

joined-table

Joins a table with itself or with other tables or views.

Restrictions: Joins are limited to 32 tables.

See also: FROM Clause on page 1147 and “query-expression” on page 1176

Featured in: Example 4 on page 1213, Example 7 on page 1220, Example 9 on page 1227,
Example 13 on page 1235, and Example 14 on page 1238

u table-name <<AS> alias>, table-name <<AS> alias>
<, … table-name <<AS> alias>>

v <(>table-name <INNER> JOIN table-name
ON sql-expression<)>

w <(>table-name LEFT JOIN | RIGHT JOIN | FULL JOIN
table-name ON sql-expression<)>

x <(>table-name CROSS JOIN table-name<)>

y <(>table-name UNION JOIN table-name<)>

U <(>table-name NATURAL
<INNER | FULL <OUTER> | LEFT <OUTER > | RIGHT <OUTER >>

JOIN table-name<)>

Arguments

alias
specifies an alias for table-name. The AS keyword is optional.

sql-expression
is described in “sql-expression” on page 1182.

table-name
can be one of the following:

� the name of a PROC SQL table.

� the name of a SAS data view or PROC SQL view.

� a query-expression. A query-expression in the FROM clause is usually referred
to as an in-line view. See “FROM Clause” on page 1147 for more information
about in-line views.

� a connection to a DBMS in the form of the CONNECTION TO component. See
“CONNECTION TO” on page 1162 for more information.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.



1166 joined-table � Chapter 40

Note: If you include parentheses, then be sure to include them in pairs.
Parentheses are not valid around comma joins (type u). �

Types of Joins

uv Inner join. See “Inner Joins” on page 1167.

w Outer join. See “Outer Joins” on page 1169.

x Cross join. See “Cross Joins” on page 1170.

y Union join. See “Union Joins” on page 1171.

U Natural join. See “Natural Joins” on page 1171.

Joining Tables
When multiple tables, views, or query-expressions are listed in the FROM clause,

they are processed to form one table. The resulting table contains data from each
contributing table. These queries are referred to as joins.

Conceptually, when two tables are specified, each row of table A is matched with all
the rows of table B to produce an internal or intermediate table. The number of rows in
the intermediate table (Cartesian product) is equal to the product of the number of rows
in each of the source tables. The intermediate table becomes the input to the rest of the
query in which some of its rows may be eliminated by the WHERE clause or
summarized by a summary function.

A common type of join is an equijoin, in which the values from a column in the first
table must equal the values of a column in the second table.

Table Limit
PROC SQL can process a maximum of 32 tables for a join. If you are using views in

a join, then the number of tables on which the views are based count toward the
32-table limit. Each CONNECTION TO component in the Pass-Through Facility counts
as one table.

Specifying the Rows to Be Returned
The WHERE clause or ON clause contains the conditions (sql-expression) under

which the rows in the Cartesian product are kept or eliminated in the result table.
WHERE is used to select rows from inner joins. ON is used to select rows from inner or
outer joins.

The expression is evaluated for each row from each table in the intermediate table
described earlier in “Joining Tables” on page 1166. The row is considered to be matching
if the result of the expression is true (a nonzero, nonmissing value) for that row.

Note: You can follow the ON clause with a WHERE clause to further subset the
query result. See Example 7 on page 1220 for an example. �

Table Aliases
Table aliases are used in joins to distinguish the columns of one table from those in

the other table(s). A table name or alias must be prefixed to a column name when you
are joining tables that have matching column names. See FROM Clause on page 1147
for more information on table aliases.



The SQL Procedure � joined-table 1167

Joining a Table with Itself
A single table can be joined with itself to produce more information. These joins are

sometimes called reflexive joins. In these joins, the same table is listed twice in the
FROM clause. Each instance of the table must have a table alias or you will not be able
to distinguish between references to columns in either instance of the table. See
Example 13 on page 1235 and Example 14 on page 1238 for examples.

Inner Joins
An inner join returns a result table for all the rows in a table that have one or more

matching rows in the other table(s), as specified by the sql-expression. Inner joins can
be performed on up to 32 tables in the same query-expression.

You can perform an inner join by using a list of table-names separated by commas or
by using the INNER, JOIN, and ON keywords.

The LEFTTAB and RIGHTTAB tables are used to illustrate this type of join:

Left Table - LEFTTAB

Continent Export Country
-----------------------------
NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

Right Table - RIGHTTAB

Continent Export Country
-----------------------------
NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam

The following example joins the LEFTTAB and RIGHTTAB tables to get the Cartesian
product of the two tables. The Cartesian product is the result of combining every row
from one table with every row from another table. You get the Cartesian product when
you join two tables and do not subset them with a WHERE clause or ON clause.

proc sql;
title ’The Cartesian Product of’;
title2 ’LEFTTAB and RIGHTTAB’;
select *

from lefttab, righttab;



1168 joined-table � Chapter 40

The Cartesian Product of
LEFTTAB and RIGHTTAB

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
NA wheat Canada EUR corn Spain
NA wheat Canada EUR beets Belgium
NA wheat Canada ASIA rice Vietnam
EUR corn France NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France ASIA rice Vietnam
EUR rice Italy NA sugar USA
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium
EUR rice Italy ASIA rice Vietnam
AFR oil Egypt NA sugar USA
AFR oil Egypt EUR corn Spain
AFR oil Egypt EUR beets Belgium
AFR oil Egypt ASIA rice Vietnam

The LEFTTAB and RIGHTTAB tables can be joined by listing the table names in the
FROM clause. The following query represents an equijoin because the values of
Continent from each table are matched. The column names are prefixed with the table
aliases so that the correct columns can be selected.

proc sql;
title ’Inner Join’;
select *

from lefttab as l, righttab as r
where l.continent=r.continent;

Inner Join

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium

The following PROC SQL step is equivalent to the previous one and shows how to write
an equijoin using the INNER JOIN and ON keywords.

proc sql;
title ’Inner Join’;
select *

from lefttab as l inner join
righttab as r

on l.continent=r.continent;

See Example 4 on page 1213, Example 13 on page 1235, and Example 14 on page
1238 for more examples.



The SQL Procedure � joined-table 1169

Outer Joins

Outer joins are inner joins that have been augmented with rows that did not match
with any row from the other table in the join. The three types of outer joins are left,
right, and full.

A left outer join, specified with the keywords LEFT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from the first (LEFTTAB) table that do not match any row in the second
(RIGHTTAB) table.

proc sql;
title ’Left Outer Join’;
select *

from lefttab as l left join
righttab as r

on l.continent=r.continent;

Left Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------
AFR oil Egypt
EUR rice Italy EUR beets Belgium
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

A right outer join, specified with the keywords RIGHT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from the second (RIGHTTAB) table that do not match any row in the first
(LEFTTAB) table.

proc sql;
title ’Right Outer Join’;
select *

from lefttab as l right join
righttab as r

on l.continent=r.continent;

Right Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

A full outer join, specified with the keywords FULL JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from each table that do not match any row in the other table.



1170 joined-table � Chapter 40

proc sql;
title ’Full Outer Join’;
select *

from lefttab as l full join
righttab as r

on l.continent=r.continent;

Full Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------
AFR oil Egypt

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

See Example 7 on page 1220 for another example.

Cross Joins

A cross join returns as its result table the product of the two tables.
Using the LEFTTAB and RIGHTTAB example tables, the following program

demonstrates the cross join:

proc sql;
title ’Cross Join’;
select *

from lefttab as l cross join
righttab as r;

Cross Join

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
NA wheat Canada EUR corn Spain
NA wheat Canada EUR beets Belgium
NA wheat Canada ASIA rice Vietnam
EUR corn France NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France ASIA rice Vietnam
EUR rice Italy NA sugar USA
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium
EUR rice Italy ASIA rice Vietnam
AFR oil Egypt NA sugar USA
AFR oil Egypt EUR corn Spain
AFR oil Egypt EUR beets Belgium
AFR oil Egypt ASIA rice Vietnam

The cross join is not functionally different from a cartesian product join. You would
get the same result by submitting the following program:



The SQL Procedure � joined-table 1171

proc sql;
select *

from lefttab, righttab;

Do not use an ON clause with a cross join. An ON clause will cause a cross join to
fail. However, you can use a WHERE clause to subset the output.

Union Joins
A union join returns a union of the columns of both tables. The union join places in

the results all rows with their respective column values from each input table. Columns
that do not exist in one table will have null (missing) values for those rows in the result
table. The following example demonstrates a union join.

proc sql;
title ’Union Join’;
select *

from lefttab union join righttab;

Union Join

Continent Export Country Continent Export Country
------------------------------------------------------------

NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam

NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

Using a union join is similar to concatenating tables with the OUTER UNION set
operator. See “query-expression” on page 1176 for more information.

Do not use an ON clause with a union join. An ON clause will cause a union join to
fail.

Natural Joins
A natural join selects rows from two tables that have equal values in columns that

share the same name and the same type. An error results if two columns have the same
name but different types. If join-specification is omitted when specifying a natural join,
then INNER is implied. If no like columns are found, then a cross join is performed.

The following examples use these two tables:

table1

x y z
----------------------------

1 2 3
2 1 8
6 5 4
2 5 6



1172 joined-table � Chapter 40

table2

x b z
----------------------------

1 5 3
3 5 4
2 7 8
6 0 4

The following program demonstrates a natural inner join.

proc sql;
title ’Natural Inner Join’;
select *
from table1 natural join table2;

Natural Inner Join

x z b y
--------------------------------------

1 3 5 2
2 8 7 1
6 4 0 5

The following program demonstrates a natural left outer join.

proc sql;
title ’Natural Left Outer Join’;
select *

from table1 natural left join table2;

Natural Left Outer Join

x z b y
--------------------------------------

1 3 5 2
2 6 . 5
2 8 7 1
6 4 0 5

Do not use an ON clause with a natural join. An ON clause will cause a natural join
to fail. When using a natural join, an ON clause is implied, matching all like columns.

Joining More Than Two Tables

Inner joins are usually performed on two or three tables, but they can be performed
on up to 32 tables in PROC SQL. A join on three tables is described here to explain how
and why the relationships work among the tables.

In a three-way join, the sql-expression consists of two conditions: one relates the first
table to the second table and the other relates the second table to the third table. It is
possible to break this example into stages, performing a two-way join into a temporary
table and then joining that table with the third one for the same result. However,
PROC SQL can do it all in one step as shown in the next example.

The example shows the joining of three tables: COMM, PRICE, and AMOUNT. To
calculate the total revenue from exports for each country, you need to multiply the



The SQL Procedure � joined-table 1173

amount exported (AMOUNT table) by the price of each unit (PRICE table), and you
must know the commodity that each country exports (COMM table).

COMM Table

Continent Export Country
-----------------------------
NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

PRICE Table

Export Price
------------------
rice 3.56
corn 3.45
oil 18
wheat 2.98

AMOUNT Table

Country Quantity
------------------
Canada 16000
France 2400
Italy 500
Egypt 10000

proc sql;
title ’Total Export Revenue’;
select c.Country, p.Export, p.Price,

a.Quantity,a.quantity*p.price
as Total

from comm c, price p, amount a
where c.export=p.export

and c.country=a.country;

Total Export Revenue

Country Export Price Quantity Total
------------------------------------------------
Italy rice 3.56 500 1780
France corn 3.45 2400 8280
Egypt oil 18 10000 180000
Canada wheat 2.98 16000 47680

See Example 9 on page 1227 for another example.



1174 LIKE condition � Chapter 40

Comparison of Joins and Subqueries
You can often use a subquery or a join to get the same result. However, it is often

more efficient to use a join if the outer query and the subquery do not return duplicate
rows. For example, the following queries produce the same result. The second query is
more efficient:

proc sql;
select IDNumber, Birth

from proclib.payroll
where IDNumber in (select idnum

from proclib.staff
where lname like ’B%’);

proc sql;
select p.IDNumber, p.Birth

from proclib.payroll p, proclib.staff s
where p.idnumber=s.idnum

and s.lname like ’B%’;

Note: PROCLIB.PAYROLL is shown in Example 2 on page 1209. �

LIKE condition

Tests for a matching pattern.

sql-expression <NOT> LIKE sql-expression <ESCAPE character-expression>

Arguments

sql-expression
is described in “sql-expression” on page 1182.

character-expression
is an sql-expression that evaluates to a single character. The operands of
character-expression must be character or string literals; they cannot be column
names.

Note: If you use an ESCAPE clause, then the pattern-matching specification must
be a quoted string or quoted concatenated string; it cannot contain column names. �

Details
The LIKE condition selects rows by comparing character strings with a

pattern-matching specification. It resolves to true and displays the matched string(s) if
the left operand matches the pattern specified by the right operand.

The ESCAPE clause is used to search for literal instances of the percent (%) and
underscore (_) characters, which are usually used for pattern matching.

Patterns for Searching
Patterns are composed of three classes of characters:



The SQL Procedure � LIKE condition 1175

underscore (_)
matches any single character.

percent sign (%)
matches any sequence of zero or more characters.

any other character
matches that character.

These patterns can appear before, after, or on both sides of characters that you want to
match. The LIKE condition is case-sensitive.

The following list uses these values: Smith, Smooth, Smothers, Smart, and Smuggle.

’Sm%’
matches Smith, Smooth, Smothers, Smart, Smuggle.

’%th’
matches Smith, Smooth.

’S__gg%’
matches Smuggle.

’S_o’
matches a three-letter word, so it has no matches here.

’S_o%’
matches Smooth, Smothers.

’S%th’
matches Smith, Smooth.

’Z’
matches the single, uppercase character Z only, so it has no matches here.

Searching for Literal % and _
Because the % and _ characters have special meaning in the context of the LIKE

condition, you must use the ESCAPE clause to search for these character literals in the
input character string.

These example use the values app, a_%, a__, bbaa1, and ba_1.

� The condition like ’a_%’ matches app, a_%, and a__, because the underscore (_)
in the search pattern matches any single character (including the underscore), and
the percent (%) in the search pattern matches zero or more characters, including
’%’ and ’_’.

� The condition like ’a_^%’ escape ’^’ matches only a_%, because the escape
character (^) specifies that the pattern search for a literal ’%’.

� The condition like ’a_%’ escape ’_’ matches none of the values, because the
escape character (_) specifies that the pattern search for an ’a’ followed by a literal
’%’, which does not apply to any of these values.

Searching for Mixed-Case Strings
To search for mixed-case strings, use the UPCASE function to make all the names

uppercase before entering the LIKE condition:

upcase(name) like ’SM%’;

Note: When you are using the % character, be aware of the effect of trailing blanks.
You may have to use the TRIM function to remove trailing blanks in order to match
values. �



1176 LOWER function � Chapter 40

LOWER function

Converts the case of a character string to lowercase.

See also: “UPPER function” on page 1197

LOWER (sql-expression)

Argument

sql-expression
must resolve to a character string and is described in “sql-expression” on page 1182.

Details
The LOWER function operates on character strings. LOWER changes the case of its

argument to all lowercase.

Note: The LOWER function is provided for compatibility with the ANSI SQL
standard. You can also use the SAS function LOWCASE. �

query-expression

Retrieves data from tables.

See also: “table-expression” on page 1196, “Query Expressions (Subqueries)” on page
1185, and “In-Line Views” on page 1148

table-expression <set-operator table-expression> <…set-operator table-expression>

Arguments

table-expression
is described in “table-expression” on page 1196.

set-operator
is one of the following:

INTERSECT <CORRESPONDING> <ALL>

OUTER UNION <CORRESPONDING>

UNION <CORRESPONDING> <ALL>

EXCEPT <CORRESPONDING> <ALL>



The SQL Procedure � query-expression 1177

Query Expressions and Table Expressions
A query-expression is one or more table-expressions. Multiple table expressions are

linked by set operators. The following figure illustrates the relationship between
table-expressions and query-expressions.

query-
expression

table-
expression

table-
expression

set operator

SELECT  clause
FROM  clause
(more  clauses)

SELECT  clause
FROM  clause
(more  clauses)

Set Operators
PROC SQL provides these set operators:

OUTER UNION
concatenates the query results.

UNION
produces all unique rows from both queries.

EXCEPT
produces rows that are part of the first query only.

INTERSECT
produces rows that are common to both query results.

A query-expression with set operators is evaluated as follows.
� Each table-expression is evaluated to produce an (internal) intermediate result

table.
� Each intermediate result table then becomes an operand linked with a set

operator to form an expression, for example, A UNION B.
� If the query-expression involves more than two table-expressions, then the result

from the first two becomes an operand for the next set operator and operand, such
as (A UNION B) EXCEPT C, ((A UNION B) EXCEPT C) INTERSECT D, and so on.

� Evaluating a query-expression produces a single output table.

Set operators follow this order of precedence unless they are overridden by
parentheses in the expression(s): INTERSECT is evaluated first. OUTER UNION,
UNION, and EXCEPT have the same level of precedence.

PROC SQL performs set operations even if the tables or views that are referred to in
the table-expressions do not have the same number of columns. The reason for this
behavior is that the ANSI Standard for SQL requires that tables or views that are
involved in a set operation have the same number of columns and that the columns have
matching data types. If a set operation is performed on a table or view that has fewer
columns than the one(s) with which it is being linked, then PROC SQL extends the table
or view with fewer columns by creating columns with missing values of the appropriate
data type. This temporary alteration enables the set operation to be performed correctly.

CORRESPONDING (CORR) Keyword
The CORRESPONDING keyword is used only when a set operator is specified.

CORR causes PROC SQL to match the columns in table-expressions by name and not



1178 query-expression � Chapter 40

by ordinal position. Columns that do not match by name are excluded from the result
table, except for the OUTER UNION operator. See “OUTER UNION” on page 1178.

For example, when performing a set operation on two table-expressions, PROC SQL
matches the first specified column-name (listed in the SELECT clause) from one
table-expression with the first specified column-name from the other. If CORR is
omitted, then PROC SQL matches the columns by ordinal position.

ALL Keyword

The set operators automatically eliminate duplicate rows from their output tables.
The optional ALL keyword preserves the duplicate rows, reduces the execution by one
step, and thereby improves the query-expression’s performance. You use it when you
want to display all the rows resulting from the table-expressions, rather than just the
rows that are output because duplicates have been deleted. The ALL keyword is used
only when a set operator is also specified.

OUTER UNION

Performing an OUTER UNION is very similar to performing the SAS DATA step
with a SET statement. The OUTER UNION concatenates the intermediate results from
the table-expressions. Thus, the result table for the query-expression contains all the
rows produced by the first table-expression followed by all the rows produced by the
second table-expression. Columns with the same name are in separate columns in the
result table.

For example, the following query expression concatenates the ME1 and ME2 tables
but does not overlay like-named columns. Output 40.1 on page 1178 shows the result.

proc sql;
title ’ME1 and ME2: OUTER UNION’;
select *

from me1
outer union
select *

from me2;

ME1

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986

ME2

IDnum Jobcode Salary
----------------------------
1653 ME2 35108
1782 ME2 35345
1244 ME2 36925



The SQL Procedure � query-expression 1179

Output 40.1 OUTER UNION of ME1 and ME2 Tables

ME1 and ME2: OUTER UNION

IDnum Jobcode Salary Bonus IDnum Jobcode Salary
--------------------------------------------------------------------
1400 ME1 29769 587 .
1403 ME1 28072 342 .
1120 ME1 28619 986 .
1120 ME1 28619 986 .

. . 1653 ME2 35108

. . 1782 ME2 35345

. . 1244 ME2 36925

Concatenating tables with the OUTER UNION set operator is similar to performing a
union join. See “Union Joins” on page 1171 for more information.

To overlay columns with the same name, use the CORRESPONDING keyword.

proc sql;
title ’ME1 and ME2: OUTER UNION CORRESPONDING’;
select *

from me1
outer union corr
select *

from me2;

ME1 and ME2: OUTER UNION CORRESPONDING

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

In the resulting concatenated table, notice the following:

� OUTER UNION CORRESPONDING retains all nonmatching columns.

� For columns with the same name, if a value is missing from the result of the first
table-expression, then the value in that column from the second table-expression is
inserted.

� The ALL keyword is not used with OUTER UNION because this operator’s default
action is to include all rows in a result table. Thus, both rows from the table ME1
where IDnum is 1120 appear in the output.

UNION
The UNION operator produces a table that contains all the unique rows that result

from both table-expressions. That is, the output table contains rows produced by the
first table-expression, the second table-expression, or both.

Columns are appended by position in the tables, regardless of the column names.
However, the data type of the corresponding columns must match or the union will not
occur. PROC SQL issues a warning message and stops executing.



1180 query-expression � Chapter 40

The names of the columns in the output table are the names of the columns from the
first table-expression unless a column (such as an expression) has no name in the first
table-expression. In such a case, the name of that column in the output table is the
name of the respective column in the second table-expression.

In the following example, PROC SQL combines the two tables:

proc sql;
title ’ME1 and ME2: UNION’;
select *

from me1
union
select *

from me2;

ME1 and ME2: UNION

IDnum Jobcode Salary Bonus
--------------------------------------
1120 ME1 28619 986
1244 ME2 36925 .
1400 ME1 29769 587
1403 ME1 28072 342
1653 ME2 35108 .
1782 ME2 35345 .

In the following example, ALL includes the duplicate row from ME1. In addition, ALL
changes the sorting by specifying that PROC SQL make one pass only. Thus, the values
from ME2 are simply appended to the values from ME1.

proc sql;
title ’ME1 and ME2: UNION ALL’;
select *

from me1
union all
select *

from me2;

ME1 and ME2: UNION ALL

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

See Example 5 on page 1216 for another example.



The SQL Procedure � query-expression 1181

EXCEPT

The EXCEPT operator produces (from the first table-expression) an output table that
has unique rows that are not in the second table-expression. If the intermediate result
from the first table-expression has at least one occurrence of a row that is not in the
intermediate result of the second table-expression, then that row (from the first
table-expression) is included in the result table.

In the following example, the IN_USA table contains flights to cities within and
outside the USA. The OUT_USA table contains flights only to cities outside the USA.
This example returns only the rows from IN_USA that are not also in OUT_USA:

proc sql;
title ’Flights from IN_USA Only’;
select * from in_usa
except
select * from out_usa;

IN_USA

Flight Dest
------------------
145 ORD
156 WAS
188 LAX
193 FRA
207 LON

OUT_USA

Flight Dest
------------------
193 FRA
207 LON
311 SJA

Flights from IN_USA Only

Flight Dest
------------------
145 ORD
156 WAS
188 LAX

INTERSECT

The INTERSECT operator produces an output table that has rows that are common
to both tables. For example, using the IN_USA and OUT_USA tables shown above, the
following example returns rows that are in both tables:

proc sql;
title ’Flights from Both IN_USA and OUT_USA’;
select * from in_usa
intersect
select * from out_usa;



1182 sql-expression � Chapter 40

Flights from Both IN_USA and OUT_USA

Flight Dest
------------------
193 FRA
207 LON

sql-expression
Produces a value from a sequence of operands and operators.

operand operator operand

Arguments

operand
is one of the following:

� a constant, which is a number or a quoted character string (or other special
notation) that indicates a fixed value. Constants are also called literals.
Constants are described in SAS Language Reference: Dictionary.

� a column-name, which is described in “column-name” on page 1161.
� a SAS function, which is any SAS function except LAG, DIF, and SOUND.

Functions are described in SAS Language Reference: Dictionary.
� the ANSI SQL functions COALESCE, BTRIM, LOWER, UPPER, and

SUBSTRING.
� a summary-function, which is described in “summary-function” on page 1190.
� a query-expression, which is described in “query-expression” on page 1176.
� the USER literal, which references the userid of the person who submitted the

program. The userid that is returned is operating environment-dependent, but
PROC SQL uses the same value that the &SYSJOBID macro variable has on
the operating environment.

operator
is described in “Operators and the Order of Evaluation” on page 1183.

Note: SAS functions, including summary functions, can stand alone as SQL
expressions. For example

select min(x) from table;

select scan(y,4) from table;

�

SAS Functions
PROC SQL supports the same SAS functions as the DATA step, except for the

functions LAG, DIF, and SOUND. For example, the SCAN function is used in the
following query:



The SQL Procedure � sql-expression 1183

select style, scan(street,1) format=$15.
from houses;

See SAS Language Reference: Dictionary for complete documentation on SAS
functions. Summary functions are also SAS functions. See “summary-function” on page
1190 for more information.

USER Literal
USER can be specified in a view definition, for example, to create a view that

restricts access to those in the user’s department:

create view myemp as
select * from dept12.employees

where manager=user;

This view produces a different set of employee information for each manager who
references it.

Operators and the Order of Evaluation
The order in which operations are evaluated is the same as in the DATA step with

this one exception: NOT is grouped with the logical operators AND and OR in PROC
SQL; in the DATA step, NOT is grouped with the unary plus and minus signs.

Unlike missing values in some versions of SQL, missing values in SAS always appear
first in the collating sequence. Therefore, in Boolean and comparison operations, the
following expressions resolve to true in a predicate:

3>null
-3>null

0>null

You can use parentheses to group values or to nest mathematical expressions.
Parentheses make expressions easier to read and can also be used to change the order
of evaluation of the operators. Evaluating expressions with parentheses begins at the
deepest level of parentheses and moves outward. For example, SAS evaluates A+B*C
as A+(B*C), although you can add parentheses to make it evaluate as (A+B)*C for a
different result.

Higher priority operations are performed first: that is, group 0 operators are
evaluated before group 5 operators. The following table shows the operators and their
order of evaluation, including their priority groups.

Table 40.1 Operators and Order of Evaluation

Group Operator Description

0 ( ) forces the expression enclosed to be evaluated first

1 case-expression selects result values that satisfy specified conditions

2 ** raises to a power

unary +, unary - indicates a positive or negative number

3 * multiplies

/ divides

4 + adds

− subtracts



1184 sql-expression � Chapter 40

Group Operator Description

5 || concatenates

6 <NOT> BETWEEN condition See “BETWEEN condition” on page 1155.

<NOT> CONTAINS condition see “CONTAINS condition” on page 1162.

<NOT> EXISTS condition See “EXISTS condition” on page 1163.

<NOT> IN condition See “IN condition” on page 1163.

IS <NOT> condition See “IS condition” on page 1164.

<NOT> LIKE condition See “LIKE condition” on page 1174.

7 =, eq equals

=, ^=, < >, ne does not equal

>, gt is greater than

<, lt is less than

>=, ge is greater than or equal to

<=, le is less than or equal to

=* sounds like (use with character operands only). See Example 11 on
page 1231.

eqt equal to truncated strings (use with character operands only). See
“Truncated String Comparison Operators” on page 1184.

gtt greater than truncated strings

ltt less than truncated strings

get greater than or equal to truncated strings

let less than or equal to truncated strings

net not equal to truncated strings

8 &, AND indicates logical AND

9 |, OR indicates logical OR

10 , ^, NOT indicates logical NOT

Symbols for operators might vary, depending on your operating environment. See
SAS Language Reference: Dictionary for more information on operators and expressions.

Truncated String Comparison Operators

PROC SQL supports truncated string comparison operators (see Group 7 in Table
40.1 on page 1183). In a truncated string comparison, the comparison is performed
after making the strings the same length by truncating the longer string to be the same
length as the shorter string. For example, the expression ’TWOSTORY’ eqt ’TWO’ is
true because the string ’TWOSTORY’ is reduced to ’TWO’ before the comparison is
performed. Note that the truncation is performed internally; neither operand is
permanently changed.

Note: Unlike the DATA step, PROC SQL does not support the colon operators (such
as =:, >:, and <=:) for truncated string comparisons. Use the alphabetic operators (such
as EQT, GTT, and LET). �



The SQL Procedure � sql-expression 1185

Query Expressions (Subqueries)

A query-expression is called a subquery when it is used in a WHERE or HAVING
clause. A subquery is a query-expression that is nested as part of another
query-expression. A subquery selects one or more rows from a table based on values in
another table.

Depending on the clause that contains it, a subquery can return a single value or
multiple values. If more than one subquery is used in a query-expression, then the
innermost query is evaluated first, then the next innermost query, and so on, moving
outward.

PROC SQL allows a subquery (contained in parentheses) at any point in an
expression where a simple column value or constant can be used. In this case, a
subquery must return a single value, that is, one row with only one column.

The following is an example of a subquery that returns one value. This PROC SQL
step subsets the PROCLIB.PAYROLL table based on information in the
PROCLIB.STAFF table. (PROCLIB.PAYROLL is shown in Example 2 on page 1209,
and PROCLIB.STAFF is shown in Example 4 on page 1213.) PROCLIB.PAYROLL
contains employee identification numbers (IdNumber) and their salaries (Salary) but
does not contain their names. If you want to return only the row from
PROCLIB.PAYROLL for one employee, then you can use a subquery that queries the
PROCLIB.STAFF table, which contains the employees’ identification numbers and their
names (Lname and Fname).

options ls=64 nodate nonumber;
proc sql;

title ’Information for Earl Bowden’;
select *

from proclib.payroll
where idnumber=

(select idnum
from proclib.staff
where upcase(lname)=’BOWDEN’);

Information for Earl Bowden

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1403 M ME1 28072 28JAN69 21DEC91

Subqueries can return multiple values. The following example uses the tables
PROCLIB.DELAY and PROCLIB.MARCH. These tables contain information about the
same flights and have the Flight column in common. The following subquery returns all
the values for Flight in PROCLIB.DELAY for international flights. The values from the
subquery complete the WHERE clause in the outer query. Thus, when the outer query
is executed, only the international flights from PROCLIB.MARCH are in the output.

options ls=64 nodate nonumber;
proc sql outobs=5;

title ’International Flights from’;
title2 ’PROCLIB.MARCH’;
select Flight, Date, Dest, Boarded

from proclib.march



1186 sql-expression � Chapter 40

where flight in
(select flight

from proclib.delay
where destype=’International’);

International Flights from
PROCLIB.MARCH

Flight Date Dest Boarded
-------------------------------
219 01MAR94 LON 198
622 01MAR94 FRA 207
132 01MAR94 YYZ 115
271 01MAR94 PAR 138
219 02MAR94 LON 147

Sometimes it is helpful to compare a value with a set of values returned by a subquery.
The keywords ANY or ALL can be specified before a subquery when the subquery is the
right-hand operand of a comparison. If ALL is specified, then the comparison is true
only if it is true for all values that are returned by the subquery. If a subquery returns
no rows, then the result of an ALL comparison is true for each row of the outer query.

If ANY is specified, then the comparison is true if it is true for any one of the values
that are returned by the subquery. If a subquery returns no rows, then the result of an
ANY comparison is false for each row of the outer query.

The following example selects all those in PROCLIB.PAYROLL who earn more than
the highest paid ME3:

options ls=64 nodate nonumber ;
proc sql;
title ‘‘Employees who Earn More than’’;
title2 ‘‘All ME’s’’;

select *
from proclib.payroll
where salary > all (select salary

from proclib.payroll
where jobcode=’ME3’);



The SQL Procedure � sql-expression 1187

Employees who Earn More than
All ME’s

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1333 M PT2 88606 30MAR61 10FEB81
1739 M PT1 66517 25DEC64 27JAN91
1428 F PT1 68767 04APR60 16NOV91
1404 M PT2 91376 24FEB53 01JAN80
1935 F NA2 51081 28MAR54 16OCT81
1905 M PT1 65111 16APR72 29MAY92
1407 M PT1 68096 23MAR69 18MAR90
1410 M PT2 84685 03MAY67 07NOV86
1439 F PT1 70736 06MAR64 10SEP90
1545 M PT1 66130 12AUG59 29MAY90
1106 M PT2 89632 06NOV57 16AUG84
1442 F PT2 84536 05SEP66 12APR88
1417 M NA2 52270 27JUN64 07MAR89
1478 M PT2 84203 09AUG59 24OCT90
1556 M PT1 71349 22JUN64 11DEC91
1352 M NA2 53798 02DEC60 16OCT86
1890 M PT2 91908 20JUL51 25NOV79
1107 M PT2 89977 09JUN54 10FEB79
1830 F PT2 84471 27MAY57 29JAN83
1928 M PT2 89858 16SEP54 13JUL90
1076 M PT1 66558 14OCT55 03OCT91

Note: See the first item in “Subqueries and Efficiency” on page 1188 for a note
about efficiency when using ALL. �

In order to visually separate a subquery from the rest of the query, you can enclose
the subquery in any number of pairs of parentheses.

Correlated Subqueries

In a correlated subquery, the WHERE expression in a subquery refers to values in a
table in the outer query. The correlated subquery is evaluated for each row in the outer
query. With correlated subqueries, PROC SQL executes the subquery and the outer
query together.

The following example uses the PROCLIB.DELAY and PROCLIB.MARCH tables. A
DATA step (“PROCLIB.DELAY” on page 1642) creates PROCLIB.DELAY.
PROCLIB.MARCH is shown in Example 13 on page 1235. PROCLIB.DELAY has the
Flight, Date, Orig, and Dest columns in common with PROCLIB.MARCH:

proc sql outobs=5;
title ’International Flights’;
select *

from proclib.march
where ’International’ in

(select destype
from proclib.delay
where march.Flight=delay.Flight);



1188 sql-expression � Chapter 40

The subquery resolves by substituting every value for MARCH.Flight into the
subquery’s WHERE clause, one row at a time. For example, when MARCH.Flight=219,
the subquery resolves as follows:

1 PROC SQL retrieves all the rows from DELAY where Flight=219 and passes their
DESTYPE values to the WHERE clause.

2 PROC SQL uses the DESTYPE values to complete the WHERE clause:

where ’International’ in
(’International’,’International’, ...)

3 The WHERE clause checks to see if International is in the list. Because it is, all
rows from MARCH that have a value of 219 for Flight become part of the output.

The following output contains the rows from MARCH for international flights only.

Output 40.2 International Flights for March

International Flights

Flight Date Depart Orig Dest Miles Boarded Capacity
-----------------------------------------------------------------
219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
219 02MAR94 9:31 LGA LON 3442 147 250

Subqueries and Efficiency

� Use the MAX function in a subquery instead of the ALL keyword before the
subquery. For example, the following queries produce the same result, but the
second query is more efficient:

proc sql;
select * from proclib.payroll
where salary> all(select salary

from proclib.payroll
where jobcode=’ME3’);

proc sql;
select * from proclib.payroll
where salary> (select max(salary)

from proclib.payroll
where jobcode=’ME3’);

� With subqueries, use IN instead of EXISTS when possible. For example, the
following queries produce the same result, but the second query is usually more
efficient:

proc sql;
select *

from proclib.payroll p
where exists (select *

from staff s
where p.idnum=s.idnum

and state=’CT’);



The SQL Procedure � SUBSTRING function 1189

proc sql;
select *

from proclib.payroll
where idnum in (select idnum

from staff
where state=’CT’);

SUBSTRING function

Returns a part of a character expression.

SUBSTRING (sql-expression FROM start <FOR length>)

� sql-expression must be a character string and is described in “sql-expression” on
page 1182.

� start is a number (not a variable or column name) that specifies the position,
counting from the left end of the character string, at which to begin extracting the
substring.

� length is a number (not a variable or column name) that specifies the length of the
substring that is to be extracted.

Details
The SUBSTRING function operates on character strings. SUBSTRING returns a

specified part of the input character string, beginning at the position that is specified by
start. If length is omitted, then the SUBSTRING function returns all characters from
start to the end of the input character string. The values of start and length must be
numbers (not variables) and can be positive, negative, or zero.

If start is greater than the length of the input character string, then the
SUBSTRING function returns a zero-length string.

If start is less than 1, then the SUBSTRING function begins extraction at the
beginning of the input character string.

If length is specified, then the sum of start and length cannot be less than start or an
error is returned. If the sum of start and length is greater than the length of the input
character string, then the SUBSTRING function returns all characters from start to the
end of the input character string. If the sum of start and length is less than 1, then the
SUBSTRING function returns a zero-length string.

Note: The SUBSTRING function is provided for compatibility with the ANSI SQL
standard. You can also use the SAS function SUBSTR. �



1190 summary-function � Chapter 40

summary-function

Performs statistical summary calculations.

Restriction: A summary function cannot appear in an ON clause or a WHERE clause.
See also: GROUP BY on page 1149, HAVING Clause on page 1150, SELECT Clause on
page 1142, and “table-expression” on page 1196
Featured in: Example 8 on page 1224, Example 12 on page 1233, and Example 15 on
page 1240

summary-function (<DISTINCT | ALL> sql-expression)

Arguments

summary-function
is one of the following:

AVG|MEAN
arithmetic mean or average of values

COUNT|FREQ|N
number of nonmissing values

CSS
corrected sum of squares

CV
coefficient of variation (percent)

MAX
largest value

MIN
smallest value

NMISS
number of missing values

PRT
probability of a greater absolute value of Student’s t

RANGE
range of values

STD
standard deviation

STDERR
standard error of the mean

SUM
sum of values



The SQL Procedure � summary-function 1191

SUMWGT
sum of the WEIGHT variable values*

T
Student’s t value for testing the hypothesis that the population mean is zero

USS
uncorrected sum of squares

VAR
variance
For a description and the formulas used for these statistics, see Appendix 1, “SAS

Elementary Statistics Procedures,” on page 1577.

DISTINCT
specifies that only the unique values of sql-expression be used in the calculation.

ALL
specifies that all values of sql-expression be used in the calculation. If neither
DISTINCT nor ALL is specified, then ALL is used.

sql-expression
is described in “sql-expression” on page 1182.

Summarizing Data
Summary functions produce a statistical summary of the entire table or view that is

listed in the FROM clause or for each group that is specified in a GROUP BY clause. If
GROUP BY is omitted, then all the rows in the table or view are considered to be a
single group. These functions reduce all the values in each row or column in a table to
one summarizing or aggregate value. For this reason, these functions are often called
aggregate functions. For example, the sum (one value) of a column results from the
addition of all the values in the column.

Counting Rows
The COUNT function counts rows. COUNT(*) returns the total number of rows in a

group or in a table. If you use a column name as an argument to COUNT, then the
result is the total number of rows in a group or in a table that have a nonmissing value
for that column. If you want to count the unique values in a column, then specify
COUNT(DISTINCT column).

If the SELECT clause of a table-expression contains one or more summary functions
and that table-expression resolves to no rows, then the summary function results are
missing values. The following are exceptions that return zeros:

COUNT(*)
COUNT(<DISTINCT> sql-expression)
NMISS(<DISTINCT> sql-expression)

See Example 8 on page 1224 and Example 15 on page 1240 for examples.

Calculating Statistics Based on the Number of Arguments
The number of arguments that is specified in a summary function affects how the

calculation is performed. If you specify a single argument, then the values in the

* Currently, there is no way to designate a WEIGHT variable for a table in PROC SQL. Thus, each row (or observation) has a
weight of 1.



1192 summary-function � Chapter 40

column are calculated. If you specify multiple arguments, then the arguments or
columns that are listed are calculated for each row. For example, consider calculations
on the following table.

proc sql;
title ’Summary Table’;
select * from summary;

Summary Table

X Y Z
----------------------------

1 3 4
2 4 5
8 9 4
4 5 4

If you use one argument in the function, then the calculation is performed on that
column only. If you use more than one argument, then the calculation is performed on
each row of the specified columns. In the following PROC SQL step, the MIN and MAX
functions return the minimum and maximum of the columns they are used with. The
SUM function returns the sum of each row of the columns specified as arguments:

proc sql;
select min(x) as Colmin_x,

min(y) as Colmin_y,
max(z) as Colmax_z,
sum(x,y,z) as Rowsum

from summary;

Summary Table

Colmin_x Colmin_y Colmax_z Rowsum
--------------------------------------

1 3 5 8
1 3 5 11
1 3 5 21
1 3 5 13

Remerging Data
When you use a summary function in a SELECT clause or a HAVING clause, you

might see the following message in the SAS log:

NOTE: The query requires remerging summary
statistics back with the original
data.

The process of remerging involves two passes through the data. On the first pass,
PROC SQL

� calculates and returns the value of summary functions. It then uses the result to
calculate the arithmetic expressions in which the summary function participates.

� groups data according to the GROUP BY clause.



The SQL Procedure � summary-function 1193

On the second pass, PROC SQL retrieves any additional columns and rows that it
needs to show in the output.

The following examples use the PROCLIB.PAYROLL table (shown in Example 2 on
page 1209) to show when remerging of data is and is not necessary.

The first query requires remerging. The first pass through the data groups the data
by Jobcode and resolves the AVG function for each group. However, PROC SQL must
make a second pass in order to retrieve the values of IdNumber and Salary.

proc sql outobs=10;
title ’Salary Information’;
title2 ’(First 10 Rows Only)’;
select IdNumber, Jobcode, Salary,

avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;

Salary Information
(First 10 Rows Only)

Id
Number Jobcode Salary AvgSalary
------------------------------------
1704 BCK 25465 25794.22
1677 BCK 26007 25794.22
1383 BCK 25823 25794.22
1845 BCK 25996 25794.22
1100 BCK 25004 25794.22
1663 BCK 26452 25794.22
1673 BCK 25477 25794.22
1389 BCK 25028 25794.22
1834 BCK 26896 25794.22
1132 FA1 22413 23039.36

You can change the previous query to return only the average salary for each jobcode.
The following query does not require remerging because the first pass of the data does
the summarizing and the grouping. A second pass is not necessary.

proc sql outobs=10;
title ’Average Salary for Each Jobcode’;
select Jobcode, avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;



1194 summary-function � Chapter 40

Average Salary for Each Jobcode

Jobcode AvgSalary
------------------
BCK 25794.22
FA1 23039.36
FA2 27986.88
FA3 32933.86
ME1 28500.25
ME2 35576.86
ME3 42410.71
NA1 42032.2
NA2 52383
PT1 67908

When you use the HAVING clause, PROC SQL may have to remerge data to resolve the
HAVING expression.

First, consider a query that uses HAVING but that does not require remerging. The
query groups the data by values of Jobcode, and the result contains one row for each
value of Jobcode and summary information for people in each Jobcode. On the first
pass, the summary functions provide values for the Number, Average Age, and Average
Salary columns. The first pass provides everything that PROC SQL needs to resolve
the HAVING clause, so no remerging is necessary.

proc sql outobs=10;
title ’Summary Information for Each Jobcode’;
title2 ’(First 10 Rows Only)’;

select Jobcode,
count(jobcode) as number

label=’Number’,
avg(int((today()-birth)/365.25))

as avgage format=2.
label=’Average Age’,

avg(salary) as avgsal format=dollar8.
label=’Average Salary’

from proclib.payroll
group by jobcode
having avgage ge 30;

Summary Information for Each Jobcode
(First 10 Rows Only)

Average Average
Jobcode Number Age Salary
------------------------------------
BCK 9 36 $25,794
FA1 11 33 $23,039
FA2 16 37 $27,987
FA3 7 39 $32,934
ME1 8 34 $28,500
ME2 14 39 $35,577
ME3 7 42 $42,411
NA1 5 30 $42,032
NA2 3 42 $52,383
PT1 8 38 $67,908



The SQL Procedure � summary-function 1195

In the following query, PROC SQL remerges the data because the HAVING clause uses
the SALARY column in the comparison and SALARY is not in the GROUP BY clause.

proc sql outobs=10;
title ’Employees who Earn More than the’;
title2 ’Average for Their Jobcode’;
title3 ’(First 10 Rows Only)’;

select Jobcode, Salary,
avg(salary) as AvgSalary

from proclib.payroll
group by jobcode
having salary > AvgSalary;

Employees who Earn More than the
Average for Their Jobcode

(First 10 Rows Only)

Jobcode Salary AvgSalary
----------------------------
BCK 26007 25794.22
BCK 25823 25794.22
BCK 25996 25794.22
BCK 26452 25794.22
BCK 26896 25794.22
FA1 23177 23039.36
FA1 23738 23039.36
FA1 23979 23039.36
FA1 23916 23039.36
FA1 23644 23039.36

Keep in mind that PROC SQL remerges data when

� the values returned by a summary function are used in a calculation. For
example, the following query returns the values of X and the percent of the total
for each row. On the first pass, PROC SQL computes the sum of X, and on the
second pass PROC SQL computes the percentage of the total for each value of X:

proc sql;
title ’Percentage of the Total’;
select X, (100*x/sum(X)) as Pct_Total

from summary;

Percentage of the Total

x Pct_Total
-------------------

32 14.81481
86 39.81481
49 22.68519
49 22.68519

� the values returned by a summary function are compared to values of a column
that is not specified in the GROUP BY clause. For example, the following query
uses the PROCLIB.PAYROLL table. PROC SQL remerges data because the
column Salary is not specified in the GROUP BY clause:



1196 table-expression � Chapter 40

proc sql;
select jobcode, salary,

avg(salary) as avsal
from proclib.payroll
group by jobcode
having salary > avsal;

� a column from the input table is specified in the SELECT clause and is not
specified in the GROUP BY clause. This rule does not refer to columns used as
arguments to summary functions in the SELECT clause.

For example, in the following query, the presence of IdNumber in the SELECT
clause causes PROC SQL to remerge the data because IdNumber is not involved in
grouping or summarizing during the first pass. In order for PROC SQL to retrieve
the values for IdNumber, it must make a second pass through the data.

proc sql;
select IdNumber, jobcode,

avg(salary) as avsal
from proclib.payroll
group by jobcode;

table-expression

Defines part or all of a query-expression.

See also: “query-expression” on page 1176

SELECT <DISTINCT> object-item<, … object-item>
<INTO :macro-variable-specification

<, … :macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item <, … group-by-item>>
<HAVING sql-expression>

See “SELECT Statement” on page 1142 for complete information on the SELECT
statement.

Details
A table-expression is a SELECT statement. It is the fundamental building block of

most SQL procedure statements. You can combine the results of multiple
table-expressions with set operators, which creates a query-expression. Use one
ORDER BY clause for an entire query-expression. Place a semicolon only at the end of
the entire query-expression. A query-expression is often only one SELECT statement or
table-expression.



The SQL Procedure � Using SAS Data Set Options with PROC SQL 1197

UPPER function

Converts the case of a character string to uppercase.

See also: “LOWER function” on page 1176

UPPER (sql-expression)

� sql-expression must be a character string and is described in “sql-expression” on
page 1182.

Details
The UPPER function operates on character strings. UPPER converts the case of its

argument to all uppercase.

Concepts: SQL Procedure

Using SAS Data Set Options with PROC SQL
In PROC SQL, you can apply most of the SAS data set options, such as KEEP= and

DROP=, to tables or SAS/ACCESS views any time that you specify a table or
SAS/ACCESS view. In the SQL procedure, SAS data set options that are separated by
spaces are enclosed in parentheses, and they follow immediately after the table or
SAS/ACCESS view name. In the following PROC SQL step, RENAME= renames
LNAME to LASTNAME for the STAFF1 table. OBS= restricts the number of rows
written to STAFF1 to 15:

proc sql;
create table

staff1(rename=(lname=lastname)) as
select *

from staff(obs=15);

SAS data set options can be combined with SQL statement arguments:

proc sql;
create table test

(a character, b numeric, pw=cat);
create index staffidx on

staff1 (lastname, alter=dog);

You cannot use SAS data set options with DICTIONARY tables because
DICTIONARY tables are read-only objects.

The only SAS data set options that you can use with PROC SQL views are those that
assign and provide SAS passwords: READ=, WRITE=, ALTER=, and PW=.

See SAS Language Reference: Dictionary for a description of SAS data set options.



1198 Connecting to a DBMS Using the SQL Procedure Pass-Through Facility � Chapter 40

Connecting to a DBMS Using the SQL Procedure Pass-Through Facility
The SQL Procedure Pass-Through Facility enables you to send DBMS-specific SQL

statements directly to a DBMS for execution. The Pass-Through Facility uses a SAS/
ACCESS interface engine to connect to the DBMS. Therefore, you must have SAS/
ACCESS software installed for your DBMS.

You submit SQL statements that are DBMS-specific. For example, you pass
Transact-SQL statements to a SYBASE database. The Pass-Through Facility’s basic
syntax is the same for all the DBMSs. Only the statements that are used to connect to
the DBMS and the SQL statements are DBMS-specific.

With the Pass-Through Facility, you can perform the following tasks:
� establish a connection with the DBMS using a CONNECT statement and

terminate the connection with the DISCONNECT statement.
� send nonquery DBMS-specific SQL statements to the DBMS using the EXECUTE

statement.
� retrieve data from the DBMS to be used in a PROC SQL query with the

CONNECTION TO component in a SELECT statement’s FROM clause.

You can use the Pass-Through Facility statements in a query, or you can store them
in a PROC SQL view. When a view is stored, any options that are specified in the
corresponding CONNECT statement are also stored. Thus, when the PROC SQL view
is used in a SAS program, SAS can automatically establish the appropriate connection
to the DBMS.

See “CONNECT Statement” on page 1128, “DISCONNECT Statement” on page 1137,
“EXECUTE Statement” on page 1139, “CONNECTION TO” on page 1162, and “The
Pass-Through Facility for Relational Databases” in SAS/ACCESS for Relational
Databases: Reference.

Return Codes
As you use PROC SQL statements that are available in the Pass-Through Facility,

any errors are written to the SAS log. The return codes and messages that are
generated by the Pass-Through Facility are available to you through the SQLXRC and
SQLXMSG macro variables. Both macro variables are described in “Using Macro
Variables Set by PROC SQL” on page 1202.

Connecting to a DBMS Using the LIBNAME Statement
For many DBMSs, you can directly access DBMS data by assigning a libref to the

DBMS using the SAS/ACCESS LIBNAME statement. Once you have associated a libref
with the DBMS, you can specify a DBMS table in a two-level SAS name and work with
the table like any SAS data set. You can also embed the LIBNAME statement in a
PROC SQL view (see “CREATE VIEW Statement” on page 1133).

PROC SQL will take advantage of the capabilities of a DBMS by passing it certain
operations whenever possible. For example, before implementing a join, PROC SQL
checks to see if the DBMS can do the join. If it can, then PROC SQL passes the join to
the DBMS. This enhances performance by reducing data movement and translation. If
the DBMS cannot do the join, then PROC SQL processes the join. Using the
SAS/ACCESS LIBNAME statement can often provide you with the performance
benefits of the SQL Procedure Pass-Through Facility without having to write
DBMS-specific code.

To use the SAS/ACCESS LIBNAME statement, you must have SAS/ACCESS
software installed for your DBMS. For more information about the SAS/ACCESS
LIBNAME statement, refer to the SAS/ACCESS documentation for your DBMS.



The SQL Procedure � Using the DICTIONARY Tables 1199

Using the DICTIONARY Tables

What Are DICTIONARY Tables?
DICTIONARY tables are special, read-only SAS data views that contain information

about your SAS session. For example, the DICTIONARY.COLUMNS table contains
information, such as name, type, length, and format, about all columns in all tables
that are known to the current SAS session. DICTIONARY tables are accessed by using
the libref DICTIONARY in the FROM clause in a SELECT statement in PROC SQL.
Additionally, there are PROC SQL views, stored in the SASHELP library and known as
SASHELP views, that reference the DICTIONARY tables and that can be used in other
SAS procedures and in the DATA step.

Note: You cannot use data set options with DICTIONARY tables. �

For an example that demonstrates the use of a DICTIONARY table, see Example 6
on page 1218.

The following table describes the DICTIONARY tables that are available and shows
the associated SASHELP view(s) for each table.

Table 40.2 DICTIONARY Tables and Associated SASHELP Views

DICTIONARY table SASHELP
view

Description

CATALOGS VCATALG Contains information about known SAS
catalogs.

CHECK_CONSTRAINTS VCHKCON Contains information about known check
constraints.

COLUMNS VCOLUMN Contains information about columns in all
known tables.

CONSTRAINT_COLUMN_USAGE VCNCOLU Contains information about columns that are
referred to by integrity constraints.

CONSTRAINT_TABLE_USAGE VCNTABU Contains information about tables that have
integrity constraints defined on them.

DICTIONARIES VDCTNRY Contains information about all DICTIONARY
tables.

EXTFILES VEXTFL Contains information about known external
files.

FORMATS VFORMAT Contains information about currently
accessible formats and informats.

GOPTIONS VGOPT

VALLOPT

Contains information about currently defined
graphics options (SAS/GRAPH software).
SASHELP.VALLOPT includes SAS system
options as well as graphics options.

INDEXES VINDEX Contains information about known indexes.

LIBNAMES VLIBNAM Contains information about currently defined
SAS data libraries.



1200 Using the DICTIONARY Tables � Chapter 40

DICTIONARY table SASHELP
view

Description

MACROS VMACRO Contains information about currently defined
macros.

MEMBERS VMEMBER

VSACCES

VSCATLG

VSLIB

VSTABLE

VSTABVW

VSVIEW

Contains information about all objects that
are in currently defined SAS data libraries.
SASHELP.VMEMBER contains information
for all member types; the other SASHELP
views are specific to particular member types
(such as tables or views).

OPTIONS VOPTION

VALLOPT

Contains information on SAS system options.
SASHELP.VALLOPT includes graphics
options as well as SAS system options.

REFERENTIAL_CONSTRAINTS VREFCON Contains information about referential
constraints.

STYLES Contains information about known ODS styles.

TABLE_CONSTRAINTS VTABCON Contains information about integrity
constraints in all known tables.

TABLES VTABLE Contains information about known tables.

TITLES VTITLE Contains information about currently defined
titles and footnotes.

VIEWS VVIEW Contains information about known data views.

Retrieving Information about DICTIONARY Tables and SASHELP Views

To see how each DICTIONARY table is defined, submit a DESCRIBE TABLE
statement. After you know how a table is defined, you can use its column names in a
subsetting WHERE clause in order to retrieve more specific information. For example:

proc sql;
describe table dictionary.indexes;

The results are written to the SAS log:

6 proc sql;
7 describe table dictionary.indexes;
NOTE: SQL table DICTIONARY.INDEXES was created like:

create table DICTIONARY.INDEXES
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
name char(32) label=’Column Name’,
idxusage char(9) label=’Column Index Type’,
indxname char(32) label=’Index Name’,
indxpos num label=’Position of Column in Concatenated Key’,
nomiss char(3) label=’Nomiss Option’,
unique char(3) label=’Unique Option’

);



The SQL Procedure � Using the DICTIONARY Tables 1201

Use the DESCRIBE VIEW statement in PROC SQL to find out how a SASHELP
view is defined. Here’s an example:

proc sql;
describe view sashelp.vstabvw;

The results are written to the SAS log:

6 proc sql;
7 describe view sashelp.vstabvw;
NOTE: SQL view SASHELP.VSTABVW is defined as:

select libname, memname, memtype
from DICTIONARY.MEMBERS

where (memtype=’VIEW’) or (memtype=’DATA’)
order by libname asc, memname asc;

Using DICTIONARY Tables
DICTIONARY tables are commonly used to monitor and manage SAS sessions

because the data is more easily manipulated than the output from, for example, PROC
DATASETS. You can query DICTIONARY tables the same way that you query any other
table, including subsetting with a WHERE clause, ordering the results, and creating
PROC SQL views. Because DICTIONARY tables are read-only objects, you cannot
insert rows or columns, alter column attributes, or add integrity constraints to them.

DICTIONARY Tables and Performance
When querying a DICTIONARY table, SAS launches a discovery process that gathers

information that is pertinent to that table. Depending on the DICTIONARY table that
is being queried, this discovery process can search libraries, open tables, and execute
views. Unlike other SAS procedures and the DATA step, PROC SQL can mitigate this
process by optimizing the query before the discovery process is launched. Therefore,
although it is possible to access DICTIONARY table information with SAS procedures
or the DATA step by using the SASHELP views, it is often more efficient to use PROC
SQL instead.

For example, the following programs both produce the same result, but the PROC
SQL step runs much faster because the WHERE clause is processed prior to opening
the tables that are referenced by the SASHELP.VCOLUMN view:

data mytable;
set sashelp.vcolumn;
where libname=’WORK’ and memname=’SALES’;

run;

proc sql;
create table mytable as

select * from sashelp.vcolumn
where libname=’WORK’ and memname=’SALES’;

quit;

Note: SAS does not maintain DICTIONARY table information between queries.
Each query of a DICTIONARY table launches a new discovery process. �

If you are querying the same DICTIONARY table several times in a row, you can get
even faster performance by creating a temporary SAS data set (with the DATA step
SET statement or PROC SQL CREATE TABLE AS statement) with the information
that you want and running your query against that data set.



1202 Using Macro Variables Set by PROC SQL � Chapter 40

Using Macro Variables Set by PROC SQL
PROC SQL sets up macro variables with certain values after it executes each

statement. These macro variables can be tested inside a macro to determine whether to
continue executing the PROC SQL step. SAS/AF software users can also test them in a
program after an SQL SUBMIT block of code, using the SYMGET function.

After each PROC SQL statement has executed, the following macro variables are
updated with these values:

SQLOBS
contains the number of rows executed by an SQL procedure statement. For
example, it contains the number of rows formatted and displayed in SAS output by
a SELECT statement or the number of rows deleted by a DELETE statement.

SQLRC
contains the following status values that indicate the success of the SQL procedure
statement:

0
PROC SQL statement completed successfully with no errors.

4
PROC SQL statement encountered a situation for which it issued a warning.
The statement continued to execute.

8
PROC SQL statement encountered an error. The statement stopped
execution at this point.

12
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Technical Support. These errors
can occur only during compile time.

16
PROC SQL statement encountered a user error. This error code is used, for
example, when a subquery (that can only return a single value) evaluates to
more than one row. These errors can only be detected during run time.

24
PROC SQL statement encountered a system error. This error is used, for
example, if the system cannot write to a PROC SQL table because the disk is
full. These errors can occur only during run time.

28
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Technical Support. These errors
can occur only during run time.

SQLOOPS
contains the number of iterations that the inner loop of PROC SQL executes. The
number of iterations increases proportionally with the complexity of the query. See
also the description of LOOPS= on page 1122.

SQLXRC
contains the DBMS-specific return code that is returned by the Pass-Through
Facility.

SQLXMSG
contains descriptive information and the DBMS-specific return code for the error
that is returned by the Pass-Through Facility.



The SQL Procedure � Updating PROC SQL and SAS/ACCESS Views 1203

Note: Because the value of the SQLXMSG macro variable can contain special
characters (such as &, %, /, *, and ;), use the %SUPERQ macro function when
printing the value:

%put %superq(sqlxmsg);

See SAS Macro Language: Reference for information about the %SUPERQ
function. �

This example retrieves the data but does not display them in SAS output because of
the NOPRINT option in the PROC SQL statement. The %PUT macro statement
displays the macro variables values.

proc sql noprint;
select *

from proclib.payroll;

%put sqlobs=**&sqlobs**
sqloops=**&sqloops**
sqlrc=**&sqlrc**;

The message in Output 40.3 on page 1203 appears in the SAS log and gives you the
macros’ values.

Output 40.3 PROC SQL Macro Variable Values

40 options ls=80;
41
42 proc sql noprint;
43 select *
44 from proclib.payroll;
45
46 %put sqlobs=**&sqlobs**
47 sqloops=**&sqloops**
48 sqlrc=**&sqlrc**;
sqlobs=**1** sqloops=**11** sqlrc=**0**

Updating PROC SQL and SAS/ACCESS Views
You can update PROC SQL and SAS/ACCESS views using the INSERT, DELETE,

and UPDATE statements, under the following conditions.
� If the view accesses a DBMS table, then you must have been granted the

appropriate authorization by the external database management system (for
example, DB2). You must have installed the SAS/ACCESS software for your
DBMS. See the SAS/ACCESS interface guide for your DBMS for more information
on SAS/ACCESS views.

� You can update only a single table through a view. The table cannot be joined to
another table or linked to another table with a set-operator. The view cannot
contain a subquery.

� You can update a column in a view using the column’s alias, but you cannot
update a derived column, that is, a column produced by an expression. In the
following example, you can update the column SS, but not WeeklySalary.

create view EmployeeSalaries as
select Employee, SSNumber as SS,

Salary/52 as WeeklySalary



1204 PROC SQL and the ANSI Standard � Chapter 40

from employees;

� You cannot update a view containing an ORDER BY.

Note: Starting in Version 9, PROC SQL views, the Pass-Through Facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational DBMS
data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See The
CV2VIEW Procedure in SAS/ACCESS for Relational Databases: Reference for more
information. �

PROC SQL and the ANSI Standard
PROC SQL follows most of the guidelines set by the American National Standards

Institute (ANSI) in its implementation of SQL. However, it is not fully compliant with
the current ANSI Standard for SQL.*

The SQL research project at SAS has focused primarily on the expressive power of
SQL as a query language. Consequently, some of the database features of SQL have not
yet been implemented in PROC SQL.

This section describes
� enhancements to SQL that SAS has made through PROC SQL
� the ways in which PROC SQL differs from the current ANSI Standard for SQL.

SQL Procedure Enhancements
Most of the enhancements described here are required by the current ANSI Standard.

Reserved Words
PROC SQL reserves very few keywords and then only in certain contexts. The ANSI

Standard reserves all SQL keywords in all contexts. For example, according to the
Standard you cannot name a column GROUP because of the keywords GROUP BY.

The following words are reserved in PROC SQL:
� The keyword CASE is always reserved; its use in the CASE expression (an SQL2

feature) precludes its use as a column name.
If you have a column named CASE in a table and you want to specify it in a

PROC SQL step, then you can use the SAS data set option RENAME= to rename
that column for the duration of the query. You can also surround CASE in double
quotation marks (“CASE”) and set the PROC SQL option DQUOTE=ANSI.

� The keywords AS, ON, FULL, JOIN, LEFT, FROM, WHEN, WHERE, ORDER,
GROUP, RIGHT, INNER, OUTER, UNION, EXCEPT, HAVING, and INTERSECT
cannot normally be used for table aliases. These keywords all introduce clauses
that appear after a table name. Since the alias is optional, PROC SQL deals with
this ambiguity by assuming that any one of these words introduces the
corresponding clause and is not the alias. If you want to use one of these keywords
as an alias, then use the PROC SQL option DQUOTE=ANSI.

� The keyword USER is reserved for the current userid. If you specify USER on a
SELECT statement in conjunction with a CREATE TABLE statement, then the

* International Organization for Standardization (ISO): Database SQL. Document ISO/IEC 9075:1992. Also available as
American National Standards Institute (ANSI) Document ANSI X3.135-1992.



The SQL Procedure � SQL Procedure Enhancements 1205

column is created in the table with a temporary column name that is similar to
_TEMA001. If you specify USER in a SELECT statement without using the
CREATE TABLE statement, then the column is written to the output without a
column heading. In either case, the value for the column varies by operating
environment, but is typically the userid of the user who is submitting the program
or the value of the &SYSJOBID automatic macro variable.

If you have a column named USER in a table and you want to specify it in a
PROC SQL step, then you can use the SAS data set option RENAME= to rename
that column for the duration of the query. You can also enclose USER with double
quotation marks (“USER”) and set the PROC SQL option DQUOTE=ANSI.

Column Modifiers
PROC SQL supports the SAS INFORMAT=, FORMAT=, and LABEL= modifiers for

expressions within the SELECT clause. These modifiers control the format in which
output data are displayed and labeled.

Alternate Collating Sequences
PROC SQL allows you to specify an alternate collating (sorting) sequence to be used

when you specify the ORDER BY clause. See the description of the SORTSEQ= option
in “PROC SQL Statement” on page 1119 for more information.

ORDER BY Clause in a View Definition
PROC SQL permits you to specify an ORDER BY clause in a CREATE VIEW

statement. When the view is queried, its data are always sorted according to the
specified order unless a query against that view includes a different ORDER BY clause.
See “CREATE VIEW Statement” on page 1133 for more information.

In-Line Views
The ability to code nested query-expressions in the FROM clause is a requirement of

the ANSI Standard. PROC SQL supports such nested coding.

Outer Joins
The ability to include columns that both match and do not match in a join-expression

is a requirement of the ANSI Standard. PROC SQL supports this ability.

Arithmetic Operators
PROC SQL supports the SAS exponentiation (**) operator. PROC SQL uses the

notation <> to mean not equal.

Orthogonal Expressions
PROC SQL permits the combination of comparison, Boolean, and algebraic

expressions. For example, (X=3)*7 yields a value of 7 if X=3 is true because true is
defined to be 1. If X=3 is false, then it resolves to 0 and the entire expression yields a
value of 0.

PROC SQL permits a subquery in any expression. This feature is required by the
ANSI Standard. Therefore, you can have a subquery on the left side of a comparison
operator in the WHERE expression.



1206 SQL Procedure Omissions � Chapter 40

PROC SQL permits you to order and group data by any kind of mathematical
expression (except those including summary functions) using ORDER BY and GROUP
BY clauses. You can also group by an expression that appears on the SELECT clause
by using the integer that represents the expression’s ordinal position in the SELECT
clause. You are not required to select the expression by which you are grouping or
ordering. See ORDER BY Clause on page 1151 and GROUP BY Clause on page 1149
for more information.

Set Operators

The set operators UNION, INTERSECT, and EXCEPT are required by the ANSI
Standard. PROC SQL provides these operators plus the OUTER UNION operator.

The ANSI Standard also requires that the tables being operated upon all have the
same number of columns with matching data types. The SQL procedure works on
tables that have the same number of columns, as well as on those that do not, by
creating virtual columns so that a query can evaluate correctly. See “query-expression”
on page 1176 for more information.

Statistical Functions

PROC SQL supports many more summary functions than required by the ANSI
Standard for SQL.

PROC SQL supports the remerging of summary function results into the table’s
original data. For example, computing the percentage of total is achieved with 100*x/
SUM(x) in PROC SQL. See “summary-function” on page 1190 for more information on
the available summary functions and remerging data.

SAS DATA Step Functions

PROC SQL supports all the functions available to the SAS DATA step, except for
LAG, DIF, and SOUND. Other SQL databases support their own set of functions.

SQL Procedure Omissions
PROC SQL differs from the ANSI Standard for SQL in the following ways.

COMMIT Statement

The COMMIT statement is not supported.

ROLLBACK Statement

The ROLLBACK statement is not supported. The UNDO_POLICY= option in the
PROC SQL statement addresses rollback. See the description of the UNDO_POLICY=
option in “PROC SQL Statement” on page 1119 for more information.

Identifiers and Naming Conventions

In SAS, table names, column names, and aliases are limited to 32 characters and can
contain mixed case. For more information on SAS naming conventions, see SAS
Language Reference: Dictionary. The ANSI Standard for SQL allows longer names.



The SQL Procedure � Program 1207

Granting User Privileges
The GRANT statement, PRIVILEGES keyword, and authorization-identifier features

of SQL are not supported. You might want to use operating environment-specific means
of security instead.

Three-Valued Logic
ANSI-compatible SQL has three-valued logic, that is, special cases for handling

comparisons involving NULL values. Any value compared with a NULL value
evaluates to NULL.

PROC SQL follows the SAS convention for handling missing values: when numeric
NULL values are compared to non-NULL numbers, the NULL values are less than or
smaller than all the non-NULL values; when character NULL values are compared to
non-NULL characters, the character NULL values are treated as a string of blanks.

Embedded SQL
Currently there is no provision for embedding PROC SQL statements in other SAS

programming environments, such as the DATA step or SAS/IML software.

Examples: SQL Procedure

Example 1: Creating a Table and Inserting Data into It

Procedure features:
CREATE TABLE statement

column-modifier
INSERT statement

VALUES clause
SELECT clause
FROM clause

Table: PROCLIB.PAYLIST

This example creates the table PROCLIB.PAYLIST and inserts data into it.

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;



1208 Program � Chapter 40

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.PAYLIST table. The CREATE TABLE statement creates
PROCLIB.PAYLIST with six empty columns. Each column definition indicates whether the
column is character or numeric. The number in parentheses specifies the width of the column.
INFORMAT= and FORMAT= assign date informats and formats to the Birth and Hired columns.

proc sql;
create table proclib.paylist

(IdNum char(4),
Gender char(1),
Jobcode char(3),
Salary num,
Birth num informat=date7.

format=date7.,
Hired num informat=date7.

format=date7.);

Insert values into the PROCLIB.PAYLIST table. The INSERT statement inserts data
values into PROCLIB.PAYLIST according to the position in the VALUES clause. Therefore, in
the first VALUES clause, 1639 is inserted into the first column, F into the second column, and
so forth. Dates in SAS are stored as integers with 0 equal to January 1, 1960. Suffixing the date
with a d is one way to use the internal value for dates.

insert into proclib.paylist
values(’1639’,’F’,’TA1’,42260,’26JUN70’d,’28JAN91’d)
values(’1065’,’M’,’ME3’,38090,’26JAN54’d,’07JAN92’d)
values(’1400’,’M’,’ME1’,29769.’05NOV67’d,’16OCT90’d)

Include missing values in the data. The value null represents a missing value for the
character column Jobcode. The period represents a missing value for the numeric column Salary.

values(’1561’,’M’,null,36514,’30NOV63’d,’07OCT87’d)
values(’1221’,’F’,’FA3’,.,’22SEP63’d,’04OCT94’d);

Specify the title.

title ’PROCLIB.PAYLIST Table’;

Display the entire PROCLIB.PAYLIST table. The SELECT clause selects columns from
PROCLIB.PAYLIST. The asterisk (*) selects all columns. The FROM clause specifies
PROCLIB.PAYLIST as the table to select from.

select *
from proclib.paylist;



The SQL Procedure � Input Table 1209

Output Table

PROCLIB.PAYLIST

PROCLIB.PAYLIST Table

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94

Example 2: Creating a Table from a Query’s Result

Procedure features:
CREATE TABLE statement

AS query-expression
SELECT clause

column alias
FORMAT= column-modifier
object-item

Other features:
data set option

OBS=
Tables:

PROCLIB.PAYROLL, PROCLIB.BONUS

This example builds a column with an arithmetic expression and creates the
PROCLIB.BONUS table from the query’s result.

Input Table



1210 Program � Chapter 40

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.BONUS table. The CREATE TABLE statement creates the table
PROCLIB.BONUS from the result of the subsequent query.

proc sql;
create table proclib.bonus as

Select the columns to include. The SELECT clause specifies that three columns will be in
the new table: IdNumber, Salary, and Bonus. FORMAT= assigns the DOLLAR8. format to
Salary. The Bonus column is built with the SQL expression salary*.025.

select IdNumber, Salary format=dollar8.,
salary*.025 as Bonus format=dollar8.

from proclib.payroll;

Specify the title.

title ’BONUS Information’;



The SQL Procedure � Input 1211

Display the first 10 rows of the PROCLIB.BONUS table. The SELECT clause selects
columns from PROCLIB.BONUS. The asterisk (*) selects all columns. The FROM clause
specifies PROCLIB.BONUS as the table to select from. The OBS= data set option limits the
printing of the output to 10 rows.

select *
from proclib.bonus(obs=10);

Output

PROCLIB.BONUS

BONUS Information

Id
Number Salary Bonus
--------------------------
1919 $34,376 $859
1653 $35,108 $878
1400 $29,769 $744
1350 $32,886 $822
1401 $38,822 $971
1499 $43,025 $1,076
1101 $18,723 $468
1333 $88,606 $2,215
1402 $32,615 $815
1479 $38,785 $970

Example 3: Updating Data in a PROC SQL Table
Procedure features:

ALTER TABLE statement
DROP clause
MODIFY clause

UPDATE statement
SET clause

CASE expression
Table: EMPLOYEES

This example updates data values in the EMPLOYEES table and drops a column.

Input
data Employees;

input IdNum $4. +2 LName $11. FName $11. JobCode $3.



1212 Program � Chapter 40

+1 Salary 5. +1 Phone $12.;
datalines;

1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013
;

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Display the entire EMPLOYEES table. The SELECT clause displays the table before the
updates. The asterisk (*) selects all columns for display. The FROM clause specifies
EMPLOYEES as the table to select from.

proc sql;
title ’Employees Table’;
select * from Employees;

Update the values in the Salary column. The UPDATE statement updates the values in
EMPLOYEES. The SET clause specifies that the data in the Salary column be multiplied by
1.04 when the job code ends with a 1 and 1.025 for all other job codes. (The two underscores
represent any character.) The CASE expression returns a value for each row that completes the
SET clause.

update employees
set salary=salary*
case when jobcode like ’__1’ then 1.04

else 1.025
end;

Modify the format of the Salary column and delete the Phone column. The ALTER
TABLE statement specifies EMPLOYEES as the table to alter. The MODIFY clause
permanently modifies the format of the Salary column. The DROP clause permanently drops the
Phone column.

alter table employees
modify salary num format=dollar8.
drop phone;

Specify the title.



The SQL Procedure � Example 4: Joining Two Tables 1213

title ’Updated Employees Table’;

Display the entire updated EMPLOYEES table. The SELECT clause displays the
EMPLOYEES table after the updates. The asterisk (*) selects all columns.

select * from employees;

Output

Employees Table 1

Id Job
Num LName FName Code Salary Phone
------------------------------------------------------------
1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013

Updated Employees Table 2

Id Job
Num LName FName Code Salary
----------------------------------------------
1876 CHIN JACK TA1 $44,096
1114 GREENWALD JANICE ME3 $38,950
1556 PENNINGTON MICHAEL ME1 $31,054
1354 PARKER MARY FA3 $67,445
1130 WOOD DEBORAH PT2 $37,427

Example 4: Joining Two Tables
Procedure features:

FROM clause
table alias

inner join
joined-table component
PROC SQL statement option

NUMBER
WHERE clause

IN condition
Tables: PROCLIB.STAFF, PROCLIB.PAYROLL

This example joins two tables in order to get more information about data that are
common to both tables.



1214 Input Tables � Chapter 40

Input Tables

PROCLIB.STAFF (Partial Listing)

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.



The SQL Procedure � Output 1215

options nodate pageno=1 linesize=120 pagesize=40;

Add row numbers to PROC SQL output. NUMBER adds a column that contains the row
number.

proc sql number;

Specify the title.

title ’Information for Certain Employees Only’;

Select the columns to display. The SELECT clause selects the columns to show in the output.

select Lname, Fname, City, State,
IdNumber, Salary, Jobcode

Specify the tables from which to obtain the data. The FROM clause lists the tables to
select from.

from proclib.staff, proclib.payroll

Specify the join criterion and subset the query. The WHERE clause specifies that the
tables are joined on the ID number from each table. WHERE also further subsets the query
with the IN condition, which returns rows for only four employees.

where idnumber=idnum and idnum in
(’1919’, ’1400’, ’1350’, ’1333’);

Output

Information for Certain Employees Only

Id
Row Lname Fname City State Number

Salary Jobcode
------------------------------------------------------------------------

1 ADAMS GERALD STAMFORD CT 1919
34376 TA2

2 ALHERTANI ABDULLAH NEW YORK NY 1400
29769 ME1

3 ALVAREZ MERCEDES NEW YORK NY 1350
32886 FA3

4 BANADYGA JUSTIN STAMFORD CT 1333
88606 PT2



1216 Example 5: Combining Two Tables � Chapter 40

Example 5: Combining Two Tables

Procedure features:
DELETE statement
IS condition
RESET statement option

DOUBLE
UNION set operator

Tables: PROCLIB.NEWPAY, PROCLIB.PAYLIST, PROCLIB.PAYLIST2

This example creates a new table, PROCLIB.NEWPAY, by concatenating two other
tables: PROCLIB.PAYLIST and PROCLIB.PAYLIST2.

Input Tables

PROCLIB.PAYLIST

Information for Certain Employees Only

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94

PROCLIB.PAYLIST2

PROCLIB.PAYLIST2 Table

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1919 M TA2 34376 12SEP66 04JUN87
1653 F ME2 31896 15OCT64 09AUG92
1350 F FA3 36886 31AUG55 29JUL91
1401 M TA3 38822 13DEC55 17NOV93
1499 M ME1 23025 26APR74 07JUN92

Program



The SQL Procedure � Program 1217

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PROCLIB.NEWPAY table. The SELECT clauses select all the columns from the
tables that are listed in the FROM clauses. The UNION set operator concatenates the query
results that are produced by the two SELECT clauses.

proc sql;
create table proclib.newpay as

select * from proclib.paylist
union
select * from proclib.paylist2;

Delete rows with missing Jobcode or Salary values. The DELETE statement deletes rows
from PROCLIB.NEWPAY that satisfy the WHERE expression. The IS condition specifies rows
that contain missing values in the Jobcode or Salary column.

delete
from proclib.newpay
where jobcode is missing or salary is missing;

Reset the PROC SQL environment and double-space the output. RESET changes the
procedure environment without stopping and restarting PROC SQL. The DOUBLE option
double-spaces the output. (The DOUBLE option has no effect on ODS output.)

reset double;

Specify the title.

title ’Personnel Data’;

Display the entire PROCLIB.NEWPAY table. The SELECT clause selects all columns from
the newly created table, PROCLIB.NEWPAY.

select *
from proclib.newpay;



1218 Output � Chapter 40

Output

Personnel Data

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1065 M ME3 38090 26JAN54 07JAN92

1350 F FA3 36886 31AUG55 29JUL91

1400 M ME1 29769 05NOV67 16OCT90

1401 M TA3 38822 13DEC55 17NOV93

1499 M ME1 23025 26APR74 07JUN92

1639 F TA1 42260 26JUN70 28JAN91

1653 F ME2 31896 15OCT64 09AUG92

1919 M TA2 34376 12SEP66 04JUN87

Example 6: Reporting from DICTIONARY Tables
Procedure features:

DESCRIBE TABLE statement
DICTIONARY.table-name component

Table: DICTIONARY.MEMBERS

This example uses DICTIONARY tables to show a list of the SAS files in a SAS data
library. If you do not know the names of the columns in the DICTIONARY table that
you are querying, then use a DESCRIBE TABLE statement with the table.

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. SOURCE writes
the programming statements to the SAS log.

options nodate pageno=1 source linesize=80 pagesize=60;



The SQL Procedure � Log 1219

List the column names from the DICTIONARY.MEMBERS table. DESCRIBE TABLE
writes the column names from DICTIONARY.MEMBERS to the SAS log.

proc sql;
describe table dictionary.members;

Specify the title.

title ’SAS Files in the PROCLIB Library’;

Display a list of files in the PROCLIB library. The SELECT clause selects the MEMNAME
and MEMTYPE columns. The FROM clause specifies DICTIONARY.MEMBERS as the table to
select from. The WHERE clause subsets the output to include only those rows that have a libref
of PROCLIB in the LIBNAME column.

select memname, memtype
from dictionary.members
where libname=’PROCLIB’;

Log

277 options nodate pageno=1 source linesize=80 pagesize=60;
278
279 proc sql;
280 describe table dictionary.members;
NOTE: SQL table DICTIONARY.MEMBERS was created like:

create table DICTIONARY.MEMBERS
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
engine char(8) label=’Engine Name’,
index char(32) label=’Indexes’,
path char(1024) label=’Path Name’

);

281 title ’SAS Files in the PROCLIB Library’;
282
283 select memname, memtype
284 from dictionary.members
285 where libname=’PROCLIB’;



1220 Output � Chapter 40

Output

SAS Files in the PROCLIB Library

Member
Member Name Type
------------------------------------------
ALL DATA
BONUS DATA
BONUS95 DATA
DELAY DATA
HOUSES DATA
INTERNAT DATA
MARCH DATA
NEWPAY DATA
PAYLIST DATA
PAYLIST2 DATA
PAYROLL DATA
PAYROLL2 DATA
SCHEDULE DATA
SCHEDULE2 DATA
STAFF DATA
STAFF2 DATA
SUPERV DATA
SUPERV2 DATA

Example 7: Performing an Outer Join

Procedure features:
joined-table component
left outer join
SELECT clause

COALESCE function
WHERE clause

CONTAINS condition
Tables: PROCLIB.PAYROLL, PROCLIB.PAYROLL2

This example illustrates a left outer join of the PROCLIB.PAYROLL and
PROCLIB.PAYROLL2 tables.

Input Tables



The SQL Procedure � Program 1221

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

PROCLIB.PAYROLL2

PROCLIB.PAYROLL2

Id
Num Sex Jobcode Salary Birth Hired
----------------------------------------------
1036 F TA3 42465 19MAY65 23OCT84
1065 M ME3 38090 26JAN44 07JAN87
1076 M PT1 69742 14OCT55 03OCT91
1106 M PT3 94039 06NOV57 16AUG84
1129 F ME3 36758 08DEC61 17AUG91
1221 F FA3 29896 22SEP67 04OCT91
1350 F FA3 36098 31AUG65 29JUL90
1369 M TA3 36598 28DEC61 13MAR87
1447 F FA1 22123 07AUG72 29OCT92
1561 M TA3 36514 30NOV63 07OCT87
1639 F TA3 42260 26JUN57 28JAN84
1998 M SCP 23100 10SEP70 02NOV92

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;



1222 Output � Chapter 40

Limit the number of output rows. OUTOBS= limits the output to 10 rows.

proc sql outobs=10;

Specify the title for the first query.

title ’Most Current Jobcode and Salary Information’;

Select the columns. The SELECT clause lists the columns to select. Some column names are
prefixed with a table alias because they are in both tables. LABEL= and FORMAT= are column
modifiers.

select p.IdNumber, p.Jobcode, p.Salary,
p2.jobcode label=’New Jobcode’,
p2.salary label=’New Salary’ format=dollar8.

Specify the type of join. The FROM clause lists the tables to join and assigns table aliases.
The keywords LEFT JOIN specify the type of join. The order of the tables in the FROM clause
is important. PROCLIB.PAYROLL is listed first and is considered the “left” table.
PROCLIB.PAYROLL2 is the “right” table.

from proclib.payroll as p left join proclib.payroll2 as p2

Specify the join criterion. The ON clause specifies that the join be performed based on the
values of the ID numbers from each table.

on p.IdNumber=p2.idnum;

Output

As the output shows, all rows from the left table, PROCLIB.PAYROLL, are returned. PROC
SQL assigns missing values for rows in the left table, PAYROLL, that have no matching values
for IdNum in PAYROLL2.

Most Current Jobcode and Salary Information

Id New New
Number Jobcode Salary Jobcode Salary
--------------------------------------------
1009 TA1 28880 .
1017 TA3 40858 .
1036 TA3 39392 TA3 $42,465
1037 TA1 28558 .
1038 TA1 26533 .
1050 ME2 35167 .
1065 ME2 35090 ME3 $38,090
1076 PT1 66558 PT1 $69,742
1094 FA1 22268 .
1100 BCK 25004 .



The SQL Procedure � Output 1223

Specify the title for the second query.

title ’Most Current Jobcode and Salary Information’;

Select the columns and coalesce the Jobcode columns.The SELECT clause lists the
columns to select. COALESCE overlays the like-named columns. For each row, COALESCE
returns the first nonmissing value of either P2.JOBCODE or P.JOBCODE. Because
P2.JOBCODE is the first argument, if there is a nonmissing value for P2.JOBCODE,
COALESCE returns that value. Thus, the output contains the most recent job code information
for every employee. LABEL= assigns a column label.

select p.idnumber, coalesce(p2.jobcode,p.jobcode)
label=’Current Jobcode’,

Coalesce the Salary columns. For each row, COALESCE returns the first nonmissing value
of either P2.SALARY or P.SALARY. Because P2.SALARY is the first argument, if there is a
nonmissing value for P2.SALARY, then COALESCE returns that value. Thus, the output
contains the most recent salary information for every employee.

coalesce(p2.salary,p.salary) label=’Current Salary’
format=dollar8.

Specify the type of join and the join criterion. The FROM clause lists the tables to join and
assigns table aliases. The keywords LEFT JOIN specify the type of join. The ON clause specifies
that the join is based on the ID numbers from each table.

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum;

Output

Most Current Jobcode and Salary Information

Id Current Current
Number Jobcode Salary
-------------------------
1009 TA1 $28,880
1017 TA3 $40,858
1036 TA3 $42,465
1037 TA1 $28,558
1038 TA1 $26,533
1050 ME2 $35,167
1065 ME3 $38,090
1076 PT1 $69,742
1094 FA1 $22,268
1100 BCK $25,004



1224 Output � Chapter 40

Subset the query. The WHERE clause subsets the left join to include only those rows
containing the value TA.

title ’Most Current Information for Ticket Agents’;
select p.IdNumber,

coalesce(p2.jobcode,p.jobcode) label=’Current Jobcode’,
coalesce(p2.salary,p.salary) label=’Current Salary’

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum
where p2.jobcode contains ’TA’;

Output

Most Current Information for Ticket Agents

Id Current Current
Number Jobcode Salary
-------------------------
1036 TA3 42465
1369 TA3 36598
1561 TA3 36514
1639 TA3 42260

Example 8: Creating a View from a Query’s Result

Procedure features:
CREATE VIEW statement

GROUP BY clause

SELECT clause

COUNT function

HAVING clause

Other features:
AVG summary function

data set option

PW=

Tables: PROCLIB.PAYROLL, PROCLIB.JOBS

This example creates the PROC SQL view PROCLIB.JOBS from the result of a
query-expression.

Input Table



The SQL Procedure � Program 1225

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PROCLIB.JOBS view. CREATE VIEW creates the PROC SQL view
PROCLIB.JOBS. The PW= data set option assigns password protection to the data that is
generated by this view.

proc sql;
create view proclib.jobs(pw=red) as

Select the columns. The SELECT clause specifies four columns for the view: Jobcode and
three columns, Number, AVGAGE, and AVGSAL, whose values are the products functions.
COUNT returns the number of nonmissing values for each job code because the data is grouped
by Jobcode. LABEL= assigns a label to the column.

select Jobcode,
count(jobcode) as number label=’Number’,

Calculate the Avgage and Avgsal columns. The AVG summary function calculates the
average age and average salary for each job code.



1226 Program � Chapter 40

avg(int((today()-birth)/365.25)) as avgage
format=2. label=’Average Age’,

avg(salary) as avgsal
format=dollar8. label=’Average Salary’

Specify the table from which the data is obtained. The FROM clause specifies PAYROLL
as the table to select from. PROC SQL assumes the libref of PAYROLL to be PROCLIB because
PROCLIB is used in the CREATE VIEW statement.

from payroll

Organize the data into groups and specify the groups to include in the output. The
GROUP BY clause groups the data by the values of Jobcode. Thus, any summary statistics are
calculated for each grouping of rows by value of Jobcode. The HAVING clause subsets the
grouped data and returns rows for job codes that contain an average age of greater than or
equal to 30.

group by jobcode
having avgage ge 30;

Specify the titles.

title ’Current Summary Information for Each Job Category’;
title2 ’Average Age Greater Than or Equal to 30’;

Display the entire PROCLIB.JOBS view. The SELECT statement selects all columns from
PROCLIB.JOBS. PW=RED is necessary because the view is password protected.

select * from proclib.jobs(pw=red);



The SQL Procedure � Input Tables 1227

Output

Current Summary Information for Each Job Category
Average Age Greater Than Or Equal to 30

Average Average
Jobcode Number Age Salary
------------------------------------
BCK 9 36 $25,794
FA1 11 33 $23,039
FA2 16 37 $27,987
FA3 7 39 $32,934
ME1 8 34 $28,500
ME2 14 39 $35,577
ME3 7 42 $42,411
NA1 5 30 $42,032
NA2 3 42 $52,383
PT1 8 38 $67,908
PT2 10 43 $87,925
PT3 2 54 $10,505
SCP 7 37 $18,309
TA1 9 36 $27,721
TA2 20 36 $33,575
TA3 12 40 $39,680

Example 9: Joining Three Tables

Procedure features:
FROM clause
joined-table component
WHERE clause

Tables: PROCLIB.STAFF2, PROCLIB.SCHEDULE2, PROCLIB.SUPERV2

This example joins three tables and produces a report that contains columns from
each table.

Input Tables



1228 Input Tables � Chapter 40

PROCLIB.STAFF2

PROCLIB.STAFF2

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1126 KIMANI ANNE NEW YORK NY 212/586-1229
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1882 TUCKER ALAN NEW YORK NY 718/384-0216
1479 BALLETTI MARIE NEW YORK NY 718/384-8816
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1616 FUENTAS CARLA NEW YORK NY 718/384-3329

PROCLIB.SCHEDULE2

PROCLIB.SCHEDULE2

Id
Flight Date Dest Num
---------------------------
132 01MAR94 BOS 1118
132 01MAR94 BOS 1402
219 02MAR94 PAR 1616
219 02MAR94 PAR 1478
622 03MAR94 LON 1430
622 03MAR94 LON 1882
271 04MAR94 NYC 1430
271 04MAR94 NYC 1118
579 05MAR94 RDU 1126
579 05MAR94 RDU 1106

PROCLIB.SUPERV2

PROCLIB.SUPERV2

Supervisor Job
Id State Category
---------------------------
1417 NJ NA
1352 NY NA
1106 CT PT
1442 NJ PT
1118 NY PT
1405 NJ SC
1564 NY SC
1639 CT TA
1126 NY TA
1882 NY ME



The SQL Procedure � Output 1229

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Select the columns. The SELECT clause specifies the columns to select. IdNum is prefixed
with a table alias because it appears in two tables.

proc sql;
title ’All Flights for Each Supervisor’;
select s.IdNum, Lname, City ’Hometown’, Jobcat,

Flight, Date

Specify the tables to include in the join. The FROM clause lists the three tables for the join
and assigns an alias to each table.

from proclib.schedule2 s, proclib.staff2 t, proclib.superv2 v

Specify the join criteria. The WHERE clause specifies the columns that join the tables. The
STAFF2 and SCHEDULE2 tables have an IdNum column, which has related values in both
tables. The STAFF2 and SUPERV2 tables have the IdNum and SUPID columns, which have
related values in both tables.

where s.idnum=t.idnum and t.idnum=v.supid;

Output

All Flights for Each Supervisor

Id Job
Num Lname Hometown Category Flight Date
-----------------------------------------------------------------
1106 MARSHBURN STAMFORD PT 579 05MAR94
1118 DENNIS NEW YORK PT 132 01MAR94
1118 DENNIS NEW YORK PT 271 04MAR94
1126 KIMANI NEW YORK TA 579 05MAR94
1882 TUCKER NEW YORK ME 622 03MAR94



1230 Example 10: Querying an In-Line View � Chapter 40

Example 10: Querying an In-Line View

Procedure features:
FROM clause

in-line view

Tables: PROCLIB.STAFF, PROCLIB.SCHEDULE, PROCLIB.SUPERV

This example uses the query explained in Example 9 on page 1227 as an in-line view.
The example also shows how to rename columns with an in-line view.

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Select the columns. The SELECT clause selects all columns that are returned by the query in
the FROM clause.

proc sql outobs=10;
title ’All Flights for Each Supervisor’;
select *

Specify the join as an in-line query. Instead of including the name of a table or view, the
FROM clause includes the query that joins the three tables. In the in-line query, the SELECT
clause lists the columns to select. IdNum is prefixed with a table alias because it appears in two
tables. The FROM clause lists the three tables for the join and assigns an alias to each table.
The WHERE clause specifies the columns that join the tables. The STAFF2 and SCHEDULE2
tables have an IdNum column, which has related values in both tables. The STAFF2 and
SUPERV2 tables have the IdNum and SUPID columns, which have related values in both tables.

from (select lname, s.idnum, city, jobcat,
flight, date

from proclib.schedule2 s, proclib.staff2 t,
proclib.superv2 v

where s.idnum=t.idnum and t.idnum=v.supid)



The SQL Procedure � Input Table 1231

Specify an alias for the query and names for the columns. The alias THREE refers to the
entire query. The names in parentheses become the names for the columns in the output. The
label Job Category appears in the output instead of the name Jobtype because PROC SQL
prints a column’s label if the column has a label.

as three (Surname, Emp_ID, Hometown,
Jobtype, FlightNumber, FlightDate);

Output

All Flights for Each Supervisor

Job
Surname Emp_ID Hometown Category FlightNumber FlightDate
----------------------------------------------------------------------------
MARSHBURN 1106 STAMFORD PT 579 05MAR94
DENNIS 1118 NEW YORK PT 132 01MAR94
DENNIS 1118 NEW YORK PT 271 04MAR94
KIMANI 1126 NEW YORK TA 579 05MAR94
TUCKER 1882 NEW YORK ME 622 03MAR94

Example 11: Retrieving Values with the SOUNDS-LIKE Operator

Procedure features:
ORDER BY clause
SOUNDS-LIKE operator

Table: PROCLIB.STAFF

This example returns rows based on the functionality of the SOUNDS-LIKE operator
in a WHERE clause.

Note: The SOUNDS-LIKE operator is based on the SOUNDEX algorithm for
identifying words that sound alike. The SOUNDEX algorithm is English-biased and is
less useful for languages other than English. For more information on the SOUNDEX
algorithm, see SAS Language Reference: Dictionary. �

Input Table



1232 Program � Chapter 40

PROCLIB.STAFF

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

Select the columns and the table from which the data is obtained. The SELECT clause
selects all columns from the table in the FROM clause, PROCLIB.STAFF.

proc sql;
title "Employees Whose Last Name Sounds Like ’Johnson’";
select idnum, upcase(lname), fname

from proclib.staff

Subset the query and sort the output. The WHERE clause uses the SOUNDS-LIKE
operator to subset the table by those employees whose last name sounds like Johnson. The
ORDER BY clause orders the output by the second column.

where lname=*"Johnson"
order by 2;



The SQL Procedure � Example 12: Joining Two Tables and Calculating a New Value 1233

Output

Employees Whose Last Name Sounds Like ’Johnson’ 1

Id
Num Fname
--------------------------------------
1411 JOHNSEN JACK
1113 JOHNSON LESLIE
1369 JONSON ANTHONY

SOUNDS-LIKE is useful, but there might be instances where it does not return every row that
seems to satisfy the condition. PROCLIB.STAFF has an employee with the last name SANDERS
and an employee with the last name SANYERS. The algorithm does not find SANYERS, but it does
find SANDERS and SANDERSON.

title "Employees Whose Last Name Sounds Like ’Sanders’";
select *

from proclib.staff
where lname=*"Sanders"
order by 2;

Employees Whose Last Name Sounds Like ’Sanders’ 2

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1561 SANDERS RAYMOND NEW YORK NY 212/588-6615
1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715
1434 SANDERSON EDITH STAMFORD CT 203/781-1333

Example 12: Joining Two Tables and Calculating a New Value

Procedure features:
GROUP BY clause
HAVING clause
SELECT clause

ABS function
FORMAT= column-modifier
LABEL= column-modifier
MIN summary function
** operator, exponentiation
SQRT function

Tables: STORES, HOUSES



1234 Input Tables � Chapter 40

This example joins two tables in order to compare and analyze values that are unique
to each table yet have a relationship with a column that is common to both tables.

options ls=80 ps=60 nodate pageno=1 ;
data stores;

input Store $ x y;
datalines;

store1 5 1
store2 5 3
store3 3 5
store4 7 5
;
data houses;

input House $ x y;
datalines;

house1 1 1
house2 3 3
house3 2 3
house4 7 7
;

Input Tables

STORES and HOUSES

The tables contain X and Y coordinates that represent the location of the stores and houses.

STORES Table 1
Coordinates of Stores

Store x y
----------------------------
store1 6 1
store2 5 2
store3 3 5
store4 7 5

HOUSES Table 2
Coordinates of Houses

House x y
----------------------------
house1 1 1
house2 3 3
house3 2 3
house4 7 7

Program



The SQL Procedure � Example 13: Producing All the Possible Combinations of the Values in a Column 1235

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the query. The SELECT clause specifies three columns: HOUSE, STORE, and DIST.
The arithmetic expression uses the square root function (SQRT) to create the values of DIST,
which contain the distance from HOUSE to STORE for each row. The double asterisk (**)
represents exponentiation. LABEL= assigns a label to STORE and to DIST.

proc sql;
title ’Each House and the Closest Store’;
select house, store label=’Closest Store’,

sqrt((abs(s.x-h.x)**2)+(abs(h.y-s.y)**2)) as dist
label=’Distance’ format=4.2

from stores s, houses h

Organize the data into groups and subset the query. The minimum distance from each
house to all the stores is calculated because the data are grouped by house. The HAVING clause
specifies that each row be evaluated to determine if its value of DIST is the same as the
minimum distance from that house to any store.

group by house
having dist=min(dist);

Output

Note that two stores are tied for shortest distance from house2.

Each House and the Closest Store 1

Closest
House Store Distance
----------------------------
house1 store1 4.00
house2 store2 2.00
house2 store3 2.00
house3 store3 2.24
house4 store4 2.00

Example 13: Producing All the Possible Combinations of the Values in a
Column

Procedure features:



1236 Input Table � Chapter 40

CASE expression
joined-table component
SELECT clause

DISTINCT keyword

Tables: PROCLIB.MARCH, FLIGHTS

This example joins a table with itself to get all the possible combinations of the
values in a column.

Input Table

PROCLIB.MARCH (Partial Listing)

PROCLIB.MARCH 1
First 10 Rows Only

Flight Date Depart Orig Dest Miles Boarded Capacity
-----------------------------------------------------------------
114 01MAR94 7:10 LGA LAX 2475 172 210
202 01MAR94 10:43 LGA ORD 740 151 210
219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
302 01MAR94 20:22 LGA WAS 229 105 180
114 02MAR94 7:10 LGA LAX 2475 119 210
202 02MAR94 10:43 LGA ORD 740 120 210
219 02MAR94 9:31 LGA LON 3442 147 250

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the FLIGHTS table. The CREATE TABLE statement creates the table FLIGHTS from
the output of the query. The SELECT clause selects the unique values of Dest. DISTINCT
specifies that only one row for each value of city be returned by the query and stored in the
table FLIGHTS. The FROM clause specifies PROCLIB.MARCH as the table to select from.



The SQL Procedure � Output 1237

proc sql;
create table flights as

select distinct dest
from proclib.march;

Specify the title.

title ’Cities Serviced by the Airline’;

Display the entire FLIGHTS table.

select * from flights;

Output

FLIGHTS Table

Cities Serviced by the Airline 1

Dest
----
FRA
LAX
LON
ORD
PAR
WAS
YYZ

Specify the title.

title ’All Possible Connections’;

Select the columns. The SELECT clause specifies three columns for the output. The prefixes
on DEST are table aliases to specify which table to take the values of Dest from. The CASE
expression creates a column that contains the character string to and from.

select f1.Dest, case
when f1.dest ne ’ ’ then ’to and from’

end,
f2.Dest

Specify the type of join. The FROM clause joins FLIGHTS with itself and creates a table that
contains every possible combination of rows. The table contains two rows for each possible route,
for example, PAR <-> WAS and WAS <-> PAR.



1238 Output � Chapter 40

from flights as f1, flights as f2

Specify the join criterion. The WHERE clause subsets the internal table by choosing only
those rows where the name in F1.Dest sorts before the name in F2.Dest. Thus, there is only one
row for each possible route.

where f1.dest < f2.dest

Sort the output. ORDER BY sorts the result by the values of F1.Dest.

order by f1.dest;

Output

All Possible Connections 2

Dest Dest
-----------------------
FRA to and from LAX
FRA to and from LON
FRA to and from WAS
FRA to and from ORD
FRA to and from PAR
FRA to and from YYZ
LAX to and from LON
LAX to and from PAR
LAX to and from WAS
LAX to and from ORD
LAX to and from YYZ
LON to and from ORD
LON to and from WAS
LON to and from PAR
LON to and from YYZ
ORD to and from WAS
ORD to and from PAR
ORD to and from YYZ
PAR to and from WAS
PAR to and from YYZ
WAS to and from YYZ

Example 14: Matching Case Rows and Control Rows

Procedure features:
joined-table component

Tables: MATCH_11 on page 1641, MATCH

This example uses a table that contains data for a case-control study. Each row
contains information for a case or a control. To perform statistical analysis, you need a



The SQL Procedure � Program 1239

table with one row for each case-control pair. PROC SQL joins the table with itself in
order to match the cases with their appropriate controls. After the rows are matched,
differencing can be performed on the appropriate columns.

The input table MATCH_11 contains one row for each case and one row for each
control. Pair contains a number that associates the case with its control. Low is 0 for
the controls and 1 for the cases. The remaining columns contain information about the
cases and controls.

Input Table

MATCH_11 Table 1

First 10 Rows Only

Pair Low Age Lwt Race Smoke Ptd Ht UI race1 race2

------------------------------------------------------------------------------------------------------------

1 0 14 135 1 0 0 0 0 0 0

1 1 14 101 3 1 1 0 0 0 1

2 0 15 98 2 0 0 0 0 1 0

2 1 15 115 3 0 0 0 1 0 1

3 0 16 95 3 0 0 0 0 0 1

3 1 16 130 3 0 0 0 0 0 1

4 0 17 103 3 0 0 0 0 0 1

4 1 17 130 3 1 1 0 1 0 1

5 0 17 122 1 1 0 0 0 0 0

5 1 17 110 1 1 0 0 0 0 0

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the MATCH table. The SELECT clause specifies the columns for the table MATCH.
SQL expressions in the SELECT clause calculate the differences for the appropriate columns
and create new columns.

proc sql;
create table match as

select
one.Low,
one.Pair,
(one.lwt - two.lwt) as Lwt_d,
(one.smoke - two.smoke) as Smoke_d,
(one.ptd - two.ptd) as Ptd_d,
(one.ht - two.ht) as Ht_d,
(one.ui - two.ui) as UI_d



1240 Output � Chapter 40

Specify the type of join and the join criterion. The FROM clause lists the table MATCH_11
twice. Thus, the table is joined with itself. The WHERE clause returns only the rows for each
pair that show the difference when the values for control are subtracted from the values for case.

from match_11 one, match_11 two
where (one.pair=two.pair and one.low>two.low);

Specify the title.

title ’Differences for Cases and Controls’;

Display the first five rows of the MATCH table. The SELECT clause selects all the columns
from MATCH. The OBS= data set option limits the printing of the output to five rows.

select *
from match(obs=5);

Output

MATCH Table

Differences for Cases and Controls 1

Low Pair Lwt_d Smoke_d Ptd_d Ht_d UI_d
--------------------------------------------------------------------

1 1 -34 1 1 0 0
1 2 17 0 0 0 1
1 3 35 0 0 0 0
1 4 27 1 1 0 1
1 5 -12 0 0 0 0

Example 15: Counting Missing Values with a SAS Macro
Procedure feature:

COUNT function
Table: SURVEY

This example uses a SAS macro to create columns. The SAS macro is not explained
here. See the SAS Macro Language: Reference for information on SAS macros.

Input Table



The SQL Procedure � Program 1241

SURVEY contains data from a questionnaire about diet and exercise habits. SAS enables you to
use a special notation for missing values. In the EDUC column, the .x notation indicates that
the respondent gave an answer that is not valid, and .n indicates that the respondent did not
answer the question. A period as a missing value indicates a data entry error.

data survey;
input id $ diet $ exer $ hours xwk educ;
datalines;

1001 yes yes 1 3 1
1002 no yes 1 4 2
1003 no no . . .n
1004 yes yes 2 3 .x
1005 no yes 2 3 .x
1006 yes yes 2 4 .x
1007 no yes .5 3 .
1008 no no . . .
;

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Count the nonmissing responses. The COUNTM macro uses the COUNT function to perform
various counts for a column. Each COUNT function uses a CASE expression to select the rows
to be counted. The first COUNT function uses only the column as an argument to return the
number of nonmissing rows.

%macro countm(col);
count(&col) "Valid Responses for &col",

Count missing or invalid responses. The NMSS function returns the number of rows for
which the column has any type of missing value: .n, .x, or a period.

nmiss(&col) "Missing or NOT VALID Responses for &col",

Count the occurrences of various sources of missing or invalid responses. The last
three COUNT functions use CASE expressions to count the occurrences of the three notations
for missing values. The “count me” character string gives the COUNT function a nonmissing
value to count.

count(case
when &col=.n then "count me"
end) "Coded as NO ANSWER for &col",

count(case
when &col=.x then "count me"
end) "Coded as NOT VALID answers for &col",



1242 Output � Chapter 40

count(case
when &col=. then "count me"
end) "Data Entry Errors for &col"

%mend;

Use the COUNTM macro to create the columns. The SELECT clause specifies the columns
that are in the output. COUNT(*) returns the total number of rows in the table. The COUNTM
macro uses the values of the EDUC column to create the columns that are defined in the macro.

proc sql;
title ’Counts for Each Type of Missing Response’;
select count(*) "Total No. of Rows",

%countm(educ)
from survey;

Output

Counts for Each Type of Missing Response 1

Missing Coded as
or NOT Coded as NOT Data

Total Valid VALID NO VALID Entry
No. of Responses Responses ANSWER answers Errors

Rows for educ for educ for educ for educ for educ
------------------------------------------------------------

8 2 6 1 3 2



1243

C H A P T E R

41
The STANDARD Procedure

Overview: STANDARD Procedure 1243
Syntax: STANDARD Procedure 1245

PROC STANDARD Statement 1246

BY Statement 1248

FREQ Statement 1248

VAR Statement 1249
WEIGHT Statement 1249

Results: STANDARD Procedure 1250

Missing Values 1250

Output Data Set 1250

Statistical Computations: STANDARD Procedure 1250

Examples: STANDARD Procedure 1251
Example 1: Standardizing to a Given Mean and Standard Deviation 1251

Example 2: Standardizing BY Groups and Replacing Missing Values 1253

Overview: STANDARD Procedure
The STANDARD procedure standardizes variables in a SAS data set to a given mean

and standard deviation, and it creates a new SAS data set containing the standardized
values.

Output 41.1 on page 1243 shows a simple standardization where the output data set
contains standardized student exam scores. The statements that produce the output
follow:

proc standard data=score mean=75 std=5
out=stndtest;

run;

proc print data=stndtest;
run;



1244 Overview: STANDARD Procedure � Chapter 41

Output 41.1 Standardized Test Scores Using PROC STANDARD

The SAS System 1

Obs Student Test1

1 Capalleti 80.5388
2 Dubose 64.3918
3 Engles 80.9143
4 Grant 68.8980
5 Krupski 75.2816
6 Lundsford 79.7877
7 Mcbane 73.4041
8 Mullen 78.6612
9 Nguyen 74.9061

10 Patel 71.9020
11 Si 73.4041
12 Tanaka 77.9102

Output 41.2 on page 1244 shows a more complex example that uses BY-group
processing. PROC STANDARD computes Z scores separately for two BY groups by
standardizing life-expectancy data to a mean of 0 and a standard deviation of 1. The
data are 1950 and 1993 life expectancies at birth for 16 countries. The birth rates for
each country, classified as stable or rapid, form the two BY groups. The statements that
produce the analysis also

� print statistics for each variable to standardize

� replace missing values with the given mean

� calculate standardized values using a given mean and standard deviation

� print the data set with the standardized values.

For an explanation of the program that produces this output, see Example 2 on page
1253.

Output 41.2 Z Scores for Each BY Group Using PROC STANDARD

Life Expectancies by Birth Rate 2

-------------------- PopulationRate=Stable ---------------------

The STANDARD Procedure

Standard
Name Mean Deviation N
Label

Life50 67.400000 1.854724 5
1950 life expectancy
Life93 74.500000 4.888763 6
1993 life expectancy

--------------------- PopulationRate=Rapid ---------------------

Standard
Name Mean Deviation N
Label

Life50 42.000000 5.033223 8
1950 life expectancy
Life93 59.100000 8.225300 10
1993 life expectancy



The STANDARD Procedure � Syntax: STANDARD Procedure 1245

Standardized Life Expectancies at Birth 3
by a Country’s Birth Rate

Population
Rate Country Life50 Life93

Stable France -0.21567 0.51138
Stable Germany 0.32350 0.10228
Stable Japan -1.83316 0.92048
Stable Russia 0.00000 -1.94323
Stable United Kingdom 0.86266 0.30683
Stable United States 0.86266 0.10228
Rapid Bangladesh 0.00000 -0.74161
Rapid Brazil 1.78812 0.96045
Rapid China -0.19868 1.32518
Rapid Egypt 0.00000 0.10942
Rapid Ethiopia -1.78812 -1.59265
Rapid India -0.59604 -0.01216
Rapid Indonesia -0.79472 -0.01216
Rapid Mozambique 0.00000 -1.47107
Rapid Philippines 1.19208 0.59572
Rapid Turkey 0.39736 0.83888

Syntax: STANDARD Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC STANDARD <option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>

<NOTSORTED>;
FREQ variable;
VAR variable(s);
WEIGHT variable;

To do this Use this statement

Calculate separate standardized values for each BY
group

BY

Identify a variable whose values represent the
frequency of each observation

FREQ

Select the variables to standardize and determine the
order in which they appear in the printed output

VAR

Identify a variable whose values weight each
observation in the statistical calculations

WEIGHT



1246 PROC STANDARD Statement � Chapter 41

PROC STANDARD Statement

PROC STANDARD <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the output data set OUT=

Computational options

Exclude observations with nonpositive weights EXCLNPWGT

Specify the mean value MEAN=

Replace missing values with a variable mean or
MEAN= value

REPLACE

Specify the standard deviation value STD=

Specify the divisor for variance calculations VARDEF=

Control printed output

Print statistics for each variable to standardize PRINT

Without Options
If you do not specify MEAN=, REPLACE, or STD=, the output data set is an

identical copy of the input data set.

Options

DATA=SAS-data-set
identifies the input SAS data set.

Main discussion: “Input Data Sets” on page 19

Restriction: You cannot use PROC STANDARD with an engine that supports
concurrent access if another user is updating the data set at the same time.

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative). The
procedure does not use the observation to calculate the mean and standard deviation,
but the observation is still standardized. By default, the procedure treats
observations with negative weights like those with zero weights and counts them in
the total number of observations.

MEAN=mean-value
standardizes variables to a mean of mean-value.

Alias: M=

Default: mean of the input values

Featured in: Example 1 on page 1251



The STANDARD Procedure � PROC STANDARD Statement 1247

OUT=SAS-data-set
identifies the output data set. If SAS-data-set does not exist, PROC STANDARD
creates it. If you omit OUT=, the data set is named DATAn, where n is the smallest
integer that makes the name unique.

Default: DATAn

Featured in: Example 1 on page 1251

PRINT
prints the original frequency, mean, and standard deviation for each variable to
standardize.
Featured in: Example 2 on page 1253

REPLACE
replaces missing values with the variable mean.

Interaction: If you use MEAN=, PROC STANDARD replaces missing values with
the given mean.

Featured in: Example 2 on page 1253

STD=std-value
standardizes variables to a standard deviation of
std-value.

Alias: S=
Default: standard deviation of the input values

Featured in: Example 1 on page 1251

VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation.
Table 41.1 on page 1247 shows the possible values for divisor and the associated
divisors.

Table 41.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT
|WGT

sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � ���. When you weight the analysis variables,

��� equals
�

�� ��� � ���
� where �� is the weighted mean.

Default: DF
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.



1248 BY Statement � Chapter 41

See also: “WEIGHT” on page 59
Main discussion: “Keywords and Formulas” on page 1578

BY Statement
Calculates standardized values separately for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 2 on page 1253

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. These variables are called
BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the
NOTSORTED option. In fact, the procedure does not use an index if you specify
NOTSORTED. The procedure defines a BY group as a set of contiguous observations
that have the same values for all BY variables. If observations with the same values
for the BY variables are not contiguous, the procedure treats each contiguous set as a
separate BY group.

FREQ Statement

Specifies a numeric variable whose values represent the frequency of the observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “FREQ” on page 56



The STANDARD Procedure � WEIGHT Statement 1249

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer, the
SAS System truncates it. If n is less than 1 or is missing, the procedure does not use
that observation to calculate statistics but the observation is still standardized.

The sum of the frequency variable represents the total number of observations.

VAR Statement

Specifies the variables to standardize and their order in the printed output.

Default: If you omit the VAR statement, PROC STANDARD standardizes all numeric
variables not listed in the other statements.
Featured in: Example 1 on page 1251

VAR variable(s);

Required Arguments

variable(s)
identifies one or more variables to standardize.

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information about calculating weighted statistics and for an example that
uses the WEIGHT statement, see “WEIGHT” on page 59

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is



1250 Results: STANDARD Procedure � Chapter 41

Weight value… PROC STANDARD…

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation from the calculation of mean and
standard deviation

To exclude observations that contain negative and zero weights from the calculation
of mean and standard deviation, use EXCLNPWGT. Note that most SAS/STAT
procedures, such as PROC GLM, exclude negative and zero weights by default.
Tip: When you use the WEIGHT statement, consider which value of the VARDEF=

option is appropriate. See VARDEF= on page 1247 and the calculation of weighted
statistics in “Keywords and Formulas” on page 1578 for more information.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. �

Results: STANDARD Procedure

Missing Values
By default, PROC STANDARD excludes missing values for the analysis variables

from the standardization process, and the values remain missing in the output data set.
When you specify the REPLACE option, the procedure replaces missing values with the
variable’s mean or the MEAN= value.

If the value of the WEIGHT variable or the FREQ variable is missing then the
procedure does not use the observation to calculate the mean and the standard
deviation. However, the observation is standardized.

Output Data Set
PROC STANDARD always creates an output data set that stores the standardized

values in the VAR statement variables, regardless of whether you specify the OUT=
option. The output data set contains all the input data set variables, including those
not standardized. PROC STANDARD does not print the output data set. Use PROC
PRINT, PROC REPORT, or another SAS reporting tool to print the output data set.

Statistical Computations: STANDARD Procedure
Standardizing values removes the location and scale attributes from a set of data.

The formula to compute standardized values is

�
�

�
�
� � ��� � ��

��
��



The STANDARD Procedure � Program 1251

where

�
�

�
is a new standardized value

� is the value of STD=

� is the value of MEAN=

�� is an observation’s value

� is a variable’s mean

�� is a variable’s standard deviation.

PROC STANDARD calculates the mean (�) and standard deviation (��) from the
input data set. The resulting standardized variable has a mean of M and a standard
deviation of S.

If the data are normally distributed, standardizing is also studentizing since the
resulting data have a Student’s t distribution.

Examples: STANDARD Procedure

Example 1: Standardizing to a Given Mean and Standard Deviation

Procedure features:
PROC STANDARD statement options:

MEAN=
OUT=
STD=

VAR statement
Other features:

PRINT procedure

This example
� standardizes two variables to a mean of 75 and a standard deviation of 5
� specifies the output data set
� combines standardized variables with original variables
� prints the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.



1252 Program � Chapter 41

options nodate pageno=1 linesize=80 pagesize=60;

Create the SCORE data set. This data set contains test scores for students who took two tests
and a final exam. The FORMAT statement assigns the Zw.d format to StudentNumber. This
format pads right-justified output with 0s instead of blanks. The LENGTH statement specifies
the number of bytes to use to store values of Student.

data score;
length Student $ 9;
input Student $ StudentNumber Section $

Test1 Test2 Final @@;
format studentnumber z4.;
datalines;

Capalleti 0545 1 94 91 87 Dubose 1252 2 51 65 91
Engles 1167 1 95 97 97 Grant 1230 2 63 75 80
Krupski 2527 2 80 69 71 Lundsford 4860 1 92 40 86
Mcbane 0674 1 75 78 72 Mullen 6445 2 89 82 93
Nguyen 0886 1 79 76 80 Patel 9164 2 71 77 83
Si 4915 1 75 71 73 Tanaka 8534 2 87 73 76
;

Generate the standardized data and create the output data set STNDTEST. PROC
STANDARD uses a mean of 75 and a standard deviation of 5 to standardize the values. OUT=
identifies STNDTEST as the data set to contain the standardized values.

proc standard data=score mean=75 std=5 out=stndtest;

Specify the variables to standardize. The VAR statement specifies the variables to
standardize and their order in the output.

var test1 test2;
run;

Create a data set that combines the original values with the standardized values.
PROC SQL joins SCORE and STNDTEST to create the COMBINED data set (table) that
contains standardized and original test scores for each student. Using AS to rename the
standardized variables NEW.TEST1 to StdTest1 and NEW.TEST2 to StdTest2 makes the
variable names unique.

proc sql;
create table combined as
select old.student, old.studentnumber,

old.section,
old.test1, new.test1 as StdTest1,
old.test2, new.test2 as StdTest2,
old.final

from score as old, stndtest as new
where old.student=new.student;



The STANDARD Procedure � Example 2: Standardizing BY Groups and Replacing Missing Values 1253

Print the data set. PROC PRINT prints the COMBINED data set. ROUND rounds the
standardized values to two decimal places. The TITLE statement specifies a title.

proc print data=combined noobs round;
title ’Standardized Test Scores for a College Course’;

run;

Output

The data set contains variables with both standardized and original values. StdTest1 and
StdTest2 store the standardized test scores that PROC STANDARD computes.

Standardized Test Scores for a College Course 1

Student Std Std
Student Number Section Test1 Test1 Test2 Test2 Final

Capalleti 0545 1 94 80.54 91 80.86 87
Dubose 1252 2 51 64.39 65 71.63 91
Engles 1167 1 95 80.91 97 82.99 97
Grant 1230 2 63 68.90 75 75.18 80
Krupski 2527 2 80 75.28 69 73.05 71
Lundsford 4860 1 92 79.79 40 62.75 86
Mcbane 0674 1 75 73.40 78 76.24 72
Mullen 6445 2 89 78.66 82 77.66 93
Nguyen 0886 1 79 74.91 76 75.53 80
Patel 9164 2 71 71.90 77 75.89 83
Si 4915 1 75 73.40 71 73.76 73
Tanaka 8534 2 87 77.91 73 74.47 76

Example 2: Standardizing BY Groups and Replacing Missing Values

Procedure features:
PROC STANDARD statement options:

PRINT
REPLACE

BY statement
Other features:

FORMAT procedure
PRINT procedure
SORT procedure

This example
� calculates Z scores separately for each BY group using a mean of 1 and standard

deviation of 0



1254 Program � Chapter 41

� replaces missing values with the given mean
� prints the mean and standard deviation for the variables to standardize
� prints the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Assign a character string format to a numeric value. PROC FORMAT creates the format
POPFMT to identify birth rates with a character value.

proc format;
value popfmt 1=’Stable’

2=’Rapid’;
run;

Create the LIFEEXP data set. Each observation in this data set contains information on 1950
and 1993 life expectancies at birth for 16 nations.* The birth rate for each nation is classified as
stable (1) or rapid (2). The nations with missing data obtained independent status after 1950.

data lifexp;
input PopulationRate Country $char14. Life50 Life93 @@;
label life50=’1950 life expectancy’

life93=’1993 life expectancy’;
datalines;

2 Bangladesh . 53 2 Brazil 51 67
2 China 41 70 2 Egypt 42 60
2 Ethiopia 33 46 1 France 67 77
1 Germany 68 75 2 India 39 59
2 Indonesia 38 59 1 Japan 64 79
2 Mozambique . 47 2 Philippines 48 64
1 Russia . 65 2 Turkey 44 66
1 United Kingdom 69 76 1 United States 69 75
;

Sort the LIFEEXP data set. PROC SORT sorts the observations by the birth rate.

proc sort data=lifexp;
by populationrate;

* Data are from Vital Signs 1994: The Trends That Are Shaping Our Future, Lester R. Brown, Hal Kane, and David Malin
Roodman, eds. Copyright © 1994 by Worldwatch Institute. Reprinted by permission of W.W. Norton & Company, Inc.



The STANDARD Procedure � Output 1255

run;

Generate the standardized data for all numeric variables and create the output data
set ZSCORE. PROC STANDARD standardizes all numeric variables to a mean of 1 and a
standard deviation of 0. REPLACE replaces missing values. PRINT prints statistics.

proc standard data=lifexp mean=0 std=1 replace
print out=zscore;

Create the standardized values for each BY group. The BY statement standardizes the
values separately by birth rate.

by populationrate;

Assign a format to a variable and specify a title for the report. The FORMAT statement
assigns a format to PopulationRate. The output data set contains formatted values. The TITLE
statement specifies a title.

format populationrate popfmt.;
title1 ’Life Expectancies by Birth Rate’;

run;

Print the data set. PROC PRINT prints the ZSCORE data set with the standardized values.
The TITLE statements specify two titles to print.

proc print data=zscore noobs;
title ’Standardized Life Expectancies at Birth’;
title2 ’by a Country’’s Birth Rate’;

run;

Output



1256 Output � Chapter 41

PROC STANDARD prints the variable name, mean, standard deviation, input frequency, and
label of each variable to standardize for each BY group.

Life expectancies for Bangladesh, Mozambique, and Russia are no longer missing. The missing
values are replaced with the given mean (0).

Life Expectancies by Birth Rate 1

---------------------------- PopulationRate=Stable -----------------------------

Standard
Name Mean Deviation N Label

Life50 67.400000 1.854724 5 1950 life expectancy
Life93 74.500000 4.888763 6 1993 life expectancy

----------------------------- PopulationRate=Rapid -----------------------------

Standard
Name Mean Deviation N Label

Life50 42.000000 5.033223 8 1950 life expectancy
Life93 59.100000 8.225300 10 1993 life expectancy

Standardized Life Expectancies at Birth 2
by a Country’s Birth Rate

Population
Rate Country Life50 Life93

Stable France -0.21567 0.51138
Stable Germany 0.32350 0.10228
Stable Japan -1.83316 0.92048
Stable Russia 0.00000 -1.94323
Stable United Kingdom 0.86266 0.30683
Stable United States 0.86266 0.10228
Rapid Bangladesh 0.00000 -0.74161
Rapid Brazil 1.78812 0.96045
Rapid China -0.19868 1.32518
Rapid Egypt 0.00000 0.10942
Rapid Ethiopia -1.78812 -1.59265
Rapid India -0.59604 -0.01216
Rapid Indonesia -0.79472 -0.01216
Rapid Mozambique 0.00000 -1.47107
Rapid Philippines 1.19208 0.59572
Rapid Turkey 0.39736 0.83888



1257

C H A P T E R

42
The SUMMARY Procedure

Overview: SUMMARY Procedure 1257
Syntax: SUMMARY Procedure 1257

PROC SUMMARY Statement 1258

VAR Statement 1258

Overview: SUMMARY Procedure
The SUMMARY procedure provides data summarization tools that compute

descriptive statistics for variables across all observations or within groups of
observations. The SUMMARY procedure is very similar to the MEANS procedure; for
full syntax details, see Chapter 26, “The MEANS Procedure,” on page 649. Except for
the differences that are discussed here, all the PROC MEANS information also applies
to PROC SUMMARY.

Syntax: SUMMARY Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.
Reminder: Full syntax descriptions are in “Syntax: MEANS Procedure” on page 652.

PROC SUMMARY <option(s)> <statistic-keyword(s)>;
BY <DESCENDING> variable-1<…<DESCENDING> variable-n>

<NOTSORTED>;
CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set><output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)></ option(s)> ;

TYPES request(s);
VAR variable(s)</ WEIGHT=weight-variable>;



1258 PROC SUMMARY Statement � Chapter 42

WAYS list;
WEIGHT variable;

PROC SUMMARY Statement

PRINT | NOPRINT
specifies whether PROC SUMMARY displays the descriptive statistics. By default,
PROC SUMMARY produces no display output, but PROC MEANS does produce
display output.
Default: NOPRINT

VAR Statement

Identifies the analysis variables and their order in the results.

Default: If you omit the VAR statement, then PROC SUMMARY produces a simple
count of observations, whereas PROC MEANS tries to analyze all the numeric variables
that are not listed in the other statements.
Interaction: If you specify statistics on the PROC SUMMARY statement and the VAR
statement is omitted, then PROC SUMMARY stops processing and an error message is
written to the SAS log.



1259

C H A P T E R

43
The TABULATE Procedure

Overview: TABULATE Procedure 1260
Terminology Used with PROC TABULATE 1263

Syntax: TABULATE Procedure 1266

PROC TABULATE Statement 1267

BY Statement 1275

CLASS Statement 1276
CLASSLEV Statement 1279

FREQ Statement 1280

KEYLABEL Statement 1281

KEYWORD Statement 1281

TABLE Statement 1282

VAR Statement 1289
WEIGHT Statement 1291

Concepts: TABULATE Procedure 1291

Statistics That Are Available in PROC TABULATE 1291

Formatting Class Variables 1292

Formatting Values in Tables 1293
How Using BY-Group Processing Differs from Using the Page Dimension 1294

Calculating Percentages 1294

Specifying a Denominator for the PCTN Statistic 1295

Specifying a Denominator for the PCTSUM Statistic 1296

Using Style Elements in PROC TABULATE 1298
Results: TABULATE Procedure 1299

Missing Values 1299

No Missing Values 1301

A Missing Class Variable 1302

Including Observations with Missing Class Variables 1303

Formatting Headings for Observations with Missing Class Variables 1304
Providing Headings for All Categories 1305

Providing Text for Cells That Contain Missing Values 1306

Providing Headings for All Values of a Format 1307

Understanding the Order of Headings with ORDER=DATA 1308

Examples: TABULATE Procedure 1310
Example 1: Creating a Basic Two-Dimensional Table 1310

Example 2: Specifying Class Variable Combinations to Appear in a Table 1312

Example 3: Using Preloaded Formats with Class Variables 1314

Example 4: Using Multilabel Formats 1320

Example 5: Customizing Row and Column Headings 1322
Example 6: Summarizing Information with the Universal Class Variable ALL 1324

Example 7: Eliminating Row Headings 1326

Example 8: Indenting Row Headings and Eliminating Horizontal Separators 1328



1260 Overview: TABULATE Procedure � Chapter 43

Example 9: Creating Multipage Tables 1330
Example 10: Reporting on Multiple-Response Survey Data 1333

Example 11: Reporting on Multiple-Choice Survey Data 1338

Example 12: Calculating Various Percentage Statistics 1344

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and
Percentages 1347

Example 14: Specifying Style Elements for ODS Output 1357

References 1361

Overview: TABULATE Procedure
The TABULATE procedure displays descriptive statistics in tabular format, using

some or all of the variables in a data set. You can create a variety of tables ranging
from simple to highly customized.

PROC TABULATE computes many of the same statistics that are computed by other
descriptive statistical procedures such as MEANS, FREQ, and REPORT. PROC
TABULATE provides

� simple but powerful methods to create tabular reports
� flexibility in classifying the values of variables and establishing hierarchical

relationships between the variables
� mechanisms for labeling and formatting variables and procedure-generated

statistics.

Output 43.1 on page 1261 shows a simple table that was produced by PROC
TABULATE. The data set on page 1310 contains data on expenditures of energy by two
types of customers, residential and business, in individual states in the Northeast (1)
and West (4) regions of the United States. The table sums expenditures for states
within a geographic division. (The RTS option provides enough space to display the
column headers without hyphenating them.)

options nodate pageno=1 linesize=64
pagesize=40;

proc tabulate data=energy;
class region division type;
var expenditures;
table region*division, type*expenditures /

rts=20;
run;



The TABULATE Procedure � Overview: TABULATE Procedure 1261

Output 43.1 Simple Table Produced by PROC TABULATE

The SAS System 1

----------------------------------------------
| | Type |
| |-------------------------|
| | 1 | 2 |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|------------------+------------+------------|
|Region |Division | | |
|--------+---------| | |
|1 |1 | 7477.00| 5129.00|
| |---------+------------+------------|
| |2 | 19379.00| 15078.00|
|--------+---------+------------+------------|
|4 |3 | 5476.00| 4729.00|
| |---------+------------+------------|
| |4 | 13959.00| 12619.00|
----------------------------------------------

Output 43.2 on page 1262 is a more complicated table using the same data set that
was used to create Output 43.1 on page 1261. The statements that create this report

� customize column and row headers
� apply a format to all table cells
� sum expenditures for residential and business customers
� compute subtotals for each division
� compute totals for all regions.

For an explanation of the program that produces this report, see Example 6 on page
1324.



1262 Overview: TABULATE Procedure � Chapter 43

Output 43.2 Complex Table Produced by PROC TABULATE

Energy Expenditures for Each Region 2
(millions of dollars)

----------------------------------------------------------------
| | Customer Base | |
| |-------------------------| |
| |Residential | Business | All |
| | Customers | Customers | Customers |
|-----------------------+------------+------------+------------|
|Region |Division | | | |
|-----------+-----------| | | |
|Northeast |New England| 7,477| 5,129| 12,606|
| |-----------+------------+------------+------------|
| |Middle | | | |
| |Atlantic | 19,379| 15,078| 34,457|
| |-----------+------------+------------+------------|
| |Subtotal | 26,856| 20,207| 47,063|
|-----------+-----------+------------+------------+------------|
|West |Division | | | |
| |-----------| | | |
| |Mountain | 5,476| 4,729| 10,205|
| |-----------+------------+------------+------------|
| |Pacific | 13,959| 12,619| 26,578|
| |-----------+------------+------------+------------|
| |Subtotal | 19,435| 17,348| 36,783|
|-----------------------+------------+------------+------------|
|Total for All Regions | $46,291| $37,555| $83,846|
----------------------------------------------------------------

Display 43.1 on page 1263 shows a table that is created in Hypertext Markup
Language (HTML). You can use the Output Delivery System with PROC TABULATE to
create customized output in HTML, Rich Text Format (RTF), Portable Document
Format (PDF), and other output formats. For an explanation of the program that
produces this table, see Example 14 on page 1357.



The TABULATE Procedure � Terminology Used with PROC TABULATE 1263

Display 43.1 HTML Table Produced by PROC TABULATE

Terminology Used with PROC TABULATE
The following figure illustrates some of the terms that are commonly used in

discussions of PROC TABULATE.



1264 Terminology Used with PROC TABULATE � Chapter 43

Figure 43.1 Illustration of Terms That Are Used to Discuss PROC TABULATE

Column headings Column

CellRow Row headings

                The SAS System                   1

------------------------------------------------

|                      |         Type          |

|                      |-----------------------|

|                      |Residential|  Business |

|                      | Customers | Customers |

|----------------------+-----------+-----------|

|Region    |Division   |           |           |

|----------+-----------|           |           |

|Northeast |New England|     $7,477|    $5,129 |

|          |-----------+-----------+-----------|

|          |Middle     |           |           |

|          |Atlantic   |    $19,379|   $15,078 |

|----------+-----------+-----------+-----------|

|West      |Mountain   |     $5,476|    $4,729 |

|          |-----------+-----------+-----------|

|          |Pacific    |    $13,959|   $12,619 |

------------------------------------------------

In addition, the following terms frequently appear in discussions of PROC
TABULATE:

category
the combination of unique values of class variables. The TABULATE procedure
creates a separate category for each unique combination of values that exists in
the observations of the data set. Each category that is created by PROC
TABULATE is represented by one or more cells in the table where the pages, rows,
and columns that describe the category intersect.

The table in Figure 43.1 on page 1264 contains three class variables: Region,
Division, and Type. These class variables form the eight categories listed in Table
43.1 on page 1264. (For convenience, the categories are described in terms of their
formatted values.)

Table 43.1 Categories Created from Three Class Variables

Region Division Type

Northeast New England Residential Customers

Northeast New England Business Customers

Northeast Middle Atlantic Residential Customers

Northeast Middle Atlantic Business Customers

West Mountain Residential Customers

West Mountain Business Customers



The TABULATE Procedure � Terminology Used with PROC TABULATE 1265

Region Division Type

West Pacific Residential Customers

West Pacific Business Customers

column dimension
the combination of variables, variable values, and statistics that determine the
number and arrangement of columns in the table.

continuation message
the text that appears below the table if it spans multiple physical pages.

dimension
the page, row, or column portion of a table. Each dimension is defined by a
dimension expression.

dimension expression
a part of the TABLE statement that defines the content and appearance of the
rows, columns, or pages of the table.

nested variable
a variable whose values appear in the table with each value of another variable.

In Figure 43.1 on page 1264, Division is nested under Region.

page dimension
the combination of variables, variable values, and statistics that determine the
number and arrangement of the pages in the table.

page dimension text
the text that appears above the table if the table has a page dimension. However,
if you specify BOX=_PAGE_ in the TABLE statement, then the text that would
appear above the table appears in the box.

Page dimension text has a style. The default style is Beforecaption. For more
information about using styles, see STYLE= on page 1273 in the PROC
TABULATE statement and “Output Delivery System” on page 32.

row dimension
the combination of variables, variable values, and statistics that determine the
number and arrangement of rows in the table.

subtable
the group of cells that is produced by crossing a single element from each
dimension of the TABLE statement when one or more dimensions contain
concatenated elements.

Figure 43.1 on page 1264 contains no subtables. For an illustration of a table
that is composed of multiple subtables, see Figure 43.17 on page 1352.



1266 Syntax: TABULATE Procedure � Chapter 43

Syntax: TABULATE Procedure
Requirements: At least one TABLE statement is required.
Requirements: Depending on the variables that appear in the TABLE statement, a
CLASS statement, a VAR statement, or both are required.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC TABULATE <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable(s) </ options>;
CLASSLEV variable(s) / style =<style-element-name | <PARENT>>

<[style-attribute-specification(s)]>;
FREQ variable;
KEYLABEL keyword-1=’description-1’

<…keyword-n=’description-n’>;
KEYWORD keyword(s) / style =<style-element-name | <PARENT>>

<[style-attribute-specification(s)] >;
TABLE <<page-expression,> row-expression,> column-expression</ table-option(s)>;
VAR analysis-variable(s)</ options>;
WEIGHT variable;

To do this Use this statement

Create a separate table for each BY group BY

Identify variables in the input data set as class
variables

CLASS

Specify a style for class variable level value headings CLASSLEV

Identify a variable in the input data set whose values
represent the frequency of each observation

FREQ

Specify a label for a keyword KEYLABEL

Specify a style for keyword headings KEYWORD

Describe the table to create TABLE

Identify variables in the input data set as analysis
variables

VAR

Identify a variable in the input data set whose values
weight each observation in the statistical calculations

WEIGHT



The TABULATE Procedure � PROC TABULATE Statement 1267

PROC TABULATE Statement

PROC TABULATE <option(s)>;

To do this Use this option

Customize the HTML contents link to the output CONTENTS=

Specify the input data set DATA=

Specify the output data set OUT=

Enable floating point exception recovery TRAP

Identify categories of data that are of interest

Specify a secondary data set that contains the
combinations of values of class variables to
include in tables and output data sets

CLASSDATA=

Exclude from tables and output data sets all
combinations of class variable values that are
not in the CLASSDATA= data set

EXCLUSIVE

Consider missing values as valid values for class
variables

MISSING

Control the statistical analysis

Specify the confidence level for the confidence
limits

ALPHA=

Exclude observations with nonpositive weights EXCLNPWGTS

Specify the sample size to use for the P2 quantile
estimation method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition to calculate
quantiles

QNTLDEF=

Specify the variance divisor VARDEF=

Customize the appearance of the table

Specify a default format for each cell in the table FORMAT=

Define the characters to use to construct the
table outlines and dividers

FORMCHAR=

Eliminate horizontal separator lines from the
row titles and the body of the table

NOSEPS

Order the values of a class variable according to
the specified order

ORDER=

Specify the default style element or style
elements (for the Output Delivery System) to
use for each cell of the table

STYLE=



1268 PROC TABULATE Statement � Chapter 43

Options

ALPHA=value
specifies the confidence level to compute the confidence limits for the mean. The
percentage for the confidence limits is (1–value)�100. For example, ALPHA=.05
results in a 95% confidence limit.
Default: .05
Range: between 0 and 1
Interaction: To compute confidence limits specify the statistic-keyword CLM,

LCLM, or UCLM.

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables
that occur in the CLASSDATA= data set but not in the input data set appear in each
table or output data set and have a frequency of zero.
Restriction: The CLASSDATA= data set must contain all class variables. Their

data type and format must match the corresponding class variables in the input
data set.

Interaction: If you use the EXCLUSIVE option, then PROC TABULATE excludes
any observations in the input data set whose combinations of values of class
variables are not in the CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or supplement the input data set.
Featured in: Example 2 on page 1312

CONTENTS=link-name
enables you to name the link in the HTML table of contents that points to the ODS
output of the first table that was produced by using the TABULATE procedure.

Note: CONTENTS= affects only the contents file of ODS HTML output. It has no
effect on the actual TABULATE procedure reports. �

DATA=SAS-data-set
specifies the input data set.
Main Discussion: “Input Data Sets” on page 19

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC TABULATE treats observations with negative weights
like those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGT
See also: WEIGHT= on page 1290 and “WEIGHT Statement” on page 1291

EXCLUSIVE
excludes from the tables and the output data sets all combinations of the class
variable that are not found in the CLASSDATA= data set.
Requirement: If a CLASSDATA= data set is not specified, then this option is

ignored.
Featured in: Example 2 on page 1312

FORMAT=format-name
specifies a default format for the value in each table cell. You can use any SAS or
user-defined format.
Alias: F=



The TABULATE Procedure � PROC TABULATE Statement 1269

Default: If you omit FORMAT=, then PROC TABULATE uses BEST12.2 as the
default format.

Interaction: Formats that are specified in a TABLE statement override the format
that is specified with FORMAT=.

Tip: This option is especially useful for controlling the number of print positions
that are used to print a table.

Featured in: Example 1 on page 1310 and Example 6 on page 1324

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the table outlines and dividers.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting position(s) is the same as specifying all 20 possible SAS
formatting characters, in order.

Range: PROC TABULATE uses 11 of the 20 formatting characters that SAS
provides. Table 43.2 on page 1270 shows the formatting characters that PROC
TABULATE uses. Figure 43.2 on page 1270 illustrates the use of each
formatting character in the output from PROC TABULATE.

formatting-character(s)
lists the characters to use for the specified positions. PROC TABULATE assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For example, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Restriction: The FORMCHAR= option affects only the traditional SAS monospace
output destination.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, assigns the hexadecimal character
7C to the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Tip: Specifying all blanks for formatting-character(s) produces tables with no
outlines or dividers.

formchar(1,2,3,4,5,6,7,8,9,10,11)
=’ ’ (11 blanks)

See also: For more information about formatting output, see Chapter 5,
“Controlling the Table’s Appearance,” in the SAS Guide to TABULATE Processing.

For information about which hexadecimal codes to use for which characters,
consult the documentation for your hardware.



1270 PROC TABULATE Statement � Chapter 43

Table 43.2 Formatting Characters Used by PROC TABULATE

Position Default Used to draw

1 | the right and left borders and the vertical separators
between columns

2 - the top and bottom borders and the horizontal separators
between rows

3 - the top character in the left border

4 - the top character in a line of characters that separate
columns

5 - the top character in the right border

6 | the leftmost character in a row of horizontal separators

7 + the intersection of a column of vertical characters and a
row of horizontal characters

8 | the rightmost character in a row of horizontal separators

9 - the bottom character in the left border

10 - the bottom character in a line of characters that separate
columns

11 - the bottom character in the right border

Figure 43.2 Formatting Characters in PROC TABULATE Output

------------------------------------
|                       |  Expend  |
|                       |----------|
|                       |   Sum    |
|-----------------------+----------|
|Region     |Division   |          |
|-----------+-----------|          |
|Northeast  |New England|   $12,606|
|           |-----------+----------|
|           |Middle     |          |
|           |Atlantic   |   $34,457|
|-----------+-----------+----------|
|West       |Mountain   |   $10,205|
|           |-----------+----------|
|           |Pacific    |   $26,578|
------------------------------------

3 2

4

5

7

8

11109

6

1

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that are used to represent numeric values (the letters A
through Z and the underscore (_) character) are each considered as a separate value.
A heading for each missing value appears in the table.



The TABULATE Procedure � PROC TABULATE Statement 1271

Default: If you omit MISSING, then PROC TABULATE does not include
observations with a missing value for any class variable in the report.

Main Discussion: “Including Observations with Missing Class Variables” on page
1303

See also: SAS Language Reference: Concepts for a discussion of missing values that
have special meaning.

NOSEPS
eliminates horizontal separator lines from the row titles and the body of the table.
Horizontal separator lines remain between nested column headers.
Restriction: The NOSEPS option affects only the traditional SAS monospace

output destination.
Tip: If you want to replace the separator lines with blanks rather than remove

them, then use the FORMCHAR= option on page 1269.
Featured in: Example 8 on page 1328

NOTRAP
See TRAP | NOTRAP on page 1274.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations of the values of the class
variables, which form the headings of the table, according to the specified order.

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT in the CLASS statement, then the order for

the values of each class variable matches the order that PROC FORMAT uses to
store the values of the associated user-defined format. If you use the
CLASSDATA= option, then PROC TABULATE uses the order of the unique
values of each class variable in the CLASSDATA= data set to order the output
levels. If you use both options, then PROC TABULATE first uses the
user-defined formats to order the output. If you omit EXCLUSIVE, then PROC
TABULATE appends after the user-defined format and the CLASSDATA=
values the unique values of the class variables in the input data set in the same
order in which they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. If no format has been assigned
to a numeric class variable, then the default format, BEST12., is used. This order
depends on your operating environment.
Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count.
Interaction: Use the ASCENDING option in the CLASS statement to order values

by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED



1272 PROC TABULATE Statement � Chapter 43

Interaction: If you use the PRELOADFMT option in the CLASS statement, then
PROC TABULATE orders the levels by the order of the values in the user-defined
format.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1308

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC TABULATE
creates it.

The number of observations in the output data set depends on the number of
categories of data that are used in the tables and the number of subtables that are
generated. The output data set contains these variables (in this order):

by variables
variables listed in the BY statement.

class variables
variables listed in the CLASS statement.

_TYPE_
a character variable that shows which combination of class variables produced the
summary statistics in that observation. Each position in _TYPE_ represents one
variable in the CLASS statement. If that variable is in the category that produced
the statistic, then the position contains a 1; if it is not, then the position contains a
0. In simple PROC TABULATE steps that do not use the universal class variable
ALL, all values of _TYPE_ contain only 1’s because the only categories that are
being considered involve all class variables. If you use the variable ALL, then your
tables will contain data for categories that do not include all the class variables,
and positions of _TYPE_ will, therefore, include both 1’s and 0’s.

_PAGE_
The logical page that contains the observation.

_TABLE_
The number of the table that contains the observation.

statistics
statistics that are calculated for each observation in the data set.

Featured in: Example 3 on page 1314

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation method.
The number of markers controls the size of fixed memory space.
Default: The default value depends on which quantiles you request. For the median

(P50), number is 7. For the quartiles (P25 and P75), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC TABULATE uses the largest default value of number.

Range: an odd integer greater than 3
Tip: Increase the number of markers above the default settings to improve the

accuracy of the estimates; reduce the number of markers to conserve memory and
computing time.

Main Discussion: “Quantiles” on page 680

QMETHOD=OS|P2|HIST
specifies the method PROC TABULATE uses to process the input data when it
computes quantiles. If the number of observations is less than or equal to the
QMARKERS= value and QNTLDEF=5, then both methods produce the same results.

OS



The TABULATE Procedure � PROC TABULATE Statement 1273

uses order statistics. This is the technique that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. �

P2|HIST
uses the P2 method to approximate the quantile.

Default: OS
Restriction: When QMETHOD=P2, PROC TABULATE does not compute weighted

quantiles.
Tip: When QMETHOD=P2, reliable estimates of some quantiles (P1, P5, P95, P99)

may not be possible for some types of data.
Main Discussion: “Quantiles” on page 680

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that the procedure uses to calculate quantiles
when QMETHOD=OS is specified. When QMETHOD=P2, you must use
QNTLDEF=5.
Default: 5
Alias: PCTLDEF=
Main discussion: “Percentile and Related Statistics” on page 1583

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies the style element to use for the data cells of a table when it is used in the
PROC TABULATE statement. For example, the following statement specifies that
the background color for data cells be red:

proc tabulate data=one style=[background=red];

Note: This option can be used in other statements, or in dimension expressions,
to specify style elements for other parts of a table. �

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. You can
create your own style definitions with PROC TEMPLATE.
Default: If you do not specify a style element, then PROC TABULATE uses Data.
See also: See SAS Output Delivery System User’s Guide for information about

PROC TEMPLATE and the default style definitions.

PARENT
specifies that the data cell use the style element of its parent heading. The parent
style element of a data cell is one of the following:

� the style element of the leaf heading above the column that contains the data
cell, if the table specifies no row dimension, or if the table specifies the style
element in the column dimension expression.

� the style element of the leaf heading above the row that contains the cell, if
the table specifies the style element in the row dimension expression.

� the Beforecaption style element, if the table specifies the style element in the
page dimension expression.

� undefined, otherwise.

Note: The parent of a heading (not applicable to STYLE= in the PROC
TABULATE statement) is the heading under which the current heading is
nested. �

style-attribute-specification(s)



1274 PROC TABULATE Statement � Chapter 43

describes the attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value
The following table shows attributes that you can set or change with the

STYLE= option in the PROC TABULATE statement (or in any other statement
that uses STYLE=, except for the TABLE statement). Note that not all attributes
are valid in all destinations. See SAS Output Delivery System User’s Guide for
more information about these style attributes, their valid values, and their
applicable destinations.

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To specify a style element for data cells with missing values, use STYLE= in
the TABLE statement MISSTEXT= option.

See also: “Using Style Elements in PROC TABULATE” on page 1298

Featured in: Example 14 on page 1357

TRAP | NOTRAP
enables or disables floating point exception (FPE) recovery during data processing
beyond that provided by normal SAS FPE handling, which terminates PROC
TABULATE in the case of math exceptions. Note that with NOTRAP, normal SAS
FPE handling is still in effect so that PROC TABULATE terminates in the case of
math exceptions.

Default: NOTRAP

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 43.3 on page 1275 shows the possible values for divisor and the associated
divisors.



The TABULATE Procedure � BY Statement 1275

Table 43.3 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT | WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � 	��. When you weight the analysis variables,

��� equals
�


� �	� � 	��
� where 	� is the weighted mean.

Default: DF
Requirement: To compute standard error of the mean, use the default value of

VARDEF=.
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� ���� � �����, and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “Weighted Statistics Example” on page 60

BY Statement

Creates a separate table on a separate page for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options



1276 CLASS Statement � Chapter 43

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

CLASS Statement

Identifies class variables for the table. Class variables determine the categories that PROC
TABULATE uses to calculate statistics.

Tip: You can use multiple CLASS statements.
Tip: Some CLASS statement options are also available in the PROC TABULATE
statement. They affect all CLASS variables rather than just the one(s) that you specify
in a CLASS statement.

CLASS variable(s) </option(s)>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables can be
numeric or character. Class variables can have continuous values, but they typically
have a few discrete values that define the classifications of the variable. You do not
have to sort the data by class variables.

Options

ASCENDING
specifies to sort the class variable values in ascending order.
Alias: ASCEND
Interaction: PROC TABULATE issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

DESCENDING
specifies to sort the class variable values in descending order.
Alias: DESCEND
Default: ASCENDING



The TABULATE Procedure � CLASS Statement 1277

Interaction: PROC TABULATE issues a warning message if you specify both
ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from tables and output data sets all combinations of class variables that are
not found in the preloaded range of user-defined formats.
Requirement: You must specify the PRELOADFMT option in the CLASS statement

to preload the class variable formats.
Featured in: Example 3 on page 1314

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC TABULATE groups
the values to create combinations of class variables.
Interaction: If you specify the PRELOADFMT option in the CLASS statement,

then PROC TABULATE ignores the GROUPINTERNAL option and uses the
formatted values.

Interaction: If you specify the ORDER=FORMATTED option, then PROC
TABULATE ignores the GROUPINTERNAL option and uses the formatted values.

Tip: This option saves computer resources when the class variables contain discrete
numeric values.

MISSING
considers missing values as valid class variable levels. Special missing values that
represent numeric values (the letters A through Z and the underscore (_) character)
are each considered as a separate value.
Default: If you omit MISSING, then PROC TABULATE excludes the observations

with any missing CLASS variable values from tables and output data sets.
See also: SAS Language Reference: Concepts for a discussion of missing values with

special meanings.

MLF
enables PROC TABULATE to use the format label or labels for a given range or
overlapping ranges to create subgroup combinations when a multilabel format is
assigned to a class variable.
Requirement: You must use PROC FORMAT and the MULTILABEL option in the

VALUE statement to create a multilabel format.
Interaction: Using MLF with ORDER=FREQ may not produce the order that you

expect for the formatted values.
Interaction: When you specify MLF, the formatted values of the class variable

become internal values. Therefore, specifying ORDER=FORMATTED produces the
same results as specifying ORDER=UNFORMATTED.

Tip: If you omit MLF, then PROC TABULATE uses the primary format labels,
which correspond to the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL option on page 460 in the VALUE statement of the
FORMAT procedure.

Featured in: Example 4 on page 1320
Note: When the formatted values overlap, one internal class variable value maps

to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater than the number of observations in the data set
(the overall N statistic). �

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where



1278 CLASS Statement � Chapter 43

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT, then the order for the values of each class

variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, then PROC TABULATE uses the order of the unique values of
each class variable in the CLASSDATA= data set to order the output levels. If
you use both options, then PROC TABULATE first uses the user-defined
formats to order the output. If you omit EXCLUSIVE in the PROC statement,
then PROC TABULATE places, in the order in which they are encountered, the
unique values of the class variables that are in the input data set after the
user-defined format and the CLASSDATA= values.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user-defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.
Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count.
Interaction: Use the ASCENDING option to order values by ascending frequency

count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED
Interaction: If you use the PRELOADFMT option in the CLASS statement, then

PROC TABULATE orders the levels by the order of the values in the user-defined
format.

Tip: By default, all orders except FREQ are ascending. For descending orders, use
the DESCENDING option.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1308

PRELOADFMT
specifies that all formats are preloaded for the class variables.
Requirement: PRELOADFMT has no effect unless you specify EXCLUSIVE,

ORDER=DATA, or PRINTMISS and you assign formats to the class variables.

Note: If you specify PRELOADFMT without also specifying EXCLUSIVE,
ORDER=DATA, or PRINTMISS, then SAS writes a warning message to the SAS
log. �

Interaction: To limit PROC TABULATE output to the combinations of formatted
class variable values present in the input data set, use the EXCLUSIVE option in
the CLASS statement.

Interaction: To include all ranges and values of the user-defined formats in the
output, use the PRINTMISS option in the TABLE statement.



The TABULATE Procedure � CLASSLEV Statement 1279

Note: Use care when you use PRELOADFMT with PRINTMISS. This feature
creates all possible combinations of formatted class variables. Some of these
combinations may not make sense. �

Featured in: Example 3 on page 1314

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies the style element to use for page dimension text and class variable name
headings. For information about the arguments of this option, and how it is used, see
STYLE= on page 1273 in the PROC TABULATE statement.

Note: When you use STYLE= in the CLASS statement, it differs slightly from its
use in the PROC TABULATE statement. In the CLASS statement, the parent of the
heading is the page dimension text or heading under which the current heading is
nested. �

Note: If a page dimension expression contains multiple nested elements, then the
Beforecaption style element is the style element of the first element in the nesting. �

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To override a style element that is specified for page dimension text in the
CLASS statement, you can specify a style element in the TABLE statement page
dimension expression.

Tip: To override a style element that is specified for a class variable name heading
in the CLASS statement, you can specify a style element in the related TABLE
statement dimension expression.

Featured in: Example 14 on page 1357

How PROC TABULATE Handles Missing Values for Class Variables
By default, if an observation contains a missing value for any class variable, then

PROC TABULATE excludes that observation from all tables that it creates. CLASS
statements apply to all TABLE statements in the PROC TABULATE step. Therefore, if
you define a variable as a class variable, then PROC TABULATE omits observations
that have missing values for that variable from every table even if the variable does not
appear in the TABLE statement for one or more tables.

If you specify the MISSING option in the PROC TABULATE statement, then the
procedure considers missing values as valid levels for all class variables. If you specify
the MISSING option in a CLASS statement, then PROC TABULATE considers missing
values as valid levels for the class variable(s) that are specified in that CLASS
statement.

CLASSLEV Statement

Specifies a style element for class variable level value headings.

Restriction: This statement affects only the HTML, RTF, and Printer destinations.

CLASSLEV variable(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)] >;



1280 FREQ Statement � Chapter 43

Required Arguments

variable(s)
specifies one or more class variables from the CLASS statement for which you want
to specify a style element.

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies a style element for class variable level value headings. For information on
the arguments of this option and how it is used, see STYLE= on page 1273 in the
PROC TABULATE statement.

Note: When you use STYLE= in the CLASSLEV statement, it differs slightly
from its use in the PROC TABULATE statement. In the CLASSLEV statement, the
parent of the heading is the heading under which the current heading is nested. �

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To override a style element that is specified in the CLASSLEV statement, you
can specify a style element in the related TABLE statement dimension expression.

Featured in: Example 14 on page 1357

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.

See also: For an example that uses the FREQ statement, see “FREQ” on page 56.

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.



The TABULATE Procedure � KEYWORD Statement 1281

KEYLABEL Statement

Labels a keyword for the duration of the PROC TABULATE step. PROC TABULATE uses the label
anywhere that the specified keyword would otherwise appear.

KEYLABEL keyword-1=’description-1’
<…keyword-n=’description-n’>;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics That Are Available
in PROC TABULATE” on page 1291 or is the universal class variable ALL (see
“Elements That You Can Use in a Dimension Expression” on page 1287).

description
is up to 256 characters to use as a label. As the syntax shows, you must enclose
description in quotation marks.
Restriction: Each keyword can have only one label in a particular PROC

TABULATE step; if you request multiple labels for the same keyword, then PROC
TABULATE uses the last one that is specified in the step.

KEYWORD Statement

Specifies a style element for keyword headings.

Restriction: This statement affects only the HTML, RTF, and Printer output.

KEYWORD keyword(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)] >;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics That Are Available
in PROC TABULATE” on page 1291 or is the universal class variable ALL (see
“Elements That You Can Use in a Dimension Expression” on page 1287).

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies a style element for the keyword headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1273 in the PROC
TABULATE statement.



1282 TABLE Statement � Chapter 43

Note: When you use STYLE= in the KEYWORD statement, it differs slightly
from its use in the PROC TABULATE statement. In the KEYWORD statement, the
parent of the heading is the heading under which the current heading is nested. �

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To override a style element that is specified in the KEYWORD statement, you
can specify a style element in the related TABLE statement dimension expression.

Featured in: Example 14 on page 1357

TABLE Statement

Describes a table to print.

Requirement: All variables in the TABLE statement must appear in either the VAR
statement or the CLASS statement.

Tip: Use multiple TABLE statements to create several tables.

TABLE <<page-expression,> row-expression,>
column-expression </ table-option(s)>;

Required Arguments

column-expression
defines the columns in the table. For information on constructing dimension
expressions, see “Constructing Dimension Expressions” on page 1286.

Restriction: A column dimension is the last dimension in a TABLE statement. A
row dimension or a row dimension and a page dimension may precede a column
dimension.

Options

To do this Use this option

Add dimensions

Define the pages in a table page-expression

Define the rows in a table row-expression

Customize the HTML contents entry link to the output CONTENTS=

Specify a style element for various parts of the table STYLE=

Customize text in the table

Specify the text to place in the empty box above row titles BOX=

Supply up to 256 characters to print in table cells that contain
missing values

MISSTEXT=



The TABULATE Procedure � TABLE Statement 1283

To do this Use this option

Suppress the continuation message for tables that span
multiple physical pages

NOCONTINUED

Modify the layout of the table

Print as many complete logical pages as possible on a single
printed page or, if possible, print multiple pages of tables that
are too wide to fit on a page one below the other on a single
page, instead of on separate pages.

CONDENSE

Create the same row and column headings for all logical pages
of the table

PRINTMISS

Customize row headings

Specify the number of spaces to indent nested row headings INDENT=

Control allocation of space for row titles within the available
space

ROW=

Specify the number of print positions available for row titles RTSPACE=

BOX=value
BOX={<label=value>
<style=<style-element-name><[style-attribute-specification(s)]>> }

specifies text and a style element for the empty box above the row titles.
Value can be one of the following:

_PAGE_
writes the page-dimension text in the box. If the page-dimension text does not fit,
then it is placed in its default position above the box, and the box remains empty.

’string’
writes the quoted string in the box. Any string that does not fit in the box is
truncated.

variable
writes the name (or label, if the variable has one) of a variable in the box. Any
name or label that does not fit in the box is truncated.

For details about the arguments of the STYLE= option and how it is used, see
STYLE= on page 1273 in the PROC TABULATE statement.

Featured in: Example 9 on page 1330 and Example 14 on page 1357

CONDENSE
prints as many complete logical pages as possible on a single printed page or, if
possible, prints multiple pages of tables that are too wide to fit on a page one below
the other on a single page, instead of on separate pages. A logical page is all the
rows and columns that fall within one of the following:

� a page-dimension category (with no BY-group processing)
� a BY group with no page dimension
� a page-dimension category within a single BY group.

Restrictions: CONDENSE has no effect on the pages that are generated by the BY
statement. The first table for a BY group always begins on a new page.

Featured in: Example 9 on page 1330



1284 TABLE Statement � Chapter 43

CONTENTS=link-name
enables you to name the link in the HTML table of contents that points to the ODS
output of the table that is produced by using the TABLE statement.

Note: CONTENTS= affects only the contents file of ODS HTML output. It has no
effect on the actual TABULATE procedure reports. �

FUZZ=number
supplies a numeric value against which analysis variable values and table cell values
other than frequency counts are compared to eliminate trivial values (absolute values
less than the FUZZ= value) from computation and printing. A number whose
absolute value is less than the FUZZ= value is treated as zero in computations and
printing. The default value is the smallest representable floating-point number on
the computer that you are using.

INDENT=number-of-spaces
specifies the number of spaces to indent nested row headings, and suppresses the
row headings for class variables.
Tip: When there are no crossings in the row dimension, there is nothing to indent,

so the value of number-of-spaces has no effect. However, in such cases INDENT=
still suppresses the row headings for class variables.

Restriction: In the HTML, RTF, and Printer destinations, the INDENT= option
suppresses the row headings for class variables but does not indent nested row
headings.

Featured in: Example 8 on page 1328 (with crossings) and Example 9 on page 1330
(without crossings)

page-expression
defines the pages in a table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1286.
Restriction: A page dimension is the first dimension in a table statement. Both a

row dimension and a column dimension must follow a page dimension.
Featured in: Example 9 on page 1330

MISSTEXT=’text’
MISSTEXT={<label= ’text’
><style=<style-element-name><[style-attribute-specification(s)]>> }

supplies up to 256 characters of text to print and specifies a style element for table
cells that contain missing values. For details on the arguments of the STYLE= option
and how it is used, see STYLE= on page 1273 in the PROC TABULATE statement.
Interaction: A style element that is specified in a dimension expression overrides a

style element that is specified in the MISSTEXT= option for any given cell(s).
Featured in: “Providing Text for Cells That Contain Missing Values” on page 1306

and Example 14 on page 1357

NOCONTINUED
suppresses the continuation message, continued, that is displayed at the bottom of
tables that span multiple pages. The text is rendered with the Aftercaption style
element.

Note: Because HTML browsers do not break pages, NOCONTINUED has no
effect on the HTML destination. �

PRINTMISS
prints all values that occur for a class variable each time headings for that variable
are printed, even if there are no data for some of the cells that these headings create.
Consequently, PRINTMISS creates row and column headings that are the same for
all logical pages of the table, within a single BY group.



The TABULATE Procedure � TABLE Statement 1285

Default: If you omit PRINTMISS, then PROC TABULATE suppresses a row or
column for which there are no data, unless you use the CLASSDATA= option in
the PROC TABULATE statement.

Restrictions: If an entire logical page contains only missing values, then that page
does not print regardless of the PRINTMISS option.

See also: CLASSDATA= option on page 1268
Featured in: “Providing Headings for All Categories” on page 1305

ROW=spacing
specifies whether all title elements in a row crossing are allotted space even when
they are blank. The possible values for spacing are as follows:

CONSTANT
allots space to all row titles even if the title has been blanked out (for example,
N=’ ’).
Alias: CONST

FLOAT
divides the row title space equally among the nonblank row titles in the crossing.

Default: CONSTANT
Featured in: Example 7 on page 1326

row-expression
defines the rows in the table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1286.
Restriction: A row dimension is the next to last dimension in a table statement. A

column dimension must follow a row dimension. A page dimension may precede a
row dimension.

RTSPACE=number
specifies the number of print positions to allot to all of the headings in the row
dimension, including spaces that are used to print outlining characters for the row
headings. PROC TABULATE divides this space equally among all levels of row
headings.
Alias: RTS=
Default: one-fourth of the value of the SAS system option LINESIZE=
Restriction: The RTSPACE= option affects only the traditional SAS monospace

output destination.
Interaction: By default, PROC TABULATE allots space to row titles that are blank.

Use ROW=FLOAT in the TABLE statement to divide the space among only
nonblank titles.

See also: For more information about controlling the space for row titles, see
Chapter 5, “Controlling the Table’s Appearance,” in SAS Guide to TABULATE
Processing.

Featured in: Example 1 on page 1310

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies a style element to use for parts of the table other than table cells. For
information about the arguments of this option and how it is used, see STYLE= on
page 1273 in the PROC TABULATE statement.

Note: The list of attributes that you can set or change with the STYLE= option in
the TABLE statement differs from that of the PROC TABULATE statement. �

The following table shows the attributes that you can set or change with the
STYLE= option in the TABLE statement. Most of these attributes apply to parts of



1286 TABLE Statement � Chapter 43

the table other than cells (for example, table borders and the lines between columns
and rows). Attributes that you apply in the PROC TABULATE statement and in
other locations in the PROC TABULATE step apply to cells within the table. Note
that not all attributes are valid in all destinations. See SAS Output Delivery System
User’s Guide for more information about these style attributes, their valid values,
and their applicable destinations.

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

* When you use these attributes in this location, they affect only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter
the foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �
Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To override a style element specification that is made as an option in the
TABLE statement, specify STYLE= in a dimension expression of the TABLE
statement.

Featured in: Example 14 on page 1357

Constructing Dimension Expressions

What Are Dimension Expressions?
A dimension expression defines the content and appearance of a dimension (the
columns, rows, or pages in the table) by specifying the combination of variables,
variable values, and statistics that make up that dimension. A TABLE statement
consists of from one to three dimension expressions separated by commas. Options can
follow the dimension expressions.

If all three dimensions are specified, then the leftmost dimension expression defines
pages, the middle dimension expression defines rows, and the rightmost dimension
expression defines columns. If two dimensions are specified, then the left dimension



The TABULATE Procedure � TABLE Statement 1287

expression defines rows, and the right dimension expression defines columns. If a single
dimension is specified, then the dimension expression defines columns.

A dimension expression is composed of one or more elements and operators.

Elements That You Can Use in a Dimension Expression

analysis variables
(see “VAR Statement” on page 1289).

class variables
(see “CLASS Statement” on page 1276).

the universal class variable ALL
summarizes all of the categories for class variables in the same parenthetical
group or dimension (if the variable ALL is not contained in a parenthetical group).
Featured in: Example 6 on page 1324, Example 9 on page 1330, and Example 13

on page 1347

Note: If the input data set contains a variable named ALL, then enclose the
name of the universal class variable in quotation marks. �

keywords for statistics
See “Statistics That Are Available in PROC TABULATE” on page 1291 for a list of
available statistics. Use the asterisk (*) operator to associate a statistic keyword
with a variable. The N statistic (number of nonmissing values) can be specified in
a dimension expression without associating it with a variable.
Restriction: Statistic keywords other than N must be associated with an

analysis variable.
Default: For analysis variables, the default statistic is SUM. Otherwise, the

default statistic is N.
Examples:

n
Region*n
Sales*max

Featured in: Example 10 on page 1333 and Example 13 on page 1347

format modifiers
define how to format values in cells. Use the asterisk (*) operator to associate a
format modifier with the element (an analysis variable or a statistic) that produces
the cells that you want to format. Format modifiers have the form

f=format

Example:

Sales*f=dollar8.2

Tip: Format modifiers have no effect on CLASS variables.
See also: For more information on specifying formats in tables, see “Formatting

Values in Tables” on page 1293.
Featured in: Example 6 on page 1324

labels
temporarily replace the names of variables and statistics. Labels affect only the
variable or statistic that immediately precedes the label. Labels have the form

statistic-keyword-or-variable-name=’label-text’



1288 TABLE Statement � Chapter 43

Tip: PROC TABULATE eliminates the space for blank column headings from a
table but by default does not eliminate the space for blank row headings unless
all row headings are blank. Use ROW=FLOAT in the TABLE statement to
remove the space for blank row headings.

Examples:

Region=’Geographical Region’
Sales*max=’Largest Sale’

Featured in: Example 5 on page 1322 and Example 7 on page 1326

style-element specifications
specify style elements for page dimension text, headings, or data cells. For details,
see “Specifying Style Elements in Dimension Expressions” on page 1288.

Operators That You Can Use in a Dimension Expression

asterisk *
creates categories from the combination of values of the class variables and
constructs the appropriate headers for the dimension. If one of the elements is an
analysis variable, then the statistics for the analysis variable are calculated for the
categories that are created by the class variables. This process is called crossing.
Examples:

Region*Division
Quarter*Sales*f=dollar8.2

Featured in: Example 1 on page 1310

(blank)
places the output for each element immediately after the output for the preceding
element. This process is called concatenation.
Example:

n Region*Sales ALL

Featured in: Example 6 on page 1324

parentheses ()
group elements and associate an operator with each concatenated element in the
group.
Examples:

Division*(Sales*max Sales*min)
(Region ALL)*Sales

Featured in: Example 6 on page 1324

angle brackets <>
specify denominator definitions, which determine the value of the denominator in
the calculation of a percentage. For a discussion of how to construct denominator
definitions, see “Calculating Percentages” on page 1294.
Featured in: Example 10 on page 1333 and Example 13 on page 1347

Specifying Style Elements in Dimension Expressions
You can specify a style element in a dimension expression to control the appearance in
HTML, RTF, and Printer output of the following table elements:

analysis variable name headings
class variable name headings



The TABULATE Procedure � VAR Statement 1289

class variable level value headings

data cells

keyword headings

page dimension text

Specifying a style element in a dimension expression is useful when you want to
override a style element that you have specified in another statement, such as the
PROC TABULATE, CLASS, CLASSLEV, KEYWORD, TABLE, or VAR statements.

The syntax for specifying a style element in a dimension expression is

[STYLE<(CLASSLEV)>=<style-element-name |
<PARENT >><[style-attribute-specification(s)]>]

Some examples of style elements in dimension expressions are

dept={label=’Department’
style=[foreground=red]}, N

dept*[style=MyDataStyle], N

dept*[format=12.2 style=MyDataStyle], N

Note: When used in a dimension expression, the STYLE= option must be enclosed
within square brackets ([ and ]) or braces ({ and }). �

With the exception of (CLASSLEV), all arguments are described in STYLE= on page
1273 in the PROC TABULATE statement.

(CLASSLEV)
assigns a style element to a class variable level value heading. For example, the
following TABLE statement specifies that the level value heading for the class
variable, DEPT, has a foreground color of yellow:

table dept=[style(classlev)=
[foreground=yellow]]*sales;

Note: This option is used only in dimension expressions. �

For an example that shows how to specify style elements within dimension
expressions, see Example 14 on page 1357.

VAR Statement

Identifies numeric variables to use as analysis variables.

Alias: VARIABLES

Tip: You can use multiple VAR statements.

VAR analysis-variable(s) </ option(s)>;

Required Arguments

analysis-variable(s);



1290 VAR Statement � Chapter 43

identifies the analysis variables in the table. Analysis variables are numeric
variables for which PROC TABULATE calculates statistics. The values of an analysis
variable can be continuous or discrete.

If an observation contains a missing value for an analysis variable, then PROC
TABULATE omits that value from calculations of all statistics except N (the number
of observations with nonmissing variable values) and NMISS (the number of
observations with missing variable values). For example, the missing value does not
increase the SUM, and it is not counted when you are calculating statistics such as
the MEAN.

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)>]
specifies a style element for analysis variable name headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1273 in the PROC
TABULATE statement.

Note: When you use STYLE= in the VAR statement, it differs slightly from its
use in the PROC TABULATE statement. In the VAR statement, the parent of the
heading is the heading under which the current heading is nested. �

Alias: S=
Restriction: This option affects only the HTML, RTF, and Printer destinations.
Tip: To override a style element that is specified in the VAR statement, you can

specify a style element in the related TABLE statement dimension expression.
Featured in: Example 14 on page 1357

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are
specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value... PROC TABULATE...

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC

statement.
Tip: When you use the WEIGHT= option, consider which value of the VARDEF=

option is appropriate (see the discussion of VARDEF= on page 1274).
Tip: Use the WEIGHT option in multiple VAR statements to specify different

weights for the analysis variables.
Note: Prior to Version 7 of SAS, the procedure did not exclude the observations

with missing weights from the count of observations. �



The TABULATE Procedure � Statistics That Are Available in PROC TABULATE 1291

WEIGHT Statement
Specifies weights for analysis variables in the statistical calculations.

See also: For information on calculating weighted statistics and for an example that
uses the WEIGHT statement, see “Calculating Weighted Statistics” on page 60

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. PROC TABULATE responds to
weight values in accordance with the following table.

Weight value PROC TABULATE response

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC

statement.
Interaction: If you use the WEIGHT= option in a VAR statement to specify a

weight variable, then PROC TABULATE uses this variable instead to weight those
VAR statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 1274 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1578 for
more information.
Note: Prior to Version 7 of SAS, the procedure did not exclude the observations

with missing weights from the count of observations. �

Concepts: TABULATE Procedure

Statistics That Are Available in PROC TABULATE
Use the following keywords to request statistics in the TABLE statement or to

specify statistic keywords in the KEYWORD or KEYLABEL statement. If a variable



1292 Formatting Class Variables � Chapter 43

name (class or analysis) and a statistic name are the same, then enclose the statistic
name in single quotation marks — for example, ’MAX’.

Descriptive statistic keywords

COLPCTN PCTSUM

COLPCTSUM RANGE

CSS REPPCTN

CV REPPCTSUM

KURTOSIS | KURT ROWPCTN

LCLM ROWPCTSUM

MAX SKEWNESS | SKEW

MEAN STDDEV|STD

MIN STDERR

N SUM

NMISS SUMWGT

PAGEPCTN UCLM

PAGEPCTSUM USS

PCTN VAR

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keywords

PROBT T

These statistics, the formulas that are used to calculate them, and their data
requirements are discussed in “Keywords and Formulas” on page 1578.

To compute standard error of the mean (STDERR) or Student’s t-test, you must use
the default value of the VARDEF= option, which is DF. The VARDEF= option is
specified in the PROC TABULATE statement.

To compute weighted quantiles, you must use QMETHOD=OS in the PROC
TABULATE statement.

Use both LCLM and UCLM to compute a two-sided confidence limit for the mean.
Use only LCLM or UCLM to compute a one-sided confidence limit. Use the ALPHA=
option in the PROC TABULATE statement to specify a confidence level.

Formatting Class Variables
Use the FORMAT statement to assign a format to a class variable for the duration of

a PROC TABULATE step. When you assign a format to a class variable, PROC



The TABULATE Procedure � Formatting Values in Tables 1293

TABULATE uses the formatted values to create categories, and it uses the formatted
values in headings. If you do not specify a format for a class variable, and the variable
does not have any other format assigned to it, then the default format, BEST12., is
used, unless the GROUPINTERNAL option is specified.

User-defined formats are particularly useful for grouping values into fewer
categories. For example, if you have a class variable, Age, with values ranging from 1
to 99, then you could create a user-defined format that groups the ages so that your
tables contain a manageable number of categories. The following PROC FORMAT step
creates a format that condenses all possible values of age into six groups of values.

proc format;
value agefmt 0-29=’Under 30’

30-39=’30-39’
40-49=’40-49’
50-59=’50-59’
60-69=’60-69’
other=’70 or over’;

run;

For information on creating user-defined formats, see Chapter 21, “The FORMAT
Procedure,” on page 441.

By default, PROC TABULATE includes in a table only those formats for which the
frequency count is not zero and for which values are not missing. To include missing
values for all class variables in the output, use the MISSING option in the PROC
TABULATE statement, and to include missing values for selected class variables, use
the MISSING option in a CLASS statement. To include formats for which the frequency
count is zero, use the PRELOADFMT option in a CLASS statement and the
PRINTMISS option in the TABLE statement, or use the CLASSDATA= option in the
PROC TABULATE statement.

Formatting Values in Tables
The formats for data in table cells serve two purposes. They determine how PROC

TABULATE displays the values, and they determine the width of the columns. The
default format for values in table cells is 12.2. You can modify the format for printing
values in table cells by

� changing the default format with the FORMAT= option in the PROC TABULATE
statement

� crossing elements in the TABLE statement with the F= format modifier.

PROC TABULATE determines the format to use for a particular cell from the
following order of precedence for formats:

1 If no other formats are specified, then PROC TABULATE uses the default format
(12.2).

2 The FORMAT= option in the PROC TABULATE statement changes the default
format. If no format modifiers affect a cell, then PROC TABULATE uses this
format for the value in that cell.

3 A format modifier in the page dimension applies to the values in all the table cells
on the page unless you specify another format modifier for a cell in the row or
column dimension.

4 A format modifier in the row dimension applies to the values in all the table cells
in the row unless you specify another format modifier for a cell in the column
dimension.



1294 How Using BY-Group Processing Differs from Using the Page Dimension � Chapter 43

5 A format modifier in the column dimension applies to the values in all the table
cells in the column.

For more information about formatting table cells, see “Formatting Values in Table
Cells” in Chapter 5, “Controlling the Table’s Appearance,” in SAS Guide to TABULATE
Processing.

How Using BY-Group Processing Differs from Using the Page
Dimension

Using the page-dimension expression in a TABLE statement can have an effect
similar to using a BY statement.

Table 43.4 on page 1294 contrasts the two methods.

Table 43.4 Contrasting the BY Statement and the Page Dimension

Issue PROC TABULATE with a BY statement
PROC TABULATE with a page dimension
in the TABLE statement

Order of observations
in the input data set

The observations in the input data set must
be sorted by the BY variables. 1

Sorting is unnecessary.

One report
summarizing all BY
groups

You cannot create one report for all the BY
groups.

Use ALL in the page dimension to create a
report for all classes. (See Example 6 on
page 1324.)

Percentages The percentages in the tables are
percentages of the total for that BY group.
You cannot calculate percentages for a BY
group compared to the totals for all BY
groups because PROC TABULATE prepares
the individual reports separately. Data for
the report for one BY group are not
available to the report for another BY
group.

You can use denominator definitions to
control the meaning of PCTN (see
“Calculating Percentages” on page 1294.)

Titles You can use the #BYVAL, #BYVAR, and
#BYLINE specifications in TITLE
statements to customize the titles for each
BY group (see “Creating Titles That Contain
BY-Group Information” on page 19).

The BOX= option in the TABLE statement
customizes the page headers, but you must
use the same title on each page.

Ordering class
variables

ORDER=DATA and ORDER=FREQ order
each BY group independently.

The order of class variables is the same on
every page.

Obtaining uniform
headings

You may need to insert dummy
observations into BY groups that do not
have all classes represented.

The PRINTMISS option ensures that each
page of the table has uniform headings.

Multiple ranges with
the same format

PROC TABULATE produces a table for
each range.

PROC TABULATE combines observations
from the two ranges.

1 You can use the BY statement without sorting the data set if the data set has an index for the BY variable.

Calculating Percentages
The following statistics print the percentage of the value in a single table cell in

relation to the total of the values in a group of cells. No denominator definitions are



The TABULATE Procedure � Calculating Percentages 1295

required; however, an analysis variable may be used as a denominator definition for
percentage sum statistics.

REPPCTN and REPPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the report.

COLPCTN and COLPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the column.

ROWPCTN and ROWPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the row.

PAGEPCTN and PAGEPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the page.

These statistics calculate the most commonly used percentages. See Example 12 on
page 1344 for an example.

PCTN and PCTSUM statistics can be used to calculate these same percentages. They
allow you to manually define denominators. PCTN and PCTSUM statistics print the
percentage of the value in a single table cell in relation to the value (used in the
denominator of the calculation of the percentage) in another table cell or to the total of
the values in a group of cells. By default, PROC TABULATE summarizes the values in
all N cells (for PCTN) or all SUM cells (for PCTSUM) and uses the summarized value
for the denominator. You can control the value that PROC TABULATE uses for the
denominator with a denominator definition.

You place a denominator definition in angle brackets (< and >) next to the PCTN or
PCTSUM statistic. The denominator definition specifies which categories to sum for the
denominator.

This section illustrates how to specify denominator definitions in a simple table.
Example 13 on page 1347 illustrates how to specify denominator definitions in a table
that is composed of multiple subtables. For more examples of denominator definitions,
see “How Percentages Are Calculated” in Chapter 3, “Details of TABULATE
Processing,” in SAS Guide to TABULATE Processing.

Specifying a Denominator for the PCTN Statistic
The following PROC TABULATE step calculates the N statistic and three different

versions of PCTN using the data set ENERGY on page 1310.

proc tabulate data=energy;
class division type;
table division*

(n=’Number of customers’
pctn<type>=’% of row’ u

pctn<division>=’% of column’ v

pctn=’% of all customers’), w

type/rts=50;
title ’Number of Users in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for
each value of Type. Within each row, the TABLE statement nests four statistics: N and
three different calculations of PCTN (see Figure 43.3 on page 1296). Each occurrence of
PCTN uses a different denominator definition.



1296 Calculating Percentages � Chapter 43

Figure 43.3 Three Different Uses of the PCTN Statistic with Frequency Counts
Highlighted

              Number of Users in Each Division
1

------------------------------------------------------------
|                                |          Type           |
|                                |-------------------------|
|                                |     1      |     2      |
|--------------------------------+------------+------------|
|Division |                      |            |            |
|---------+----------------------|            |            |
|1        |Number of customers   |        6.00|        6.00|
|         |----------------------+------------+------------|
|         |% of row ➊            |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column ❷         |       27.27|       27.27|
|         |----------------------+------------+------------|
|         |% of all customers ❸   |       13.64|       13.64|
|---------+----------------------+------------+------------|
|2        |Number of customers   |        3.00|        3.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       13.64|       13.64|
|         |----------------------+------------+------------|
|         |% of all customers    |        6.82|        6.82|
|---------+----------------------+------------+------------|
|3        |Number of customers   |        8.00|        8.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       36.36|       36.36|
|         |----------------------+------------+------------|
|         |% of all customers    |       18.18|       18.18|
|---------+----------------------+------------+------------|
|4        |Number of customers   |        5.00|        5.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       22.73|       22.73|
|         |----------------------+------------+------------|
|         |% of all customers    |       11.36|       11.36|

u <type> sums the frequency counts for all occurrences of Type within the same
value of Division. Thus, for Division=1, the denominator is 6 + 6, or 12.

v <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is 6 + 3 + 8 + 5, or 22.

w The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator definition.
Thus, for all cells, the denominator is 6 + 3 + 8 + 5 + 6 + 3 + 8 + 5, or 44.

Specifying a Denominator for the PCTSUM Statistic
The following PROC TABULATE step sums expenditures for each combination of

Type and Division and calculates three different versions of PCTSUM.

proc tabulate data=energy format=8.2;
class division type;
var expenditures;
table division*

(sum=’Expenditures’*f=dollar10.2
pctsum<type>=’% of row’ u



The TABULATE Procedure � Calculating Percentages 1297

pctsum<division>=’% of column’ v

pctsum=’% of all customers’), w

type*expenditures/rts=40;
title ’Expenditures in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for each
value of Type. Because Type is crossed with Expenditures, the value in each cell is the
sum of the values of Expenditures for all observations that contribute to the cell.
Within each row, the TABLE statement nests four statistics: SUM and three different
calculations of PCTSUM (see Figure 43.4 on page 1297). Each occurrence of PCTSUM
uses a different denominator definition.

Figure 43.4 Three Different Uses of the PCTSUM Statistic with Sums Highlighted

               Expenditures in Each Division             1

--------------------------------------------------------
|                                |        Type         |
|                                |---------------------|
|                                |    1     |    2     |
|                                |----------+----------|
|                                |  Expend  |  Expend  |
|--------------------------------+----------+----------|
|Division   |                    |          |          |
|-----------+--------------------|          |          |
|1          |Expenditures        | $7,477.00| $5,129.00|
|           |--------------------+----------+----------|
|           |% of row ➊          |     59.31|     40.69|
|           |--------------------+----------+----------|
|           |% of column ❷       |     16.15|     13.66|
|           |--------------------+----------+----------|
|           |% of all customers ❸|      8.92|      6.12|
|-----------+--------------------+----------+----------|
|2          |Expenditures        |$19,379.00|$15,078.00|
|           |--------------------+----------+----------|
|           |% of row            |     56.24|     43.76|
|           |--------------------+----------+----------|
|           |% of column         |     41.86|     40.15|
|           |--------------------+----------+----------|
|           |% of all customers  |     23.11|     17.98|
|-----------+--------------------+----------+----------|
|3          |Expenditures        | $5,476.00| $4,729.00|
|           |--------------------+----------+----------|
|           |% of row            |     53.66|     46.34|
|           |--------------------+----------+----------|
|           |% of column         |     11.83|     12.59|
|           |--------------------+----------+----------|
|           |% of all customers  |      6.53|      5.64|
|-----------+--------------------+----------+----------|
|4          |Expenditures        |$13,959.00|$12,619.00|
|           |--------------------+----------+----------|
|           |% of row            |     52.52|     47.48|
|           |--------------------+----------+----------|
|           |% of column         |     30.15|     33.60|
|           |--------------------+----------+----------|
|           |% of all customers  |     16.65|     15.05|
--------------------------------------------------------

u <type> sums the values of Expenditures for all occurrences of Type within the
same value of Division. Thus, for Division=1, the denominator is $7,477 + $5,129.

v <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is $7,477 + $19,379 +
$5,476 + $13,959.

w The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator



1298 Using Style Elements in PROC TABULATE � Chapter 43

definition. Thus, for all cells, the denominator is $7,477 + $19,379 + $5,476 +
$13,959 + $5,129 + $15,078 + $4,729 + $12,619.

Using Style Elements in PROC TABULATE
If you use the Output Delivery System to create HTML, RTF, or Printer output from

PROC TABULATE, then you can set the style element that the procedure uses for
various parts of the table. Style elements determine presentation attributes, such as
font face, font weight, color, and so forth. See “Output Delivery System” on page 32 for
more information. The following table lists the default styles for various regions of a
table.

Table 43.5 Default Styles for Table Regions

Region Style

column headings Header

box Header

page dimension text Beforecaption

row headings Rowheader

data cells Data

table Table

You specify style elements for PROC TABULATE with the STYLE= option. The
following table shows where you can use this option. Specifications in the TABLE
statement override the same specification in the PROC TABULATE statement.
However, any style attributes that you specify in the PROC TABULATE statement and
that you do not override in the TABLE statement are inherited. For instance, if you
specify a blue background and a white foreground for all data cells in the PROC
TABULATE statement, and you specify a gray background for the data cells of a
particular crossing in the TABLE statement, then the background for those data cells is
gray, and the foreground is white (as specified in the PROC TABULATE statement).

Detailed information on STYLE= is provided in the documentation for individual
statements.

Table 43.6 Using the STYLE= Option in PROC TABULATE

To set the style element for Use STYLE in this statement

data cells PROC TABULATE

page dimension text and class variable name headings CLASS

class level value headings CLASSLEV

keyword headings KEYWORD

table borders, rules, and other parts that are not
specified elsewhere

TABLE

box text TABLE statement, BOX= option

missing values TABLE statement, MISSING= option

analysis variable name headings VAR



The TABULATE Procedure � Missing Values 1299

You can use a format to assign a style attribute value to any cell whose content is
determined by value(s) of a class or analysis variable. For example, the following code
assigns a red background to cells whose values are less than 10,000, yellow to cells
whose values are between 10,000 and 20,000, and green to cells whose values are
greater than 20,000:

proc format;
value expfmt low-<10000=’red’

10000-<20000=’yellow’
20000-high=’green’;

run;

ods html body=’external-HTML-file’;
proc tabulate data=energy style=[background=expfmt.];

class region division type;
var expenditures;
table (region all)*(division all),

type*expenditures;
run;
ods html close;

Results: TABULATE Procedure

Missing Values
How a missing value for a variable in the input data set affects your output depends

on how you use the variable in the PROC TABULATE step. Table 43.7 on page 1299
summarizes how the procedure treats missing values.

Table 43.7 Summary of How PROC TABULATE Treats Missing Values

If … PROC TABULATE, by default, … To override the default …

an observation contains a missing
value for an analysis variable

excludes that observation from the
calculation of statistics (except N and
NMISS) for that particular variable

no alternative

an observation contains a missing
value for a class variable

excludes that observation from the
table1

use MISSING in the PROC
TABULATE statement, or MISSING
in the CLASS statement

there are no data for a category does not show the category in the
table

use PRINTMISS in the TABLE
statement, or use CLASSDATA= in
the PROC TABULATE statement

every observation that contributes to
a table cell contains a missing value
for an analysis variable

displays a missing value for any
statistics (except N and NMISS) in
that cell

use MISSTEXT= in the TABLE
statement



1300 Missing Values � Chapter 43

If … PROC TABULATE, by default, … To override the default …

there are no data for a formatted
value

does not display that formatted
value in the table

use PRELOADFMT in the CLASS
statement with PRINTMISS in the
TABLE statement, or use
CLASSDATA= in the PROC
TABULATE statement, or add
dummy observations to the input
data set so that it contains data for
each formatted value

a FREQ variable value is missing or
is less than 1

does not use that observation to
calculate statistics

no alternative

a WEIGHT variable value is missing
or 0

uses a value of 0 no alternative

1 The CLASS statement applies to all TABLE statements in a PROC TABULATE step. Therefore, if you define a variable as
a class variable, PROC TABULATE omits observations that have missing values for that variable even if you do not use the
variable in a TABLE statement.

This section presents a series of PROC TABULATE steps that illustrate how PROC
TABULATE treats missing values. The following program creates the data set and
formats that are used in this section and prints the data set. The data set COMPREV
contains no missing values (see Figure 43.5 on page 1301).

proc format;
value cntryfmt 1=’United States’

2=’Japan’;
value compfmt 1=’Supercomputer’

2=’Mainframe’
3=’Midrange’
4=’Workstation’
5=’Personal Computer’
6=’Laptop’;

run;

data comprev;
input Country Computer Rev90 Rev91 Rev92;
datalines;

1 1 788.8 877.6 944.9
1 2 12538.1 9855.6 8527.9
1 3 9815.8 6340.3 8680.3
1 4 3147.2 3474.1 3722.4
1 5 18660.9 18428.0 23531.1
2 1 469.9 495.6 448.4
2 2 5697.6 6242.4 5382.3
2 3 5392.1 5668.3 4845.9
2 4 1511.6 1875.5 1924.5
2 5 4746.0 4600.8 4363.7
;

proc print data=comprev noobs;
format country cntryfmt. computer compfmt.;
title ’The Data Set COMPREV’;

run;



The TABULATE Procedure � Missing Values 1301

Figure 43.5 The Data Set COMPREV

                    The Data Set COMPREV                    1

Country        Computer             Rev90    Rev91    Rev92

United States  Supercomputer        788.8    877.6    944.9
United States  Mainframe          12538.1   9855.6   8527.9
United States  Midrange            9815.8   6340.3   8680.3
United States  Workstation         3147.2   3474.1   3722.4
United States  Personal Computer  18660.9  18428.0  23531.1
Japan          Supercomputer        469.9    495.6    448.4
Japan          Mainframe           5697.6   6242.4   5382.3
Japan          Midrange            5392.1   5668.3   4845.9
Japan          Workstation         1511.6   1875.5   1924.5
Japan          Personal Computer   4746.0   4600.8   4363.7

No Missing Values
The following PROC TABULATE step produces Figure 43.6 on page 1302:

proc tabulate data=comprev;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer compfmt.;
title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;



1302 Missing Values � Chapter 43

Figure 43.6 Computer Sales Data: No Missing Values

Because the data set contains no missing values, the table includes all observations. All headers
and cells contain nonmissing values.

               Revenues from Computer Sales                  1
                       for 1990 to 1992

--------------------------------------------------------------
|                             | Rev90    | Rev91    | Rev92  |
|                             |----------+----------+--------|
|                             |  Sum     |  Sum     |  Sum   |
|-----------------------------+----------+----------+--------|
|Computer      |Country       |          |          |        |
|--------------+--------------|          |          |        |
|Supercomputer |United States |    788.80|    877.60|  944.90|
|              |--------------+----------+----------+--------|
|              |Japan         |    469.90|    495.60|  448.40|
|--------------+--------------+----------+----------+--------|
|Mainframe     |United States |  12538.10|   9855.60| 8527.90|
|              |--------------+----------+----------+--------|
|              |Japan         |   5697.60|   6242.40| 5382.30|
|--------------+--------------+----------+----------+--------|
|Midrange      |United States |   9815.80|   6340.30| 8680.30|
|              |--------------+----------+----------+--------|
|              |Japan         |   5392.10|   5668.30| 4845.90|
|--------------+--------------+----------+----------+--------|
|Workstation   |United States |   3147.20|   3474.10| 3722.40|
|              |--------------+----------+----------+--------|
|              |Japan         |   1511.60|   1875.50| 1924.50|
|--------------+--------------+----------+----------+--------|
|Personal      |United States |  18660.90|  18428.00|23531.10|
|Computer      |--------------+----------+----------+--------|
|              |Japan         |   4746.00|   4600.80| 4363.70|
--------------------------------------------------------------

A Missing Class Variable
The next program copies COMPREV and alters the data so that the eighth

observation has a missing value for Computer. Except for specifying this new data set,
the program that produces Figure 43.7 on page 1303 is the same as the program that
produces Figure 43.6 on page 1302. By default, PROC TABULATE ignores observations
with missing values for a class variable.

data compmiss;
set comprev;
if _n_=8 then computer=.;

run;

proc tabulate data=compmiss;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer compfmt.;
title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;



The TABULATE Procedure � Missing Values 1303

Figure 43.7 Computer Sales Data: Midrange, Japan, Deleted

The observation with a missing value for Computer was the category Midrange, Japan. This
category no longer exists. By default, PROC TABULATE ignores observations with missing
values for a class variable, so this table contains one fewer row than Figure 43.6 on page 1302.

                 Revenues from Computer Sales                 1
                        for 1990 to 1992

--------------------------------------------------------------
|                             | Rev90   | Rev91    | Rev92   |
|                             |---------+----------+---------|
|                             |  Sum    |  Sum     |  Sum    |
|-----------------------------+---------+----------+---------|
|Computer      |Country       |         |          |         |
|--------------+--------------|         |          |         |
|Supercomputer |United States |   788.80|    877.60|   944.90|
|              |--------------+---------+----------+---------|
|              |Japan         |   469.90|    495.60|   448.40|
|--------------+--------------+---------+----------+---------|
|Mainframe     |United States | 12538.10|   9855.60|  8527.90|
|              |--------------+---------+----------+---------|
|              |Japan         |  5697.60|   6242.40|  5382.30|
|--------------+--------------+---------+----------+---------|
|Midrange      |United States |  9815.80|   6340.30|  8680.30|
|--------------+--------------+---------+----------+---------|
|Workstation   |United States |  3147.20|   3474.10|  3722.40|
|              |--------------+---------+----------+---------|
|              |Japan         |  1511.60|   1875.50|  1924.50|
|--------------+--------------+---------+----------+---------|
|Personal      |United States | 18660.90|  18428.00| 23531.10|
|Computer      |--------------+---------+----------+---------|
|              |Japan         |  4746.00|   4600.80|  4363.70|
--------------------------------------------------------------

Including Observations with Missing Class Variables
This program adds the MISSING option to the previous program. MISSING is

available either in the PROC TABULATE statement or in the CLASS statement. If you
want MISSING to apply only to selected class variables, but not to others, then specify
MISSING in a separate CLASS statement with the selected variable(s). The MISSING
option includes observations with missing values of a class variable in the report (see
Figure 43.8 on page 1304).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer compfmt.;
title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;



1304 Missing Values � Chapter 43

Figure 43.8 Computer Sales Data: Missing Values for Computer

This table includes a category with missing values of Computer. This category makes up the
first row of data in the table.

               Revenues from Computer Sales                1
                      for 1990 to 1992

------------------------------------------------------------
|                           |  Rev90   | Rev91   | Rev92   |
|                           |----------+---------+---------|
|                           |   Sum    |  Sum    |  Sum    |
|---------------------------+----------+---------+---------|
|Computer     |Country      |          |         |         |
|-------------+-------------|          |         |         |
|.            |Japan        |   5392.10|  5668.30|  4845.90|
|-------------+-------------+----------+---------+---------|
|Supercomputer|United States|    788.80|   877.60|   944.90|
|             |-------------+----------+---------+---------|
|             |Japan        |    469.90|   495.60|   448.40|
|-------------+-------------+----------+---------+---------|
|Mainframe    |United States|  12538.10|  9855.60|  8527.90|
|             |-------------+----------+---------+---------|
|             |Japan        |   5697.60|  6242.40|  5382.30|
|-------------+-------------+----------+---------+---------|
|Midrange     |United States|   9815.80|  6340.30|  8680.30|
|-------------+-------------+----------+---------+---------|
|Workstation  |United States|   3147.20|  3474.10|  3722.40|
|             |-------------+----------+---------+---------|
|             |Japan        |   1511.60|  1875.50|  1924.50|
|-------------+-------------+----------+---------+---------|
|Personal     |United States|  18660.90| 18428.00| 23531.10|
|Computer     |-------------+----------+---------+---------|
|             |Japan        |   4746.00|  4600.80|  4363.70|
------------------------------------------------------------

Formatting Headings for Observations with Missing Class Variables
By default, as shown in Figure 43.8 on page 1304, PROC TABULATE displays

missing values of a class variable as one of the standard SAS characters for missing
values (a period, a blank, an underscore, or one of the letters A through Z). If you want
to display something else instead, then you must assign a format to the class variable
that has missing values, as shown in the following program (see Figure 43.9 on page
1305):

proc format;
value misscomp 1=’Supercomputer’

2=’Mainframe’
3=’Midrange’
4=’Workstation’
5=’Personal Computer’
6=’Laptop’
.=’No type given’;

run;

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer misscomp.;



The TABULATE Procedure � Missing Values 1305

title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 43.9 Computer Sales Data: Text Supplied for Missing Computer Value

In this table, the missing value appears as the text that the MISSCOMP. format specifies.

               Revenues for Computer Sales                 1
                     for 1990 to 1992

----------------------------------------------------------
|                             | Rev90  | Rev91  | Rev92  |
|                             |--------+--------+--------|
|                             |  Sum   |  Sum   |  Sum   |
|-----------------------------+--------+--------+--------|
|Computer      |Country       |        |        |        |
|--------------+--------------|        |        |        |
|No type given |Japan         | 5392.10| 5668.30| 4845.90|
|--------------+--------------+--------+--------+--------|
|Supercomputer |United States |  788.80|  877.60|  944.90|
|              |--------------+--------+--------+--------|
|              |Japan         |  469.90|  495.60|  448.40|
|--------------+--------------+--------+--------+--------|
|Mainframe     |United States |12538.10| 9855.60| 8527.90|
|              |--------------+--------+--------+--------|
|              |Japan         | 5697.60| 6242.40| 5382.30|
|--------------+--------------+--------+--------+--------|
|Midrange      |United States | 9815.80| 6340.30| 8680.30|
|--------------+--------------+--------+--------+--------|
|Workstation   |United States | 3147.20| 3474.10| 3722.40|
|              |--------------+--------+--------+--------|
|              |Japan         | 1511.60| 1875.50| 1924.50|
|--------------+--------------+--------+--------+--------|
|Personal      |United States |18660.90|18428.00|23531.10|
|Computer      |--------------+--------+--------+--------|
|              |Japan         | 4746.00| 4600.80| 4363.70|
----------------------------------------------------------

Providing Headings for All Categories
By default, PROC TABULATE evaluates each page that it prints and omits columns

and rows for categories that do not exist. For example, Figure 43.9 on page 1305 does
not include a row for No type given and for United States or for Midrange and for
Japan because there are no data in these categories. If you want the table to represent
all possible categories, then use the PRINTMISS option in the TABLE statement, as
shown in the following program (see Figure 43.10 on page 1306):

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss;
format country cntryfmt. computer misscomp.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;



1306 Missing Values � Chapter 43

Figure 43.10 Computer Sales Data: Missing Statistics Values

This table contains a row for the categories No type given, United States and Midrange,
Japan. Because there are no data in these categories, the values for the statistics are all
missing.

                Revenues for Computer Sales                 1
                       for 1990 to 1992

------------------------------------------------------------
|                            | Rev90   |  Rev91  |  Rev92  |
|                            |---------+---------+---------|
|                            |  Sum    |   Sum   |   Sum   |
|----------------------------+---------+---------+---------|
|Computer      |Country      |         |         |         |
|--------------+-------------|         |         |         |
|No type given |United States|        .|        .|        .|
|              |-------------+---------+---------+---------|
|              |Japan        |  5392.10|  5668.30|  4845.90|
|--------------+-------------+---------+---------+---------|
|Supercomputer |United States|   788.80|   877.60|   944.90|
|              |-------------+---------+---------+---------|
|              |Japan        |   469.90|   495.60|   448.40|
|--------------+-------------+---------+---------+---------|
|Mainframe     |United States| 12538.10|  9855.60|  8527.90|
|              |-------------+---------+---------+---------|
|              |Japan        |  5697.60|  6242.40|  5382.30|
|--------------+-------------+---------+---------+---------|
|Midrange      |United States|  9815.80|  6340.30|  8680.30|
|              |-------------+---------+---------+---------|
|              |Japan        |        .|        .|        .|
|--------------+-------------+---------+---------+---------|
|Workstation   |United States|  3147.20|  3474.10|  3722.40|
|              |-------------+---------+---------+---------|
|              |Japan        |  1511.60|  1875.50|  1924.50|
|--------------+-------------+---------+---------+---------|
|Personal      |United States| 18660.90| 18428.00| 23531.10|
|Computer      |-------------+---------+---------+---------|
|              |Japan        |  4746.00|  4600.80|  4363.70|
------------------------------------------------------------

Providing Text for Cells That Contain Missing Values

If some observations in a category contain missing values for analysis variables, then
PROC TABULATE does not use those observations to calculate statistics (except N and
NMISS). However, if each observation in a category contains a missing value, then
PROC TABULATE displays a missing value for the value of the statistic. To replace
missing values for analysis variables with text, use the MISSTEXT= option in the
TABLE statement to specify the text to use, as shown in the following program (see
Figure 43.11 on page 1307).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss misstext=’NO DATA!’;
format country cntryfmt. computer misscomp.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;



The TABULATE Procedure � Missing Values 1307

Figure 43.11 Computer Sales Data: Text Supplied for Missing Statistics Values

This table replaces the period normally used to display missing values with the text of the
MISSTEXT= option.

            Revenues for Computer Sales                    1
                  for 1990 to 1992

----------------------------------------------------------
|                             | Rev90  | Rev91  | Rev92  |
|                             |--------+--------+--------|
|                             |   Sum  |  Sum   |  Sum   |
|-----------------------------+--------+------------+----|
|Computer      |Country       |        |        |        |
|--------------+--------------|        |        |        |
|No type given |United States |NO DATA!|NO DATA!|NO DATA!|
|              |--------------+--------+--------+--------|
|              |Japan         | 5392.10| 5668.30| 4845.90|
|--------------+--------------+--------+--------+--------|
|Supercomputer |United States |  788.80|  877.60|  944.90|
|              |--------------+--------+--------+--------|
|              |Japan         |  469.90|  495.60|  448.40|
|--------------+--------------+--------+--------+--------|
|Mainframe     |United States |12538.10| 9855.60| 8527.90|
|              |--------------+--------+--------+--------|
|              |Japan         | 5697.60| 6242.40| 5382.30|
|--------------+--------------+--------+--------+--------|
|Midrange      |United States | 9815.80| 6340.30| 8680.30|
|              |--------------+--------+--------+--------|
|              |Japan         |NO DATA!|NO DATA!|NO DATA!|
|--------------+--------------+--------+--------+--------|
|Workstation   |United States | 3147.20| 3474.10| 3722.40|
|              |--------------+--------+--------+--------|
|              |Japan         | 1511.60| 1875.50| 1924.50|
|--------------+--------------+--------+--------+--------|
|Personal      |United States |18660.90|18428.00|23531.10|
|Computer      |--------------+--------+--------+--------|
|              |Japan         | 4746.00| 4600.80| 4363.70|
----------------------------------------------------------

Providing Headings for All Values of a Format
PROC TABULATE prints headings only for values that appear in the input data set.

For example, the format COMPFMT. provides for six possible values of Computer. Only
five of these values occur in the data set COMPREV. The data set contains no data for
laptop computers.

If you want to include headings for all possible values of Computer (perhaps to make
it easier to compare the output with tables that are created later when you do have
data for laptops), then you have three different ways to create such a table:

� Use the PRELOADFMT option in the CLASS statement with the PRINTMISS
option in the TABLE statement. See Example 3 on page 1314 for another example
that uses PRELOADFMT.

� Use the CLASSDATA= option in the PROC TABULATE statement. See Example 2
on page 1312 for an example that uses the CLASSDATA= option.

� Add dummy values to the input data set so that each value that the format
handles appears at least once in the data set.

The following program adds the PRELOADFMT option to a CLASS statement that
contains the relevant variable.

The results are shown in Figure 43.12 on page 1308.

proc tabulate data=compmiss missing;
class country;



1308 Understanding the Order of Headings with ORDER=DATA � Chapter 43

class computer / preloadfmt;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss misstext=’NO DATA!’;
format country cntryfmt. computer compfmt.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 43.12 Computer Sales Data: All Possible Computer Values Included

This table contains a heading for each possible value of Computer.

               Revenues for Computer Sales               1
                     for 1990 to 1992

---------------------------------------------------------
|                            | Rev90  | Rev91  |  Rev92 |
|                            |--------+--------+--------|
|                            |  Sum   |   Sum  |   Sum  |
|----------------------------+--------+--------+--------|
|Computer      |Country      |        |        |        |
|--------------+-------------|        |        |        |
|.             |United States|NO DATA!|NO DATA!|NO DATA!|
|              |-------------+--------+--------+--------|
|              |Japan        | 5392.10| 5668.30| 4845.90|
|--------------+-------------+--------+--------+--------|
|Supercomputer |United States|  788.80|  877.60|  944.90|
|              |-------------+--------+--------+--------|
|              |Japan        |  469.90|  495.60|  448.40|
|--------------+-------------+--------+--------+--------|
|Mainframe     |United States|12538.10| 9855.60| 8527.90|
|              |-------------+--------+--------+--------|
|              |Japan        | 5697.60| 6242.40| 5382.30|
|--------------+-------------+--------+--------+--------|
|Midrange      |United States| 9815.80| 6340.30| 8680.30|
|              |-------------+--------+------------+----|
|              |Japan        |NO DATA!|NO DATA!|NO DATA!|
|--------------+-------------+--------+------------+----|
|Workstation   |United States| 3147.20| 3474.10| 3722.40|
|              |-------------+--------+------------+----|
|              |Japan        | 1511.60| 1875.50| 1924.50|
|--------------+-------------+--------+--------+--------|
|Personal      |United States|18660.90|18428.00|23531.10|
|Computer      |-------------+--------+--------+--------|
|              |Japan        | 4746.00| 4600.80| 4363.70|
|--------------+-------------+--------+--------+--------|
|Laptop        |United States|NO DATA!|NO DATA!|NO DATA!|
|              |-------------+--------+--------+--------|
|              |Japan        |NO DATA!|NO DATA!|NO DATA!|
---------------------------------------------------------

Understanding the Order of Headings with ORDER=DATA
The ORDER= option applies to all class variables. Occasionally, you want to order

the headings for different variables differently. One method for doing this is to group
the data as you want them to appear and to specify ORDER=DATA.

For this technique to work, the first value of the first class variable must occur in the
data with all possible values of all the other class variables. If this criterion is not met,
then the order of the headings might surprise you.



The TABULATE Procedure � Understanding the Order of Headings with ORDER=DATA 1309

The following program creates a simple data set in which the observations are
ordered first by the values of Animal, then by the values of Food. The ORDER= option
in the PROC TABULATE statement orders the heading for the class variables by the
order of their appearance in the data set (see Figure 43.13 on page 1309). Although
bones is the first value for Food in the group of observations where Animal=dog, all
other values for Food appear before bones in the data set because bones never appears
when Animal=cat. Therefore, the header for bones in the table in Figure 43.13 on page
1309 is not in alphabetical order.

In other words, PROC TABULATE maintains for subsequent categories the order
that was established by earlier categories. If you want to re-establish the order of Food
for each value of Animal, then use BY-group processing. PROC TABULATE creates a
separate table for each BY group, so that the ordering can differ from one BY group to
the next.

data foodpref;
input Animal $ Food $;
datalines;

cat fish
cat meat
cat milk
dog bones
dog fish
dog meat
;

proc tabulate data=foodpref format=9.
order=data;

class animal food;
table animal*food;

run;

Figure 43.13 Ordering the Headings of Class Variables

                                                              1

 -------------------------------------------------------------
 |                          Animal                           |
 |-----------------------------------------------------------|
 |             cat             |             dog             |
 |-----------------------------+-----------------------------|
 |            Food             |            Food             |
 |-----------------------------+-----------------------------|
 |  fish   |  meat   |  milk   |  fish   |  meat   |  bones  |
 |---------+---------+---------+---------+---------+---------|
 |    N    |    N    |    N    |    N    |    N    |    N    |
 |---------+---------+---------+---------+---------+---------|
 |        1|        1|        1|        1|        1|        1|
 -------------------------------------------------------------



1310 Examples: TABULATE Procedure � Chapter 43

Examples: TABULATE Procedure

Example 1: Creating a Basic Two-Dimensional Table
Procedure features:

PROC TABULATE statement options:
FORMAT=

TABLE statement
crossing (*) operator

TABLE statement options:
RTS=

Other features: FORMAT statement

This example
� creates a category for each type of user (residential or business) in each division of

each region
� applies the same format to all cells in the table
� applies a format to each class variable
� extends the space for row headings.

Program

Create the ENERGY data set. ENERGY contains data on expenditures of energy for business
and residential customers in individual states in the Northeast and West regions of the United
States. A DATA step on page 1625 creates the data set.

data energy;
length State $2;
input Region Division state $ Type Expenditures;
datalines;

1 1 ME 1 708
1 1 ME 2 379

. . . more data lines . . .

4 4 HI 1 273
4 4 HI 2 298
;

Create the REGFMT., DIVFMT., and USETYPE. formats. PROC FORMAT creates formats
for Region, Division, and Type.



The TABULATE Procedure � Program 1311

proc format;
value regfmt 1=’Northeast’

2=’South’
3=’Midwest’
4=’West’;

value divfmt 1=’New England’
2=’Middle Atlantic’
3=’Mountain’
4=’Pacific’;

value usetype 1=’Residential Customers’
2=’Business Customers’;

run;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell.

table region*division,
type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;



1312 Output � Chapter 43

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 2: Specifying Class Variable Combinations to Appear in a Table
Procedure features:

PROC TABULATE Statement options:
CLASSDATA=
EXCLUSIVE

Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example



The TABULATE Procedure � Program 1313

� uses the CLASSDATA= option to specify combinations of class variables to appear
in a table

� uses the EXCLUSIVE option to restrict the output to only the combinations
specified in the CLASSDATA= data set. Without the EXCLUSIVE option, the
output would be the same as in Example 1 on page 1310.

Program

Create the CLASSES data set. CLASSES contains the combinations of class variable values
that PROC TABULATE uses to create the table.

data classes;
input region division type;
datalines;

1 1 1
1 1 2
4 4 1
4 4 2
;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. CLASSDATA= and EXCLUSIVE restrict the class level
combinations to those that are specified in the CLASSES data set.

proc tabulate data=energy format=dollar12.
classdata=classes exclusive;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;



1314 Output � Chapter 43

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell.

table region*division,
type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
|-----------+-----------+------------+------------|
|West |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 3: Using Preloaded Formats with Class Variables

Procedure features:



The TABULATE Procedure � Program 1315

PROC TABULATE statement option:
OUT=

CLASS statement options:

EXCLUSIVE
PRELOADFMT

TABLE statement option:

PRINTMISS

Other features: PRINT procedure

Data set: ENERGY on page 1310

Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example

� creates a table that includes all possible combinations of formatted class variable
values (PRELOADFMT with PRINTMISS), even if those combinations have a zero
frequency and even if they do not make sense

� uses only the preloaded range of user-defined formats as the levels of class
variables (PRELOADFMT with EXCLUSIVE).

� writes the output to an output data set, and prints that data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type. PRELOADFMT specifies that PROC TABULATE use the
preloaded values of the user-defined formats for the class variables.

class region division type / preloadfmt;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;



1316 Program � Chapter 43

Define the table rows and columns, and specify row and column options. PRINTMISS
specifies that all possible combinations of user-defined formats be used as the levels of the class
variables.

table region*division,
type*expenditures / rts=25 printmiss;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Specify the table options and the output data set. The OUT= option specifies the name of
the output data set to which PROC TABULATE writes the data.

proc tabulate data=energy format=dollar12. out=tabdata;

Specify subgroups for the analysis. The EXCLUSIVE option, when used with
PRELOADFMT, uses only the preloaded range of user-defined formats as the levels of class
variables.

class region division type / preloadfmt exclusive;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns, and specify row and column options. The
PRINTMISS option is not specified in this case. If it were, then it would override the
EXCLUSIVE option in the CLASS statement.

table region*division,
type*expenditures / rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;



The TABULATE Procedure � Output 1317

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Print the output data set WORK.TABDATA.

proc print data=tabdata;
run;

Output



1318 Output � Chapter 43

This output, created with the PRELOADFMT and PRINTMISS options, contains all possible
combinations of preloaded user-defined formats for the class variable values. It includes
combinations with zero frequencies, and combinations that make no sense, such as Northeast
and Pacific.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|South |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|Midwest |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|West |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------



The TABULATE Procedure � Output 1319

This output, created with the PRELOADFMT and EXCLUSIVE options, contains only those
combinations of preloaded user-defined formats for the class variable values that appear in the
input data set. This output is identical to the output from Example 1 on page 1310.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

This output is a listing of the output data set TABDATA, which was created by the OUT= option
in the PROC TABULATE statement. TABDATA contains the data that is created by having the
PRELOADFMT and EXCLUSIVE options specified.

Energy Expenditures for Each Region
(millions of dollars)

E
x
p
e
n
d
i
t

D u
i _ r

R v _ _ T e
e i T P A s
g s T Y A B _

O i i y P G L S
b o o p E E E u
s n n e _ _ _ m

1 Northeast New England Residential Customers 111 1 1 7477
2 Northeast New England Business Customers 111 1 1 5129
3 Northeast Middle Atlantic Residential Customers 111 1 1 19379
4 Northeast Middle Atlantic Business Customers 111 1 1 15078
5 West Mountain Residential Customers 111 1 1 5476
6 West Mountain Business Customers 111 1 1 4729
7 West Pacific Residential Customers 111 1 1 13959
8 West Pacific Business Customers 111 1 1 12619



1320 Example 4: Using Multilabel Formats � Chapter 43

Example 4: Using Multilabel Formats

Procedure features:
CLASS statement options:

MLF
PROC TABULATE statement options:

FORMAT=
TABLE statement

ALL class variable
concatenation (blank) operator
crossing (*) operator
grouping elements (parentheses) operator
label
variable list

Other features:
FORMAT procedure
FORMAT statement
VALUE statement options:

MULTILABEL

This example
� shows how to specify a multilabel format in the VALUE statement of PROC

FORMAT
� shows how to activate multilabel format processing using the MLF option with the

CLASS statement
� demonstrates the behavior of the N statistic when multilabel format processing is

activated.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the CARSURVEY data set. CARSURVEY contains data from a survey that was
distributed by a car manufacturer to a focus group of potential customers who were brought
together to evaluate new car names. Each observation in the data set contains an identification
number, the participant’s age, and the participant’s ratings of four car names. A DATA step
creates the data set.

data carsurvey;
input Rater Age Progressa Remark Jupiter Dynamo;
datalines;

1 38 94 98 84 80
2 49 96 84 80 77
3 16 64 78 76 73



The TABULATE Procedure � Program 1321

4 27 89 73 90 92

. . . more data lines . . .

77 61 92 88 77 85
78 24 87 88 88 91
79 18 54 50 62 74
80 62 90 91 90 86
;

Create the AGEFMT. format. The FORMAT procedure creates a multilabel format for ages by
using the MULTILABEL option on page 460. A multilabel format is one in which multiple labels
can be assigned to the same value, in this case because of overlapping ranges. Each value is
represented in the table for each range in which it occurs. The NOTSORTED option stores the
ranges in the order in which they are defined.

proc format;
value agefmt (multilabel notsorted)

15 - 29 = ’Below 30 years’
30 - 50 = ’Between 30 and 50’

51 - high = ’Over 50 years’
15 - 19 = ’15 to 19’
20 - 25 = ’20 to 25’
25 - 39 = ’25 to 39’
40 - 55 = ’40 to 55’

56 - high = ’56 and above’;
run;

Specify the table options. The FORMAT= option specifies up to 10 digits as the default
format for the value in each table cell.

proc tabulate data=carsurvey format=10.;

Specify subgroups for the analysis. The CLASS statement identifies Age as the class
variable and uses the MLF option to activate multilabel format processing.

class age / mlf;

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Progressa, Remark, Jupiter, and Dynamo variables.

var progressa remark jupiter dynamo;

Define the table rows and columns. The row dimension of the TABLE statement creates a
row for each formatted value of Age. Multilabel formatting allows an observation to be included
in multiple rows or age categories. The row dimension uses the ALL class variable to
summarize information for all rows. The column dimension uses the N statistic to calculate the
number of observations for each age group. Notice that the result of the N statistic crossed with
the ALL class variable in the row dimension is the total number of observations instead of the
sum of the N statistics for the rows. The column dimension uses the ALL class variable at the
beginning of a crossing to assign a label, Potential Car Names. The four nested columns
calculate the mean ratings of the car names for each age group.

table age all, n all=’Potential Car Names’*(progressa remark
jupiter dynamo)*mean;



1322 Output � Chapter 43

Specify the titles.

title1 "Rating Four Potential Car Names";
title2 "Rating Scale 0-100 (100 is the highest rating)";

Format the output. The FORMAT statement assigns the user-defined format AGEFMT. to Age
for this analysis.

format age agefmt.;
run;

Output

Output 43.3

Rating Four Potential Car Names 1
Rating Scale 0-100 (100 is the highest rating)

---------------------------------------------------------------------------
| | | Potential Car Names |
| | |-------------------------------------------|
| | |Progressa | Remark | Jupiter | Dynamo |
| | |----------+----------+----------+----------|
| | N | Mean | Mean | Mean | Mean |
|------------------+----------+----------+----------+----------+----------|
|Age | | | | | |
|------------------| | | | | |
|15 to 19 | 14| 75| 78| 81| 73|
|------------------+----------+----------+----------+----------+----------|
|20 to 25 | 11| 89| 88| 84| 89|
|------------------+----------+----------+----------+----------+----------|
|25 to 39 | 26| 84| 90| 82| 72|
|------------------+----------+----------+----------+----------+----------|
|40 to 55 | 14| 85| 87| 80| 68|
|------------------+----------+----------+----------+----------+----------|
|56 and above | 15| 84| 82| 81| 75|
|------------------+----------+----------+----------+----------+----------|
|Below 30 years | 36| 82| 84| 82| 75|
|------------------+----------+----------+----------+----------+----------|
|Between 30 and 50 | 25| 86| 89| 81| 73|
|------------------+----------+----------+----------+----------+----------|
|Over 50 years | 19| 82| 84| 80| 76|
|------------------+----------+----------+----------+----------+----------|
|All | 80| 83| 86| 81| 74|
---------------------------------------------------------------------------

Example 5: Customizing Row and Column Headings
Procedure features:

TABLE statement
labels

Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example shows how to customize row and column headings. A label specifies
text for a heading. A blank label creates a blank heading. PROC TABULATE removes
the space for blank column headings from the table.



The TABULATE Procedure � Program 1323

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell. Text in quotation marks specifies headings for the
corresponding variable or statistic. Although Sum is the default statistic, it is specified here so
that you can specify a blank for its heading.

table region*division,
type=’Customer Base’*expenditures=’ ’*sum=’ ’

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to Region, Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.



1324 Output � Chapter 43

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

The heading for Type contains text that is specified in the TABLE statement. The TABLE
statement eliminated the headings for Expenditures and Sum.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 6: Summarizing Information with the Universal Class Variable ALL
Procedure features:

PROC TABULATE statement options:
FORMAT=

TABLE statement:
ALL class variable
concatenation (blank operator)
format modifiers
grouping elements (parentheses operator)

Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example shows how to use the universal class variable ALL to summarize
information from multiple categories.

Program



The TABULATE Procedure � Program 1325

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

Specify the table options. The FORMAT= option specifies COMMA12. as the default format
for the value in each table cell.

proc tabulate data=energy format=comma12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Region. Nested within each row are rows for each formatted value of Division
and a row (labeled Subtotal) that summarizes all divisions in the region. The last row of the
report (labeled Total for All Regions) summarizes all regions. The format modifier
f=DOLLAR12. assigns the DOLLAR12. format to the cells in this row.

table region*(division all=’Subtotal’)
all=’Total for All Regions’*f=dollar12.,

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type and a column that is labeled All customers that shows
expenditures for all customers in a row of the table. Each cell that is created by these rows and
columns contains the sum of the analysis variable Expenditures for all observations that
contribute to that cell. Text in quotation marks specifies headings for the corresponding variable
or statistic. Although Sum is the default statistic, it is specified here so that you can specify a
blank for its heading.

type=’Customer Base’*expenditures=’ ’*sum=’ ’
all=’All Customers’*expenditures=’ ’*sum=’ ’

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.



1326 Output � Chapter 43

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

The universal class variable ALL provides subtotals and totals in this
table.

Energy Expenditures for Each Region 1
(millions of dollars)

----------------------------------------------------------------
| | Customer Base | |
| |-------------------------| |
| |Residential | Business | All |
| | Customers | Customers | Customers |
|-----------------------+------------+------------+------------|
|Region |Division | | | |
|-----------+-----------| | | |
|Northeast |New England| 7,477| 5,129| 12,606|
| |-----------+------------+------------+------------|
| |Middle | | | |
| |Atlantic | 19,379| 15,078| 34,457|
| |-----------+------------+------------+------------|
| |Subtotal | 26,856| 20,207| 47,063|
|-----------+-----------+------------+------------+------------|
|West |Division | | | |
| |-----------| | | |
| |Mountain | 5,476| 4,729| 10,205|
| |-----------+------------+------------+------------|
| |Pacific | 13,959| 12,619| 26,578|
| |-----------+------------+------------+------------|
| |Subtotal | 19,435| 17,348| 36,783|
|-----------------------+------------+------------+------------|
|Total for All Regions | $46,291| $37,555| $83,846|
----------------------------------------------------------------

Example 7: Eliminating Row Headings

Procedure features:
TABLE statement:

labels
ROW=FLOAT

Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311



The TABULATE Procedure � Program 1327

This example shows how to eliminate blank row headings from a table. To do so, you
must both provide blank labels for the row headings and specify ROW=FLOAT in the
TABLE statement.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Region. Nested within these rows is a row for each formatted value of
Division. The analysis variable Expenditures and the Sum statistic are also included in the row
dimension, so PROC TABULATE creates row headings for them as well. The text in quotation
marks specifies the headings for the corresponding variable or statistic. Although Sum is the
default statistic, it is specified here so that you can specify a blank for its heading.

table region*division*expenditures=’ ’*sum=’ ’,

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type.

type=’Customer Base’

Specify the row title space and eliminate blank row headings. RTS= provides 25
characters per line for row headings. ROW=FLOAT eliminates blank row headings.



1328 Output � Chapter 43

/ rts=25 row=float;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

Compare this table with the output in Example 5 on page 1322. The two tables are identical,
but the program that creates this table uses Expenditures and Sum in the row dimension.
PROC TABULATE automatically eliminates blank headings from the column dimension,
whereas you must specify ROW=FLOAT to eliminate blank headings from the row dimension.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 8: Indenting Row Headings and Eliminating Horizontal Separators

Procedure features:
PROC TABULATE statement options:

NOSEPS
TABLE statement options:



The TABULATE Procedure � Program 1329

INDENT=
Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example shows how to condense the structure of a table by
� removing row headings for class variables
� indenting nested rows underneath parent rows instead of placing them next to

each other
� eliminating horizontal separator lines from the row titles and the body of the table.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell. NOSEPS eliminates horizontal separator lines from row titles
and from the body of the table.

proc tabulate data=energy format=dollar12. noseps;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell. Text in quotation marks in all dimensions specifies
headings for the corresponding variable or statistic. Although Sum is the default statistic, it is
specified here so that you can specify a blank for its heading.

table region*division,
type=’Customer Base’*expenditures=’ ’*sum=’ ’



1330 Output � Chapter 43

Specify the row title space and indention value. RTS= provides 25 characters per line for
row headings. INDENT= removes row headings for class variables, places values for Division
beneath values for Region rather than beside them, and indents values for Division four spaces.

/ rts=25 indent=4;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

NOSEPS removes the separator lines from the row titles and the body of the table. INDENT=
eliminates the row headings for Region and Division and indents values for Division underneath
values for Region.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Northeast | | |
| New England | $7,477| $5,129|
| Middle Atlantic | $19,379| $15,078|
|West | | |
| Mountain | $5,476| $4,729|
| Pacific | $13,959| $12,619|
---------------------------------------------------

Example 9: Creating Multipage Tables

Procedure features:
TABLE statement



The TABULATE Procedure � Program 1331

ALL class variable
BOX=
CONDENSE
INDENT=
page expression

Data set: ENERGY on page 1310
Formats: REGFMT., DIVFMT., and USETYPE. on page 1311

This example creates a separate table for each region and one table for all regions.
By default, PROC TABULATE creates each table on a separate page, but the
CONDENSE option places them all on the same page.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table pages. The page dimension of the TABLE statement creates one table for
each formatted value of Region and one table for all regions. Text in quotation marks provides
the heading for each page.

table region=’Region: ’ all=’All Regions’,

Define the table rows. The row dimension creates a row for each formatted value of Division
and a row for all divisions. Text in quotation marks provides the row headings.

division all=’All Divisions’,



1332 Program � Chapter 43

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type. Each cell that is created by these pages, rows, and columns
contains the sum of the analysis variable Expenditures for all observations that contribute to
that cell. Text in quotation marks specifies headings for the corresponding variable or statistic.
Although Sum is the default statistic, it is specified here so that you can specify a blank for its
heading.

type=’Customer Base’*expenditures=’ ’*sum=’ ’

Specify additional table options. RTS= provides 25 characters per line for row headings.
BOX= places the page heading inside the box above the row headings. CONDENSE places as
many tables as possible on one physical page. INDENT= eliminates the row heading for
Division. (Because there is no nesting in the row dimension, there is nothing to indent.)

/ rts=25 box=_page_ condense indent=1;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region and All Regions’;
title2 ’(millions of dollars)’;

run;



The TABULATE Procedure � Example 10: Reporting on Multiple-Response Survey Data 1333

Output

Energy Expenditures for Each Region and All Regions 1
(millions of dollars)

---------------------------------------------------
|Region: Northeast | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|New England | $7,477| $5,129|
|-----------------------+------------+------------|
|Middle Atlantic | $19,379| $15,078|
|-----------------------+------------+------------|
|All Divisions | $26,856| $20,207|
---------------------------------------------------

---------------------------------------------------
|Region: West | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Mountain | $5,476| $4,729|
|-----------------------+------------+------------|
|Pacific | $13,959| $12,619|
|-----------------------+------------+------------|
|All Divisions | $19,435| $17,348|
---------------------------------------------------

---------------------------------------------------
|All Regions | Customer Base |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|New England | $7,477| $5,129|
|-----------------------+------------+------------|
|Middle Atlantic | $19,379| $15,078|
|-----------------------+------------+------------|
|Mountain | $5,476| $4,729|
|-----------------------+------------+------------|
|Pacific | $13,959| $12,619|
|-----------------------+------------+------------|
|All Divisions | $46,291| $37,555|
---------------------------------------------------

Example 10: Reporting on Multiple-Response Survey Data
Procedure features:

TABLE statement:
denominator definition (angle bracket operators)
N statistic
PCTN statistic
variable list

Other features:
FORMAT procedure



1334 Collecting the Data � Chapter 43

SAS system options:
FORMDLIM=
NONUMBER

SYMPUT routine

The two tables in this example show
� which factors most influenced customers’ decisions to buy products
� where customers heard of the company.

The reports appear on one physical page with only one page number. By default, they
would appear on separate pages.

In addition to showing how to create these tables, this example shows how to
� use a DATA step to count the number of observations in a data set
� store that value in a macro variable
� access that value later in the SAS session.

Collecting the Data
Figure 43.14 on page 1334 shows the survey form that is used to collect data.

Figure 43.14 Completed Survey Form

Customer Questionnaire

Please place a check beside all answers that apply.

Why do you buy our products?

How did you find out about our company?

What makes a sales person effective?

Cost Performance Reliability Sales staff

Newspaper / MagazineT.V. / Radio Word of mouth

Product knowledge Personality Appearance

ID#:

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. The FORMDLIM=
option replaces the character that delimits page breaks with a single blank. By default, a new
physical page starts whenever a page break occurs.



The TABULATE Procedure � Program 1335

options nodate pageno=1 linesize=80 pagesize=18 formdlim=’ ’;

Create the CUSTOMER_RESPONSE data set. CUSTOMER_RESPONSE contains data from
a customer survey. Each observation in the data set contains information about factors that
influence one respondent’s decisions to buy products. A DATA step on page 1619 creates the
data set. Using missing values rather than 0’s is crucial for calculating frequency counts in
PROC TABULATE.

data customer_response;
input Customer Factor1-Factor4 Source1-Source3

Quality1-Quality3;
datalines;

1 . . 1 1 1 1 . 1 . .
2 1 1 . 1 1 1 . 1 1 .
3 . . 1 1 1 1 . . . .

. . . more data lines . . .

119 . . . 1 . . . 1 . .
120 1 1 . 1 . . . . 1 .
;

Store the number of observations in a macro variable. The SET statement reads the
descriptor portion of CUSTOMER_RESPONSE at compile time and stores the number of
observations (the number of respondents) in COUNT. The SYMPUT routine stores the value of
COUNT in the macro variable NUM. This variable is available for use by other procedures and
DATA steps for the remainder of the SAS session. The IF 0 condition, which is always false,
ensures that the SET statement, which reads the observations, never executes. (Reading
observations is unnecessary.) The STOP statement ensures that the DATA step executes only
once.

data _null_;
if 0 then set customer_response nobs=count;
call symput(’num’,left(put(count,4.)));
stop;

run;

Create the PCTFMT. format. The FORMAT procedure creates a format for percentages. The
PCTFMT. format writes all values with at least one digit to the left of the decimal point and
with one digit to the right of the decimal point. A blank and a percent sign follow the digits.

proc format;
picture pctfmt low-high=’009.9 %’;

run;

Create the report and use the default table options.

proc tabulate data=customer_response;



1336 Program � Chapter 43

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Factor1, Factor2, Factor3, Factor4, and Customer variables. The
variable Customer must be listed because it is used to calculate the Percent column that is
defined in the TABLE statement.

var factor1-factor4 customer;

Define the table rows and columns. The TABLE statement creates a row for each factor, a
column for frequency counts, and a column for the percentages. Text in quotation marks
supplies headers for the corresponding row or column. The format modifiers F=7. and
F=PCTFMT9. provide formats for values in the associated cells and extend the column widths to
accommodate the column headers.

table factor1=’Cost’
factor2=’Performance’
factor3=’Reliability’
factor4=’Sales Staff’,
(n=’Count’*f=7. pctn<customer>=’Percent’*f=pctfmt9.) ;

Specify the titles.

title ’Customer Survey Results: Spring 1996’;
title3 ’Factors Influencing the Decision to Buy’;

run;

Suppress page numbers. The SAS system option NONUMBER suppresses page numbers for
subsequent pages.

options nonumber;

Create the report and use the default table options.

proc tabulate data=customer_response;

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Source1, Source2, Source3, and Customer variables. The variable
Customer must be in the variable list because it appears in the denominator definition.

var source1-source3 customer;

Define the table rows and columns. The TABLE statement creates a row for each source of
the company name, a column for frequency counts, and a column for the percentages. Text in
quotation marks supplies a heading for the corresponding row or column.

table source1=’TV/Radio’
source2=’Newspaper’
source3=’Word of Mouth’,
(n=’Count’*f=7. pctn<customer>=’Percent’*f=pctfmt9.) ;



The TABULATE Procedure � Output 1337

Specify the title and footnote. The macro variable NUM resolves to the number of
respondents. The FOOTNOTE statement uses double rather than single quotation marks so
that the macro variable will resolve.

title ’Source of Company Name’;
footnote "Number of Respondents: &num";

run;

Reset the SAS system options. The FORMDLIM= option resets the page delimiter to a page
eject. The NUMBER option resumes the display of page numbers on subsequent pages.

options formdlim=’’ number;

Output

Customer Survey Results: Spring 1996 1

Factors Influencing the Decision to Buy

--------------------------------------
| | Count | Percent |
|------------------+-------+---------|
|Cost | 87| 72.5 %|
|------------------+-------+---------|
|Performance | 62| 51.6 %|
|------------------+-------+---------|
|Reliability | 30| 25.0 %|
|------------------+-------+---------|
|Sales Staff | 120| 100.0 %|
--------------------------------------

Source of Company Name

--------------------------------------
| | Count | Percent |
|------------------+-------+---------|
|TV/Radio | 92| 76.6 %|
|------------------+-------+---------|
|Newspaper | 69| 57.5 %|
|------------------+-------+---------|
|Word of Mouth | 26| 21.6 %|
--------------------------------------

Number of Respondents: 120



1338 Example 11: Reporting on Multiple-Choice Survey Data � Chapter 43

Example 11: Reporting on Multiple-Choice Survey Data

Procedure features:
TABLE statement:

N statistic
Other features:

FORMAT procedure
TRANSPOSE procedure
Data set options:

RENAME=

This report of listener preferences shows how many listeners select each type of
programming during each of seven time periods on a typical weekday. The data was
collected by a survey, and the results were stored in a SAS data set. Although this data
set contains all the information needed for this report, the information is not arranged
in a way that PROC TABULATE can use.

To make this crosstabulation of time of day and choice of radio programming, you
must have a data set that contains a variable for time of day and a variable for
programming preference. PROC TRANSPOSE reshapes the data into a new data set
that contains these variables. Once the data are in the appropriate form, PROC
TABULATE creates the report.

Collecting the Data
Figure 43.15 on page 1339 shows the survey form that is used to collect data.



The TABULATE Procedure � Program 1339

Figure 43.15 Completed Survey Form

phone_ _ _

LISTENER SURVEY

1. _______ What is your age?

2. _______ What is your gender?

3. _______ On the average WEEKDAY, how many hours do you listen
to the radio?

4. _______ On the average WEEKEND-DAY, how many hours do you
listen to the radio?

Use codes 1-8 for question 5.  Use codes 0-8 for 6-19.
0 Do not listen at that time

1 Rock 5 Classical
2 Top 40 6 Easy Listening
3 Country 7 News/Information/Talk
4 Jazz 8 Other

5. _______ What style of music or radio programming do you most
often listen to?

On a typical WEEKDAY,
what kind of radio program-
ming do you listen to

6. _______ from 6-9 a.m.?

7. _______ from 9 a.m. to noon?

8. _______ from noon to 1 p.m.?

9. _______ from 1-4 p.m.?

10. _______ from 4-6 p.m.?

11. _______ from 6-10 p.m.?

12. _______ from 10 p.m. to 2 a.m.?

On a typical WEEKEND-DAY,
what kind of radio programming
do you listen to

13. _______ from 6-9 a.m.?

14. _______ from 9 a.m. to noon?

15. _______ from noon to 1 p.m.?

16. _______ from 1-4 p.m.?

17. _______ from 4-6 p.m.?

18. _______ from 6-10 p.m.?

19. _______ from 10 p.m. to 2 a.m.?

An external file on page 1658 contains the raw data for the survey. Several lines
from that file appear here.

967 32 f 5 3 5
7 5 5 5 7 0 0 0 8 7 0 0 8 0
781 30 f 2 3 5
5 0 0 0 5 0 0 0 4 7 5 0 0 0
859 39 f 1 0 5
1 0 0 0 1 0 0 0 0 0 0 0 0 0

. . . more data lines . . .

859 32 m .25 .25 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Program



1340 Program � Chapter 43

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=132 pagesize=40;

Create the RADIO data set and specify the input file. RADIO contains data from a survey
of 336 listeners. The data set contains information about listeners and their preferences in radio
programming. The INFILE statement specifies the external file that contains the data.
MISSOVER prevents the input pointer from going to the next record if it fails to find values in
the current line for all variables that are listed in the INPUT statement.

data radio;
infile ’input-file’ missover;

Read the appropriate data line, assign a unique number to each respondent, and
write an observation to RADIO. Each raw-data record contains two lines of information
about each listener. The INPUT statement reads only the information that this example needs.
The / line control skips the first line of information in each record. The rest of the INPUT
statement reads Time1-Time7 from the beginning of the second line. These variables represent
the listener’s radio programming preference for each of seven time periods on weekdays (see
Figure 43.15 on page 1339). The listener=_N_ statement assigns a unique identifier to each
listener. An observation is automatically written to RADIO at the end of each iteration.

input /(Time1-Time7) ($1. +1);
listener=_n_;

run;

Create the $TIMEFMT. and $PGMFMT. formats. PROC FORMAT creates formats for the
time of day and the choice of programming.

proc format;
value $timefmt ’Time1’=’6-9 a.m.’

’Time2’=’9 a.m. to noon’
’Time3’=’noon to 1 p.m.’
’Time4’=’1-4 p.m.’
’Time5’=’4-6 p.m.’
’Time6’=’6-10 p.m.’
’Time7’=’10 p.m. to 2 a.m.’

other=’*** Data Entry Error ***’;
value $pgmfmt ’0’="Don’t Listen"

’1’,’2’=’Rock and Top 40’
’3’=’Country’

’4’,’5’,’6’=’Jazz, Classical, and Easy Listening’
’7’=’News/ Information /Talk’
’8’=’Other’

other=’*** Data Entry Error ***’;
run;



The TABULATE Procedure � Program 1341

Reshape the data by transposing the RADIO data set. PROC TRANSPOSE creates
RADIO_TRANSPOSED. This data set contains the variable Listener from the original data set.
It also contains two transposed variables: Timespan and Choice. Timespan contains the names
of the variables (Time1-Time7) from the input data set that are transposed to form observations
in the output data set. Choice contains the values of these variables. (See “A Closer Look” on
page 1342 for a complete explanation of the PROC TRANSPOSE step.)

proc transpose data=radio
out=radio_transposed(rename=(col1=Choice))
name=Timespan;

by listener;
var time1-time7;

Format the transposed variables. The FORMAT statement permanently associates these
formats with the variables in the output data set.

format timespan $timefmt. choice $pgmfmt.;
run;

Create the report and specify the table options. The FORMAT= option specifies the default
format for the values in each table cell.

proc tabulate data=radio_transposed format=12.;

Specify subgroups for the analysis. The CLASS statement identifies Timespan and Choice
as class variables.

class timespan choice;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Timespan and a column for each formatted value of Choice. In each column are values
for the N statistic. Text in quotation marks supplies headings for the corresponding rows or
columns.

table timespan=’Time of Day’,
choice=’Choice of Radio Program’*n=’Number of Listeners’;

Specify the title.

title ’Listening Preferences on Weekdays’;
run;



1342 Output � Chapter 43

Output

Listening Preferences on Weekdays 1

---------------------------------------------------------------------------------------------------------------

| | Choice of Radio Program |

| |-----------------------------------------------------------------------------|

| | | | | Jazz, | | |

| | | | | Classical, | News/ | |

| | |Rock and Top| | and Easy |Information | |

| |Don’t Listen| 40 | Country | Listening | /Talk | Other |

| |------------+------------+------------+------------+------------+------------|

| | Number of | Number of | Number of | Number of | Number of | Number of |

| | Listeners | Listeners | Listeners | Listeners | Listeners | Listeners |

|-------------------------------+------------+------------+------------+------------+------------+------------|

|Time of Day | | | | | | |

|-------------------------------| | | | | | |

|6-9 a.m. | 34| 143| 7| 39| 96| 17|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|9 a.m. to noon | 214| 59| 5| 51| 3| 4|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|noon to 1 p.m. | 238| 55| 3| 27| 9| 4|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|1-4 p.m. | 216| 60| 5| 50| 2| 3|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|4-6 p.m. | 56| 130| 6| 57| 69| 18|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|6-10 p.m. | 202| 54| 9| 44| 20| 7|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|10 p.m. to 2 a.m. | 264| 29| 3| 36| 2| 2|

---------------------------------------------------------------------------------------------------------------

A Closer Look

Reshape the data
The original input data set has all the information that you need to make the
crosstabular report, but PROC TABULATE cannot use the information in that form.
PROC TRANSPOSE rearranges the data so that each observation in the new data set
contains the variable Listener, a variable for time of day, and a variable for
programming preference. Figure 43.16 on page 1343 illustrates the transposition.
PROC TABULATE uses this new data set to create the crosstabular report.

PROC TRANSPOSE restructures data so that values that were stored in one
observation are written to one variable. You can specify which variables you want to
transpose. This section illustrates how PROC TRANSPOSE reshapes the data. The
following section explains the PROC TRANSPOSE step in this example.

When you transpose with BY processing, as this example does, you create from each
BY group one observation for each variable that you transpose. In this example,
Listener is the BY variable. Each observation in the input data set is a BY group
because the value of Listener is unique for each observation.

This example transposes seven variables, Time1 through Time7. Therefore, the
output data set has seven observations from each BY group (each observation) in the
input data set.



The TABULATE Procedure � A Closer Look 1343

Figure 43.16 Transposing Two Observations

Time1 Time2 Time3 Time4 Time5 Time6 Time7

7 5 5 5 7 0 0

5 0 0 0 5 0 0

Listener

1

2

Listener

1

1

1

1

1

1

1

2

2

2

2

2

2

2

_NAME_

Time1

Time2

Time3

Time4

Time5

Time6

Time7

Time1

Time2

Time3

Time4

Time5

Time6

Time7

COL1

7

7

5

5

7

0

0

5

0

0

0

5

0

0

➊ The BY variable is not
transposed. All the
observations created from the
same BY group contain the
same value of Listener.

➋ _NAME_ contains the name
of the variable in the input
data set that was transposed
to create the current
observation in the output
data set.

➌ COL1 contains the values of
Time1–Time7.

➊➋ ➌

Input Data Set

Output Data Set

Understanding the PROC TRANSPOSE Step
Here is a detailed explanation of the PROC TRANSPOSE step that reshapes the data:

proc transpose data=radio u

out=radio_transposed(rename=(col1=Choice)) v



1344 Example 12: Calculating Various Percentage Statistics � Chapter 43

name=Timespan; w

by listener; x

var time1-time7; y

format timespan $timefmt. choice $pgmfmt.; U

run;

u The DATA= option specifies the input data set.
v The OUT= option specifies the output data set. The RENAME= data set option

renames the transposed variable from COL1 (the default name) to Choice.
w The NAME= option specifies the name for the variable in the output data set that

contains the name of the variable that is being transposed to create the current
observation. By default, the name of this variable is _NAME_.

x The BY statement identifies Listener as the BY variable.
y The VAR statement identifies Time1 through Time7 as the variables to transpose.
U The FORMAT statement assigns formats to Timespan and Choice. The PROC

TABULATE step that creates the report does not need to format Timespan and
Choice because the formats are stored with these variables.

Example 12: Calculating Various Percentage Statistics

Procedure features:
PROC TABULATE statement options:

FORMAT=
TABLE statement:

ALL class variable
COLPCTSUM statistic
concatenation (blank) operator
crossing (*) operator
format modifiers
grouping elements (parentheses) operator
labels
REPPCTSUM statistic
ROWPCTSUM statistic
variable list

TABLE statement options:
ROW=FLOAT
RTS=

Other features: FORMAT procedure

This example shows how to use three percentage sum statistics: COLPCTSUM,
REPPCTSUM, and ROWPCTSUM.

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.



The TABULATE Procedure � 1345

options nodate pageno=1 linesize=105 pagesize=60;

Create the FUNDRAIS data set. FUNDRAIS contains data on student sales during a school
fund-raiser. A DATA step creates the data set.

data fundrais;
length name $ 8 classrm $ 1;
input @1 team $ @8 classrm $ @10 name $

@19 pencils @23 tablets;
sales=pencils + tablets;
datalines;

BLUE A ANN 4 8
RED A MARY 5 10
GREEN A JOHN 6 4
RED A BOB 2 3
BLUE B FRED 6 8
GREEN B LOUISE 12 2
BLUE B ANNETTE . 9
RED B HENRY 8 10
GREEN A ANDREW 3 5
RED A SAMUEL 12 10
BLUE A LINDA 7 12
GREEN A SARA 4 .
BLUE B MARTIN 9 13
RED B MATTHEW 7 6
GREEN B BETH 15 10
RED B LAURA 4 3
;

Create the PCTFMT. format. The FORMAT procedure creates a format for percentages. The
PCTFMT. format writes all values with at least one digit, a blank, and a percent sign.

proc format;
picture pctfmt low-high=’009 %’;

run;

Specify the title.

title "Fundraiser Sales";

Create the report and specify the table options. The FORMAT= option specifies up to
seven digits as the default format for the value in each table cell.

proc tabulate format=7.;

Specify subgroups for the analysis. The CLASS statement identifies Team and Classrm as
class variables.

class team classrm;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Sales variable.

var sales;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Team. The last row of the report summarizes sales for all teams.



1346 Output � Chapter 43

table (team all),

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Classrm. Crossed within each value of Classrm is the analysis
variable (sales) with a blank label. Nested within each column are columns that summarize
sales for the class.

� The first nested column, labeled sum, is the sum of sales for the row for the
classroom.

� The second nested column, labeled ColPctSum, is the percentage of the sum of sales
for the row for the classroom in relation to the sum of sales for all teams in the
classroom.

� The third nested column, labeled RowPctSum, is the percentage of the sum of sales
for the row for the classroom in relation to the sum of sales for the row for all
classrooms.

� The fourth nested column, labeled RepPctSum, is the percentage of the sum of sales
for the row for the classroom in relation to the sum of sales for all teams for all
classrooms.

The last column of the report summarizes sales for the row for all classrooms.

classrm=’Classroom’*sales=’ ’*(sum
colpctsum*f=pctfmt9.
rowpctsum*f=pctfmt9.
reppctsum*f=pctfmt9.)
all*sales*sum=’ ’

Specify the row title space and eliminate blank row headings. RTS= provides 20
characters per line for row headings.

/rts=20;
run;

Output

Fundraiser Sales 1

--------------------------------------------------------------------------------------------------------

| | Classroom | |

| |---------------------------------------------------------------------------| |

| | A | B | All |

| |-------------------------------------+-------------------------------------+-------|

| | Sum |ColPctSum|RowPctSum|RepPctSum| Sum |ColPctSum|RowPctSum|RepPctSum| Sum |

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|team | | | | | | | | | |

|------------------| | | | | | | | | |

|BLUE | 31| 34 %| 46 %| 15 %| 36| 31 %| 53 %| 17 %| 67|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|GREEN | 18| 19 %| 31 %| 8 %| 39| 34 %| 68 %| 19 %| 57|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|RED | 42| 46 %| 52 %| 20 %| 38| 33 %| 47 %| 18 %| 80|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|All | 91| 100 %| 44 %| 44 %| 113| 100 %| 55 %| 55 %| 204|

--------------------------------------------------------------------------------------------------------

A Closer Look
Here are the percentage sum statistic calculations used to produce the output for the

Blue Team in Classroom A:



The TABULATE Procedure � Program 1347

COLPCTSUM=31/91*100=34%
ROWPCTSUM=31/67*100=46%
REPPCTSUM=31/204*100=15%

Similar calculations were used to produce the output for the remaining teams and
classrooms.

Example 13: Using Denominator Definitions to Display Basic Frequency
Counts and Percentages

Procedure features:
TABLE statement:

ALL class variable
denominator definitions (angle bracket operators)
N statistic
PCTN statistic

Other features:
FORMAT procedure

Crosstabulation tables (also called contingency tables and stub-and-banner reports)
show combined frequency distributions for two or more variables. This table shows
frequency counts for females and males within each of four job classes. The table also
shows the percentage that each frequency count represents of

� the total women and men in that job class (row percentage)
� the total for that gender in all job classes (column percentage)
� the total for all employees.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the JOBCLASS data set. JOBCLASS contains encoded information about the gender
and job class of employees at a fictitious company.

data jobclass;
input Gender Occupation @@;
datalines;

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 3 1 3 1 3 1 3 1 3 1 3 1 3



1348 Program � Chapter 43

1 1 1 1 1 1 1 2 1 2 1 2 1 2
1 2 1 2 1 3 1 3 1 4 1 4 1 4
1 4 1 4 1 4 1 1 1 1 1 1 1 1
1 1 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 3 1 3 1 3 1 3 1 4 1 4
1 4 1 4 1 4 1 1 1 3 2 1 2 1
2 1 2 1 2 1 2 1 2 1 2 2 2 2
2 2 2 2 2 2 2 3 2 3 2 3 2 4
2 4 2 4 2 4 2 4 2 4 2 1 2 3
2 3 2 3 2 3 2 3 2 4 2 4 2 4
2 4 2 4 2 1 2 1 2 1 2 1 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 2 4 2 4 2 4 2 1 2 1
2 1 2 1 2 1 2 2 2 2 2 2 2 3
2 3 2 3 2 3 2 4
;

Create the GENDFMT. and OCCUPFMT. formats. PROC FORMAT creates formats for the
variables Gender and Occupation.

proc format;
value gendfmt 1=’Female’

2=’Male’
other=’*** Data Entry Error ***’;

value occupfmt 1=’Technical’
2=’Manager/Supervisor’
3=’Clerical’
4=’Administrative’

other=’*** Data Entry Error ***’;
run;

Create the report and specify the table options. The FORMAT= option specifies the 8.2
format as the default format for the value in each table cell.

proc tabulate data=jobclass format=8.2;

Specify subgroups for the analysis. The CLASS statement identifies Gender and Occupation
as class variables.

class gender occupation;



The TABULATE Procedure � Program 1349

Define the table rows. The TABLE statement creates a set of rows for each formatted value of
Occupation and for all jobs together. Text in quotation marks supplies a header for the
corresponding row.

The asterisk in the row dimension indicates that the statistics that follow in parentheses are
nested within the values of Occupation and All to form sets of rows. Each set of rows includes
four statistics:

� N, the frequency count. The format modifier (F=9.) writes the values of N without
the decimal places that the default format would use. It also extends the column
width to nine characters so that the word Employees fits on one line.

� the percentage of the row total (row percent).
� the percentage of the column total (column percent).
� the overall percent. Text in quotation marks supplies the heading for the

corresponding row. A comma separates the row definition from the column definition.
For detailed explanations of the structure of this table and of the use of denominator definitions,
see “A Closer Look” on page 1350.

table (occupation=’Job Class’ all=’All Jobs’)
*(n=’Number of employees’*f=9.
pctn<gender all>=’Percent of row total’
pctn<occupation all>=’Percent of column total’
pctn=’Percent of total’),

Define the table columns and specify the amount of space for row headings. The
column dimension creates a column for each formatted value of Gender and for all employees.
Text in quotation marks supplies the heading for the corresponding column. The RTS= option
provides 50 characters per line for row headings.

gender=’Gender’ all=’All Employees’/ rts=50;

Format the output. The FORMAT statement assigns formats to the variables Gender and
Occupation.

format gender gendfmt. occupation occupfmt.;

Specify the titles.

title ’Gender Distribution’;
title2 ’within Job Classes’;

run;



1350 Output � Chapter 43

Output

Gender Distribution 1
within Job Classes

--------------------------------------------------------------------------------
| | Gender | |
| |-------------------| All |
| | Female | Male |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class | | | | |
|-----------------------+------------------------| | | |
|Technical |Number of employees | 16| 18| 34|
| |------------------------+---------+---------+---------|
| |Percent of row total | 47.06| 52.94| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 26.23| 29.03| 27.64|
| |------------------------+---------+---------+---------|
| |Percent of total | 13.01| 14.63| 27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor |Number of employees | 20| 15| 35|
| |------------------------+---------+---------+---------|
| |Percent of row total | 57.14| 42.86| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 32.79| 24.19| 28.46|
| |------------------------+---------+---------+---------|
| |Percent of total | 16.26| 12.20| 28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical |Number of employees | 14| 14| 28|
| |------------------------+---------+---------+---------|
| |Percent of row total | 50.00| 50.00| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 22.95| 22.58| 22.76|
| |------------------------+---------+---------+---------|
| |Percent of total | 11.38| 11.38| 22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative |Number of employees | 11| 15| 26|
| |------------------------+---------+---------+---------|
| |Percent of row total | 42.31| 57.69| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 18.03| 24.19| 21.14|
| |------------------------+---------+---------+---------|
| |Percent of total | 8.94| 12.20| 21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs |Number of employees | 61| 62| 123|
| |------------------------+---------+---------+---------|
| |Percent of row total | 49.59| 50.41| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 100.00| 100.00| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of total | 49.59| 50.41| 100.00|
--------------------------------------------------------------------------------

A Closer Look
The part of the TABLE statement that defines the rows of the table uses the PCTN

statistic to calculate three different percentages.
In all calculations of PCTN, the numerator is N, the frequency count for one cell of

the table. The denominator for each occurrence of PCTN is determined by the
denominator definition. The denominator definition appears in angle brackets after the
keyword PCTN. It is a list of one or more expressions. The list tells PROC TABULATE
which frequency counts to sum for the denominator.



The TABULATE Procedure � A Closer Look 1351

Analyzing the Structure of the Table
Taking a close look at the structure of the table helps you understand how PROC
TABULATE uses the denominator definitions. The following simplified version of the
TABLE statement clarifies the basic structure of the table:

table occupation=’Job Class’ all=’All Jobs’,
gender=’Gender’ all=’All Employees’;

The table is a concatenation of four subtables. In this report, each subtable is a
crossing of one class variable in the row dimension and one class variable in the column
dimension. Each crossing establishes one or more categories. A category is a
combination of unique values of class variables, such as female, technical or all,
clerical. Table 43.8 on page 1351 describes each subtable.

Table 43.8 Contents of Subtables

Class variables contributing to the
subtable Description of frequency counts

Number of
categories

Occupation and Gender number of females in each job or
number of males in each job

8

All and Gender number of females or number of males 2

Occupation and All number of people in each job 4

All and All number of people in all jobs 1

Figure 43.17 on page 1352 highlights these subtables and the frequency counts for each
category.



1352 A Closer Look � Chapter 43

Figure 43.17 Illustration of the Four Subtables

Occupation and Gender

Occupation
and All

All and Gender
All
and All

----------------------------------------------------------------------
|                                                |      Gender       |
|                                                |-------------------|
|                                                | Female  |  Male   |
|------------------------------------------------+---------+---------+
|Job Class              |                        |         |         |
|-----------------------+------------------------|         |         |
|Technical              |Number of employees     |       16|       18|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    47.06|    52.94|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    26.23|    29.03|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    13.01|    14.63|
|-----------------------+------------------------+---------+---------+
|Manager/Supervisor     |Number of employees     |       20|       15|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    57.14|    42.86|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    32.79|    24.19|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    16.26|    12.20|
|-----------------------+------------------------+---------+---------+
|Clerical               |Number of employees     |       14|       14|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    50.00|    50.50|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    22.95|    22.58|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    11.38|    11.38|
|-----------------------+------------------------+---------+---------+
|Administrative         |Number of employees     |       11|       15|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    42.31|    57.69|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    18.03|    24.19|
|                       |------------------------+---------+---------+
|                       |Percent of total        |     8.94|    12.20|
|-----------------------+------------------------+---------+---------+

-----------
|         |
|   All   |
|Employees|
+---------|
|         |
|         |
|       34|
+---------|
|   100.00|
+---------|
|    27.64|
+---------|
|    27.64|
+---------|
|       35|
+---------|
|   100.00|
+---------|
|    28.46|
+---------|
|    28.46|
+---------|
|       28|
+---------|
|   100.00|
+---------|
|    22.76|
+---------|
|    22.76|
+---------|
|       26|
+---------|
|   100.00|
+---------|
|    21.14|
+---------|
|    21.14|
+---------|

|-----------------------+------------------------+---------+---------+
|All Jobs               |Number of employees     |       61|       62|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    49.59|    50.41|
|                       |------------------------+---------+---------+
|                       |Percent of column total |   100.00|   100.00|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    49.59|    50.41|
----------------------------------------------------------------------

+---------|
|      123|
+---------|
|   100.00|
+---------|
|   100.00|
+---------|
|   100.00|
-----------

Interpreting Denominator Definitions
The following fragment of the TABLE statement defines the denominator definitions for
this report. The PCTN keyword and the denominator definitions are highlighted.

table (occupation=’Job Class’ all=’All Jobs’)
*(n=’Number of employees’*f=5.

pctn<gender all>=’Row percent’
pctn<occupation all>=’Column percent’
pctn=’Percent of total’),

Each use of PCTN nests a row of statistics within each value of Occupation and All.
Each denominator definition tells PROC TABULATE which frequency counts to sum for
the denominators in that row. This section explains how PROC TABULATE interprets
these denominator definitions.

Row Percentages
The part of the TABLE statement that calculates the row percentages and that labels
the row is

pctn<gender all>=’Row percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.



The TABULATE Procedure � A Closer Look 1353

Subtable 1: Occupation and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender within the same value of Occupation.

For example, the denominator for the category female, technical is the sum of all
frequency counts for all categories in this subtable for which the value of Occupation is
technical. There are two such categories: female, technical and male,
technical. The corresponding frequency counts are 16 and 18. Therefore, the
denominator for this category is 16+18, or 34.

Subtable 2: All and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender in the subtable.

For example, the denominator for the category all, female is the sum of the
frequency counts for all, female and all, male. The corresponding frequency counts
are 61 and 62. Therefore, the denominator for cells in this subtable is 61+62, or 123.



1354 A Closer Look � Chapter 43

Subtable 3: Occupation and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

For example, the denominator for the category clerical, all is the frequency
count for that category, 28.

Note: In these table cells, because the numerator and the denominator are the
same, the row percentages in this subtable are all 100. �

Subtable 4: All and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The denominator for this
category is 123.

Note: In this table cell, because the numerator and denominator are the same, the
row percentage in this subtable is 100. �

Column Percentages
The part of the TABLE statement that calculates the column percentages and labels the
row is

pctn<occupation all>=’Column percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.



The TABULATE Procedure � A Closer Look 1355

Subtable 1: Occupation and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation within the same value of Gender.

For example, the denominator for the category manager/supervisor, male is the
sum of all frequency counts for all categories in this subtable for which the value of
Gender is male. There are four such categories: technical, male; manager/
supervisor, male; clerical, male; and administrative, male. The corresponding
frequency counts are 18, 15, 14, and 15. Therefore, the denominator for this category is
18+15+14+15, or 62.

Subtable 2: All and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count for All as the denominator.

For example, the denominator for the category all, female is the frequency count
for that category, 61.

Note: In these table cells, because the numerator and denominator are the same,
the column percentages in this subtable are all 100. �



1356 A Closer Look � Chapter 43

Subtable 3: Occupation and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation in the subtable.

For example, the denominator for the category technical, all is the sum of the
frequency counts for technical, all; manager/supervisor, all; clerical, all;
and administrative, all. The corresponding frequency counts are 34, 35, 28, and 26.
Therefore, the denominator for this category is 34+35+28+26, or 123.

Subtable 4: All and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The frequency count for this
category is 123.

Note: In this calculation, because the numerator and denominator are the same, the
column percentage in this subtable is 100. �

Total Percentages
The part of the TABLE statement that calculates the total percentages and labels the
row is

pctn=’Total percent’

If you do not specify a denominator definition, then PROC TABULATE obtains the
denominator for a cell by totaling all the frequency counts in the subtable. Table 43.9
on page 1357 summarizes the process for all subtables in this example.



The TABULATE Procedure � Program 1357

Table 43.9 Denominators for Total Percentages

Class variables contributing to
the subtable Frequency counts Total

Occupat and Gender 16, 18, 20, 15 14, 14, 11, 15 123

Occupat and All 34, 35, 28, 26 123

Gender and All 61, 62 123

All and All 123 123

Consequently, the denominator for total percentages is always 123.

Example 14: Specifying Style Elements for ODS Output
Procedure features:

STYLE= option in
PROC TABULATE statement
CLASSLEV statement
KEYWORD statement
TABLE statement
VAR statement

Other features:
ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: ENERGY on page 1310
Formats: REGFMT, DIVFMT, and USETYPE. on page 1311

This example creates HTML, RTF, and PDF files and specifies style elements for
various table regions.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1;

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC TABULATE goes to each of these files.

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;



1358 Program � Chapter 43

ods rtf file=’external-RTF-file’;

Specify the table options. The STYLE= option in the PROC TABULATE statement specifies
the style element for the data cells of the table.

proc tabulate data=energy style=[font_weight=bold];

Specify subgroups for the analysis. The STYLE= option in the CLASS statement specifies
the style element for the class variable name headings.

class region division type / style=[just=center];

Specify the style attributes for the class variable value headings. The STYLE= option in
the CLASSLEV statement specifies the style element for the class variable level value headings.

classlev region division type / style=[just=left];

Specify the analysis variable and its style attributes. The STYLE= option in the VAR
statement specifies a style element for the variable name headings.

var expenditures / style=[font_size=3];

Specify the style attributes for keywords, and label the “all” keyword. The STYLE=
option in the KEYWORD statement specifies a style element for keywords. The KEYLABEL
statement assigns a label to the keyword.

keyword all sum / style=[font_width=wide];
keylabel all="Total";

Define the table rows and columns and their style attributes. The STYLE= option in the
dimension expression overrides any other STYLE= specifications in PROC TABULATE that
specify attributes for table cells. The STYLE= option after the slash (/) specifies attributes for
parts of the table other than table cells.

table (region all)*(division all*[style=[background=yellow]]),
(type all)*(expenditures*f=dollar10.) /
style=[bordercolor=blue]

Specify the style attributes for cells with missing values. The STYLE= option in the
MISSTEXT option of the TABLE statement specifies a style element to use for the text in table
cells that contain missing values.

misstext=[label="Missing" style=[font_weight=light]]

Specify the style attributes for the box above the row titles. The STYLE= option in the
BOX option of the TABLE statement specifies a style element to use for text in the box above
the row titles.

box=[label="Region by Division by Type"
style=[font_style=italic]];

Format the class variable values. The FORMAT statement assigns formats to Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.



The TABULATE Procedure � HTML Output 1359

title ’Energy Expenditures’;
title2 ’(millions of dollars)’;

run;

Close the ODS destinations.

ods html close;
ods pdf close;
ods rtf close;

HTML Output



1360 PDF Output � Chapter 43

PDF Output



The TABULATE Procedure � References 1361

RTF Output

References

Jain, Raj and Chlamtac, Imrich (1985), “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms without Storing Observations,” Communications of the
Association of Computing Machinery, 28:10.



1362



1363

C H A P T E R

44
The TEMPLATE Procedure

Information about the TEMPLATE Procedure 1363

Information about the TEMPLATE Procedure
See: For complete documentation of the TEMPLATE procedure, see SAS Output
Delivery System User’s Guide.



1364



1365

C H A P T E R

45
The TIMEPLOT Procedure

Overview: TIMEPLOT Procedure 1365
Syntax: TIMEPLOT Procedure 1367

PROC TIMEPLOT Statement 1368

BY Statement 1369

CLASS Statement 1369

ID Statement 1370
PLOT Statement 1371

Results: TIMEPLOT Procedure 1375

Data Considerations 1375

Procedure Output 1375

Page Layout 1375

Contents of the Listing 1376
Missing Values 1376

Examples: TIMEPLOT Procedure 1376

Example 1: Plotting a Single Variable 1376

Example 2: Customizing an Axis and a Plotting Symbol 1378

Example 3: Using a Variable for a Plotting Symbol 1380
Example 4: Superimposing Two Plots 1382

Example 5: Showing Multiple Observations on One Line of a Plot 1384

Overview: TIMEPLOT Procedure

The TIMEPLOT procedure plots one or more variables over time intervals. A listing
of variable values accompanies the plot. Although the plot and the listing are similar to
those produced by the PLOT and PRINT procedures, PROC TIMEPLOT output has
these distinctive features:

� The vertical axis always represents the sequence of observations in the data set;
thus, if the observations are in order of date or time, the vertical axis represents
the passage of time.

� The horizontal axis represents the values of the variable that you are examining.
Like PROC PLOT, PROC TIMEPLOT can overlay multiple plots on one set of axes
so that each line of the plot can contain values for more than one variable.

� A plot produced by PROC TIMEPLOT may occupy more than one page.

� Each observation appears sequentially on a separate line of the plot; PROC
TIMEPLOT does not hide observations as PROC PLOT sometimes does.

� The listing of the plotted values may include variables that do not appear in the
plot.



1366 Overview: TIMEPLOT Procedure � Chapter 45

Output 45.1 on page 1366 illustrates a simple report that you can produce with
PROC TIMEPLOT. This report shows sales of refrigerators for two sales representatives
during the first six weeks of the year. The statements that produce the output follow. A
DATA step on page 1377 creates the data set SALES.

options linesize=64 pagesize=60 nodate
pageno=1;

proc timeplot data=sales;
plot icebox;
id month week;
title ’Weekly Sales of Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output 45.1 Simple Report Created with PROC TIMEPLOT

Weekly Sales of Refrigerators 1
for the

First Six Weeks of the Year

Month Week Icebox min max
2520.04 3550.43

*-------------------------------*
1 1 3450.94 | I |
1 1 2520.04 |I |
1 2 3240.67 | I |
1 2 2675.42 | I |
1 3 3160.45 | I |
1 3 2805.35 | I |
1 4 3400.24 | I |
1 4 2870.61 | I |
2 1 3550.43 | I|
2 1 2730.09 | I |
2 2 3385.74 | I |
2 2 2670.93 | I |

*-------------------------------*

Output 45.2 on page 1366 is a more complicated report of the same data set that is
used to create Output 45.1 on page 1366. The statements that create this report

� create one plot for the sale of refrigerators and one for the sale of stoves
� plot sales for both sales representatives on the same line
� identify points on the plots by the first letter of the sales representative’s last name
� control the size of the horizontal axis
� control formats and labels.

For an explanation of the program that produces this report, see Example 5 on page
1384.



The TIMEPLOT Procedure � Syntax: TIMEPLOT Procedure 1367

Output 45.2 More Complex Report Created with PROC TIMEPLOT

Weekly Appliance Sales for the First Quarter 1

Seller :Kreitz Seller :LeGrange
Month Week Stove Stove min max

$184.24 $2,910.37
*-------------------------*

January 1 $1,312.61 $728.13 | L K |
January 2 $222.35 $184.24 |! |
January 3 $2,263.33 $267.35 | L K |
January 4 $1,787.45 $274.51 | L K |
February 1 $2,910.37 $397.98 | L K|
February 2 $819.69 $2,242.24 | K L |

*-------------------------*

Weekly Appliance Sales for the First Quarter 2

Kreitz LeGrange
Month Week Icebox Icebox min max

$2,520.04 $3,550.43
*-------------------------*

January 1 $3,450.94 $2,520.04 |L K |
January 2 $3,240.67 $2,675.42 | L K |
January 3 $3,160.45 $2,805.35 | L K |
January 4 $3,400.24 $2,870.61 | L K |
February 1 $3,550.43 $2,730.09 | L K|
February 2 $3,385.74 $2,670.93 | L K |

*-------------------------*

Syntax: TIMEPLOT Procedure
Requirements: At least one PLOT statement
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC TIMEPLOT <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable(s);
ID variable(s);
PLOT plot-request(s)/option(s);



1368 PROC TIMEPLOT Statement � Chapter 45

To do this Use this statement

Produce a separate plot for each BY group BY

Group data according to the values of the class
variables

CLASS

Print in the listing the values of the variables that
you identify

ID

Specify the plots to produce PLOT

PROC TIMEPLOT Statement

PROC TIMEPLOT <option(s)>;

Options

DATA=SAS-data-set
identifies the input data set.

MAXDEC=number
specifies the maximum number of decimal places to print in the listing.

Interaction: A decimal specification in a format overrides a MAXDEC=
specification.

Default: 2

Range: 0-12

Featured in: Example 4 on page 1382

SPLIT=’split-character’
specifies a split character, which controls line breaks in column headings. It also
specifies that labels be used as column headings. PROC TIMEPLOT breaks a column
heading when it reaches the split character and continues the heading on the next
line. Unless the split character is a blank, it is not part of the column heading. Each
occurrence of the split character counts toward the 256-character maximum for a
label.

Alias: S=

Default: blank (’ ’)

Note: Column headings can occupy up to three lines. If the column label can be
split into more lines than this fixed number, then the split character is used only as a
recommendation on how to split the label. �

UNIFORM
uniformly scales the horizontal axis across all BY groups. By default, PROC
TIMEPLOT separately determines the scale of the axis for each BY group.

Interaction: UNIFORM also affects the calculation of means for reference lines (see
REF= on page 1374).



The TIMEPLOT Procedure � CLASS Statement 1369

BY Statement

Produces a separate plot for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. These variables are called
BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

CLASS Statement

Groups data according to the values of the class variables.

Tip: PROC TIMEPLOT uses the formatted values of the CLASS variables to form
classes. Thus, if a format groups the values, the procedure uses those groups.

Featured in: Example 5 on page 1384

CLASS variable(s);



1370 ID Statement � Chapter 45

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are called class variables. Class variables can be numeric or
character. Class variables can have continuous values, but they typically have a few
discrete values that define the classifications of the variable. You do not have to sort
the data by class variables.

The values of the class variables appear in the listing. PROC TIMEPLOT prints
and plots one line each time the combination of values of the class variables changes.
Therefore, the output typically is more meaningful if you sort or group the data
according to values of the class variables.

Using Multiple CLASS Statements
You can use any number of CLASS statements. If you use more than one CLASS

statement, PROC TIMEPLOT simply concatenates all variables from all of the CLASS
statements. The following form of the CLASS statement includes three variables:

CLASS variable-1 variable-2 variable-3;

It has the same effect as this form:

CLASS variable-1;

CLASS variable-2;

CLASS variable-3;

Using a Symbol Variable
Normally, you use the CLASS statement with a symbol variable (see the discussion of

plot requests on page 1372). In this case, the listing of the plot variable contains a
column for each value of the symbol variable, and each row of the plot contains a point
for each value of the symbol variable. The plotting symbol is the first character of the
formatted value of the symbol variable. If more than one observation within a class has
the same value of a symbol variable, PROC TIMEPLOT plots and prints only the first
occurrence of that value and writes a warning message to the SAS log.

ID Statement

Prints in the listing the values of the variables that you identify.

Featured in: Example 1 on page 1376

ID variable(s);

Required Arguments

variable(s)
identifies one or more ID variables to print in the listing.



The TIMEPLOT Procedure � PLOT Statement 1371

PLOT Statement

Specifies the plots to produce.

Tip: Each PLOT statement produces a separate plot.

PLOT plot-request(s)/option(s);

Table 45.1 on page 1371 summarizes the options that are available in the PLOT
statement.

Table 45.1 Summary of Options for the PLOT Statement

To do this Use this option

Customize the axis

Specify the range of values to plot on the horizontal axis, as well as the
interval represented by each print position on the horizontal axis

AXIS=

Order the values on the horizontal axis with the largest value in the
leftmost position

REVERSE

Control the appearance of the plot

Connect the leftmost plotting symbol to the rightmost plotting symbol with a
line of hyphens (-)

HILOC

Connect the leftmost and rightmost symbols on each line of the plot with a
line of hyphens (-) regardless of whether the symbols are reference symbols
or plotting symbols

JOINREF

Suppress the name of the symbol variable in column headings when you use
a CLASS statement

NOSYMNAME

Suppress the listing of the values of the variables that appear in the PLOT
statement

NPP

Specify the number of print positions to use for the horizontal axis POS=

Create and customize a reference line

Draw lines on the plot that are perpendicular to the specified values on the
horizontal axis

REF=

Specify the character for drawing reference lines REFCHAR=

Display multiple plots on the same set of axes

Plot all requests in one PLOT statement on one set of axes OVERLAY

Specify the character to print if multiple plotting symbols coincide OVPCHAR=

Required Arguments

plot-request(s)
specifies the variable or variables to plot and, optionally, the plotting symbol to use.
By default, each plot request produces a separate plot.



1372 PLOT Statement � Chapter 45

A plot request can have the following forms. You can mix different forms of
requests in one PLOT statement (see Example 4 on page 1382).

variable(s)
identifies one or more numeric variables to plot. PROC TIMEPLOT uses the first
character of the variable name as the plotting symbol.
Featured in: Example 1 on page 1376

(variable(s))=’plotting-symbol’
identifies one or more numeric variables to plot and specifies the plotting symbol
to use for all variables in the list. You can omit the parentheses if you use only one
variable.
Featured in: Example 2 on page 1378

(variable(s))=symbol-variable
identifies one or more numeric variables to plot and specifies a symbol variable.
PROC TIMEPLOT uses the first nonblank character of the formatted value of the
symbol variable as the plotting symbol for all variables in the list. The plotting
symbol changes from one observation to the next if the value of the symbol
variable changes. You can omit the parentheses if you use only one variable.
Featured in: Example 3 on page 1380

Options

AXIS=axis-specification
specifies the range of values to plot on the horizontal axis, as well as the interval
represented by each print position on the axis. PROC TIMEPLOT labels the first and
last ends of the axis, if space permits.

� For numeric values, axis-specification can be one of the following or a
combination of both:

n< . . .n>

n TO n <BY increment>

The values must be in either ascending or descending order. Use a negative
value for increment to specify descending order. The specified values are spaced
evenly along the horizontal axis even if the values are not uniformly
distributed. Numeric values can be specified in the following ways:

Specification Comments

axis=1 2 10 Values are 1, 2, and 10.

axis=10 to 100 by 5 Values appear in increments of 5,
starting at 10 and ending at 100.

axis=12 10 to 100 by 5 A combination of the two previous
forms of specification.

� For axis variables that contain datetime values, axis-specification is either an
explicit list of values or a starting and an ending value with an increment
specified:

’date-time-value’i <. . . ’date-time-value’i>



The TIMEPLOT Procedure � PLOT Statement 1373

’date-time-value’i TO ’date-time-value’i
<BY increment>

’date-time-value’i
any SAS date, time, or datetime value described for the SAS functions INTCK
and INTNX. The suffix i is one of the following:

D date

T time

DT datetime

increment
one of the valid arguments for the INTCK or INTNX functions. For dates,
increment can be one of the following:

DAY

WEEK

MONTH

QTR

YEAR
For datetimes, increment can be one of the following:

DTDAY

DTWEEK

DTMONTH

DTQTR

DTYEAR
For times, increment can be one of the following:

HOUR

MINUTE

SECOND
For example,

axis=’01JAN95’d to ’01JAN96’d by month
axis=’01JAN95’d to ’01JAN96’d by qtr

For descriptions of individual intervals, see the chapter on dates, times, and
intervals in SAS Language Reference: Concepts.

Note: You must use a FORMAT statement to print the tick-mark values in
an understandable form. �

Interaction: The value of POS= (see POS= on page 1374) overrides an interval set
with AXIS=.

Tip: If the range that you specify does not include all your data, PROC TIMEPLOT
uses angle brackets (< or >) on the left or right border of the plot to indicate a
value outside the range.

Featured in: Example 2 on page 1378



1374 PLOT Statement � Chapter 45

HILOC
connects the leftmost plotting symbol to the rightmost plotting symbol with a line of
hyphens (-).
Interactions: If you specify JOINREF, PROC TIMEPLOT ignores HILOC.

JOINREF
connects the leftmost and rightmost symbols on each line of the plot with a line of
hyphens (-), regardless of whether the symbols are reference symbols or plotting
symbols. However, if a line contains only reference symbols, PROC TIMEPLOT does
not connect the symbols.

Featured in: Example 3 on page 1380

NOSYMNAME
suppresses the name of the symbol variable in column headings when you use a
CLASS statement. If you use NOSYMNAME, only the value of the symbol variable
appears in the column heading.
Featured in: Example 5 on page 1384

NPP
suppresses the listing of the values of the variables that appear in the PLOT
statement.

Featured in: Example 3 on page 1380

OVERLAY
plots all requests in one PLOT statement on one set of axes. Otherwise, PROC
TIMEPLOT produces a separate plot for each plot request.
Featured in: Example 4 on page 1382

OVPCHAR=’character’
specifies the character to print if multiple plotting symbols coincide. If a plotting
symbol and a character in a reference line coincide, PROC TIMEPLOT prints the
plotting symbol.

Default: at sign (@)
Featured in: Example 5 on page 1384

POS=print-positions-for-plot
specifies the number of print positions to use for the horizontal axis.

Default: If you omit both POS= and AXIS=, PROC TIMEPLOT initially assumes
that POS=20. However, if space permits, this value increases so that the plot fills
the available space.

Interaction: If you specify POS=0 and AXIS=, the plot fills the available space.
POS= overrides an interval set with AXIS= (see the discussion of AXIS= on page
1372).

See also: “Page Layout” on page 1375

Featured in: Example 1 on page 1376

REF=reference-value(s)
draws lines on the plot that are perpendicular to the specified values on the horizontal
axis. The values for reference-value(s) may be constants, or you may use the form

MEAN(variable(s))

If you use this form of REF=, PROC TIMEPLOT evaluates the mean for each
variable that you list and draws a reference line for each mean.

Interaction: If you use the UNIFORM option in the PROC TIMEPLOT statement,
the procedure calculates the mean values for the variables over all observations for



The TIMEPLOT Procedure � Procedure Output 1375

all BY groups. If you do not use UNIFORM, the procedure calculates the mean for
each variable for each BY group.

Interaction: If a plotting symbol and a reference character coincide, PROC
TIMEPLOT prints the plotting symbol.

Featured in: Example 3 on page 1380 and Example 4 on page 1382

REFCHAR=’character’
specifies the character for drawing reference lines.
Default: vertical bar (|)
Interaction: If you are using the JOINREF or HILOC option, do not specify a value

for REFCHAR= that is the same as a plotting symbol because PROC TIMEPLOT
will interpret the plotting symbols as reference characters and will not connect the
symbols as you expect.

Featured in: Example 3 on page 1380

REVERSE
orders the values on the horizontal axis with the largest value in the leftmost
position.
Featured in: Example 4 on page 1382

Results: TIMEPLOT Procedure

Data Considerations
The input data set usually contains a date variable to use as either a class or an ID

variable. Although PROC TIMEPLOT does not require an input data set sorted by
date, the output is usually more meaningful if the observations are in chronological
order. In addition, if you use a CLASS statement, the output is more meaningful if the
input data set groups observations according to combinations of class variable values.
(For more information see “CLASS Statement” on page 1369.)

Procedure Output

Page Layout
For each plot request, PROC TIMEPLOT prints a listing and a plot. PROC

TIMEPLOT determines the arrangement of the page as follows:
� If you use POS=, the procedure

� determines the size of the plot from the POS= value
� determines the space for the listing from the width of the columns of printed

values, equally spaced and with a maximum of five positions between columns
� centers the output on the page.

� If you omit POS=, the procedure
� determines the width of the plot from the value of the AXIS= option
� expands the listing to fill the rest of the page.



1376 Missing Values � Chapter 45

If there is not enough room to print the listing and the plot for a particular plot
request, PROC TIMEPLOT produces no output and writes the following error message
to the SAS log:

ERROR: Too many variables/symbol values
to print.

The error does not affect other plot requests.

Contents of the Listing
The listing in the output contains different information depending on whether or not

you use a CLASS statement. If you do not use a CLASS statement (see Example 1 on
page 1376), PROC TIMEPLOT prints (and plots) each observation on a separate line. If
you do use a CLASS statement, the form of the output varies depending on whether or
not you specify a symbol variable (see “Using a Symbol Variable” on page 1370).

Missing Values
Four types of variables can appear in the listing from PROC TIMEPLOT: plot

variables, ID variables, class variables, and symbol variables (as part of some column
headers). Plot variables and symbol variables can also appear in the plot.

Observations with missing values of a class variable form a class of observations.
In the listing, missing values appear as a period (.), a blank, or a special missing

value (the letters A through Z and the underscore (_) character).
In the plot, PROC TIMEPLOT handles different variables in different ways:
� An observation or class of observations with a missing value of the plot variable

does not appear in the plot.
� If you use a symbol variable (see the discussion of plot requests on page 1372),

PROC TIMEPLOT uses a period (.) as the symbol variable on the plot for all
observations with a missing value of the symbol variable.

Examples: TIMEPLOT Procedure

Example 1: Plotting a Single Variable
Procedure features:

ID statement
PLOT statement arguments:

simple plot request
POS=

This example
� uses a single PLOT statement to plot sales of refrigerators
� specifies the number of print positions to use for the horizontal axis of the plot
� provides context for the points in the plot by printing in the listing the values of

two variables that are not in the plot.



The TIMEPLOT Procedure � Output 1377

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set SALES contains weekly information on the sales of refrigerators and stoves by two
sales representatives.

data sales;
input Month Week Seller $ Icebox Stove;
datalines;

1 1 Kreitz 3450.94 1312.61
1 1 LeGrange 2520.04 728.13
1 2 Kreitz 3240.67 222.35
1 2 LeGrange 2675.42 184.24
1 3 Kreitz 3160.45 2263.33
1 3 LeGrange 2805.35 267.35
1 4 Kreitz 3400.24 1787.45
1 4 LeGrange 2870.61 274.51
2 1 Kreitz 3550.43 2910.37
2 1 LeGrange 2730.09 397.98
2 2 Kreitz 3385.74 819.69
2 2 LeGrange 2670.93 2242.24
;

The plot variable, Icebox, appears in both the listing and the output. POS= provides 50 print
positions for the horizontal axis.

proc timeplot data=sales;
plot icebox / pos=50;

The values of the ID variables, Month and Week, appear in the listing.

id month week;

The TITLE statements specify titles for the report.

title ’Weekly Sales of Iceboxes’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output



1378 Example 2: Customizing an Axis and a Plotting Symbol � Chapter 45

The column headers in the listing are the variables’ names. The plot uses the default plotting
symbol, which is the first character of the plot variable’s name.

Weekly Sales of Iceboxes 1
for the

First Six Weeks of the Year

Month Week Icebox min max
2520.04 3550.43

*--------------------------------------------------*
1 1 3450.94 | I |
1 1 2520.04 |I |
1 2 3240.67 | I |
1 2 2675.42 | I |
1 3 3160.45 | I |
1 3 2805.35 | I |
1 4 3400.24 | I |
1 4 2870.61 | I |
2 1 3550.43 | I|
2 1 2730.09 | I |
2 2 3385.74 | I |
2 2 2670.93 | I |

*--------------------------------------------------*

Example 2: Customizing an Axis and a Plotting Symbol
Procedure features:

ID statement
PLOT statement arguments:

using a plotting symbol
AXIS=

Other features:
LABEL statement
PROC FORMAT
SAS system options:

FMTSEARCH=
Data set: SALES on page 1377

This example
� specifies the character to use as the plotting symbol
� specifies the minimum and maximum values for the horizontal axis as well as the

interval represented by each print position
� provides context for the points in the plot by printing in the listing the values of

two variables that are not in the plot
� uses a variable’s label as a column header in the listing
� creates and uses a permanent format.

Program



The TIMEPLOT Procedure � Output 1379

libname proclib ’SAS-data-library’;

The SAS system option FMTSEARCH= adds the SAS data library PROCLIB to the search path
that is used to locate formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

PROC FORMAT creates a permanent format for Month. The LIBRARY= option specifies a
permanent storage location so that the formats are available in subsequent SAS sessions. This
format is used for examples throughout this chapter.

proc format library=proclib;
value monthfmt 1=’January’

2=’February’;
run;

The plot variable, Icebox, appears in both the listing and the output. The plotting symbol is ’R’.
AXIS= sets the minimum value of the axis to 2500 and the maximum value to 3600. BY 25
specifies that each print position on the axis represents 25 units (in this case, dollars).

proc timeplot data=sales;
plot icebox=’R’ / axis=2500 to 3600 by 25;

The values of the ID variables, Month and Week, appear in the listing.

id month week;

The LABEL statement associates a label with the variable Icebox for the duration of the PROC
TIMEPLOT step. PROC TIMEPLOT uses the label as the column header in the listing.

label icebox=’Refrigerator’;

The FORMAT statement assigns a format to use for Month in the report. The TITLE statements
specify titles.

format month monthfmt.;
title ’Weekly Sales of Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output



1380 Example 3: Using a Variable for a Plotting Symbol � Chapter 45

The column headers in the listing are the variables’ names (for Month and Week, which have no
labels) and the variable’s label (for Icebox, which has a label). The plotting symbol is R (for
Refrigerator).

Weekly Sales of Refrigerators 1
for the

First Six Weeks of the Year

Month Week Refrigerator min max
2500 3600

*---------------------------------------------*
January 1 3450.94 | R |
January 1 2520.04 | R |
January 2 3240.67 | R |
January 2 2675.42 | R |
January 3 3160.45 | R |
January 3 2805.35 | R |
January 4 3400.24 | R |
January 4 2870.61 | R |
February 1 3550.43 | R |
February 1 2730.09 | R |
February 2 3385.74 | R |
February 2 2670.93 | R |

*---------------------------------------------*

Example 3: Using a Variable for a Plotting Symbol

Procedure features:
ID statement
PLOT statement arguments:

using a variable as the plotting symbol
JOINREF
NPP
REF=
REFCHAR=

Data set: SALES on page 1377
Formats: MONTHFMT. on page 1379

This example
� specifies a variable to use as the plotting symbol to distinguish between points for

each of two sales representatives
� suppresses the printing of the values of the plot variable in the listing
� draws a reference line to a specified value on the axis and specifies the character

to use to draw the line
� connects the leftmost and rightmost symbols on each line of the plot.

Program



The TIMEPLOT Procedure � Program 1381

libname proclib ’SAS-data-library’;

The SAS system option FMTSEARCH= adds the SAS data library PROCLIB to the search path
that is used to locate formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

The PLOT statement specifies both the plotting variable, Stove, and a symbol variable, Seller.
The plotting symbol is the first letter of the formatted value of the Seller (in this case, L or K).

proc timeplot data=sales;
plot stove=seller /

NPP suppresses the appearance of the plotting variable, Stove, in the listing.

npp

REF= and REFCHAR= draw a line of colons at the sales target of $1500.

ref=1500 refchar=’:’

JOINREF connects the leftmost and rightmost symbols on each line of the plot.

joinref

AXIS= sets the minimum value of the horizontal axis to 100 and the maximum value to 3000.
BY 50 specifies that each print position on the axis represents 50 units (in this case, dollars).

axis=100 to 3000 by 50;

The ID statement writes the values of the ID variables, Month and Week, in the listing.

id month week;

The FORMAT statement assigns a format to use for Month in the report. The TITLE statements
specify titles.

format month monthfmt.;
title ’Weekly Sales of Stoves’;
title2 ’Compared to Target Sales of $1500’;
title3 ’K for Kreitz; L for LaGrange’;

run;



1382 Output � Chapter 45

Output

The plot uses the first letter of the value of Seller as the plotting symbol.

Weekly Sales of Stoves 1
Compared to Target Sales of $1500

K for Kreitz; L for LaGrange

Month Week min max
100 3000

*-----------------------------------------------------------*
January 1 | K---: |
January 1 | L--------------: |
January 2 | K-------------------------: |
January 2 | L-------------------------: |
January 3 | :--------------K |
January 3 | L------------------------: |
January 4 | :-----K |
January 4 | L------------------------: |
February 1 | :---------------------------K |
February 1 | L---------------------: |
February 2 | K-------------: |
February 2 | :--------------L |

*-----------------------------------------------------------*

Example 4: Superimposing Two Plots
Procedure features:

PROC TIMEPLOT statement options:
MAXDEC=

PLOT statement arguments:
using two types of plot requests
OVERLAY
REF=MEAN(variable(s))
REVERSE

Data set: SALES on page 1377

This example
� superimposes two plots on one set of axes
� specifies a variable to use as the plotting symbol for one plot and a character to

use as the plotting symbol for the other plot
� draws a reference line to the mean value of each of the two variables plotted
� reverses the labeling of the axis so that the largest value is at the far left of the

plot.

Program



The TIMEPLOT Procedure � Output 1383

options nodate pageno=1 linesize=80 pagesize=60;

MAXDEC= specifies the number of decimal places to display in the listing.

proc timeplot data=sales maxdec=0;

The PLOT statement requests two plots. One plot uses the first letter of the formatted value of
Seller to plot the values of Stove. The other uses the letter R (to match the label Refrigerators)
to plot the value of Icebox.

plot stove=seller icebox=’R’ /

OVERLAY places the two plots on the same set of axes.

overlay

REF= draws two reference lines: one perpendicular to the mean of Stove, the other
perpendicular to the mean of Icebox.

ref=mean(stove icebox)

REVERSE orders the values on the horizontal axis from largest to smallest.

reverse;

The LABEL statement associates a label with the variable Icebox for the duration of the PROC
TIMEPLOT step. PROC TIMEPLOT uses the label as the column header in the listing. The
TITLE statements specify titles.

label icebox=’Refrigerators’;
title ’Weekly Sales of Stoves and Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output



1384 Example 5: Showing Multiple Observations on One Line of a Plot � Chapter 45

The column header for the variable Icebox in the listing is the variable’s label (Refrigerators).
One plot uses the first letter of the value of Seller as the plotting symbol. The other plot uses
the letter R.

Weekly Sales of Stoves and Refrigerators 1
for the

First Six Weeks of the Year

Stove Refrigerators max min
3550.43 184.24

*--------------------------------------------------*
1313 3451 |R | K | |

728 2520 | | R | L |
222 3241 | R | | K |
184 2675 | | R | L|

2263 3160 | R | K | |
267 2805 | | R | L |

1787 3400 | R | K | |
275 2871 | | R | L |

2910 3550 |R | K | |
398 2730 | | R | L |
820 3386 | R | | K |

2242 2671 | | R L | |
*--------------------------------------------------*

Example 5: Showing Multiple Observations on One Line of a Plot
Procedure features:

CLASS statement
PLOT statement arguments:

creating multiple plots
NOSYMNAME
OVPCHAR=

Data set: SALES on page 1377
Formats: MONTHFMT. on page 1379

This example
� groups observations for the same month and week so that sales for the two sales

representatives for the same week appear on the same line of the plot
� specifies a variable to use as the plotting symbol
� suppresses the name of the plotting variable from one plot
� specifies a size for the plots so that they both occupy the same amount of space.

Program

The SAS system option FMTSEARCH= adds the SAS data library PROCLIB to the search path
that is used to locate formats.



The TIMEPLOT Procedure � Output 1385

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

The CLASS statement groups all observations with the same values of Month and Week into
one line in the output. Using the CLASS statement with a symbol variable produces in the
listing one column of the plot variable for each value of the symbol variable.

proc timeplot data=sales;
class month week;

Each PLOT statement produces a separate plot. The plotting symbol is the first character of the
formatted value of the symbol variable: K for Kreitz; L for LaGrange. POS= specifies that each
plot uses 25 print positions for the horizontal axis. OVPCHAR= designates the exclamation
point as the plotting symbol when the plotting symbols coincide. NOSYMNAME suppresses the
name of the symbol variable Seller from the second listing.

plot stove=seller / pos=25 ovpchar=’!’;
plot icebox=seller / pos=25 ovpchar=’!’ nosymname;

The FORMAT statement assigns formats to use for Stove, Icebox, and Month in the report. The
TITLE statement specifies a title.

format stove icebox dollar10.2 month monthfmt.;
title ’Weekly Appliance Sales for the First Quarter’;

run;

Output

Weekly Appliance Sales for the First Quarter 1

Seller :Kreitz Seller :LeGrange
Month Week Stove Stove min max

$184.24 $2,910.37
*-------------------------*

January 1 $1,312.61 $728.13 | L K |
January 2 $222.35 $184.24 |! |
January 3 $2,263.33 $267.35 | L K |
January 4 $1,787.45 $274.51 | L K |
February 1 $2,910.37 $397.98 | L K|
February 2 $819.69 $2,242.24 | K L |

*-------------------------*



1386 Output � Chapter 45

Weekly Appliance Sales for the First Quarter 2

Kreitz LeGrange
Month Week Icebox Icebox min max

$2,520.04 $3,550.43
*-------------------------*

January 1 $3,450.94 $2,520.04 |L K |
January 2 $3,240.67 $2,675.42 | L K |
January 3 $3,160.45 $2,805.35 | L K |
January 4 $3,400.24 $2,870.61 | L K |
February 1 $3,550.43 $2,730.09 | L K|
February 2 $3,385.74 $2,670.93 | L K |

*-------------------------*



1387

C H A P T E R

46
The TRANSPOSE Procedure

Overview: TRANSPOSE Procedure 1387
Syntax: TRANSPOSE Procedure 1389

PROC TRANSPOSE Statement 1390

BY Statement 1391

COPY Statement 1393

ID Statement 1393
IDLABEL Statement 1394

VAR Statement 1395

Results: TRANSPOSE Procedure 1395

Output Data Set 1395

Attributes of Transposed Variables 1396

Names of Transposed Variables 1396
Examples: TRANSPOSE Procedure 1396

Example 1: Performing a Simple Transposition 1396

Example 2: Naming Transposed Variables 1398

Example 3: Labeling Transposed Variables 1399

Example 4: Transposing BY Groups 1400
Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values 1402

Example 6: Transposing Data for Statistical Analysis 1404

Overview: TRANSPOSE Procedure
The TRANSPOSE procedure creates an output data set by restructuring the values

in a SAS data set, transposing selected variables into observations. The TRANSPOSE
procedure can often eliminate the need to write a lengthy DATA step to achieve the
same result. Further, the output data set can be used in subsequent DATA or PROC
steps for analysis, reporting, or further data manipulation.

PROC TRANSPOSE does not produce printed output. To print the output data set
from the PROC TRANSPOSE step, use PROC PRINT, PROC REPORT, or another SAS
reporting tool.

A transposed variable is a variable that the procedure creates by transposing the
values of an observation in the input data set into values of a variable in the output
data set.

The following example illustrates a simple transposition. In the input data set, each
variable represents the scores from one tester. In the output data set, each observation
now represents the scores from one tester. Each value of _NAME_ is the name of a
variable in the input data set that the procedure transposed. Thus, the value of
_NAME_ identifies the source of each observation in the output data set. For example,
the values in the first observation in the output data set come from the values of the
variable Tester1 in the input data set. The statements that produce the output follow.



1388 Overview: TRANSPOSE Procedure � Chapter 46

proc print data=proclib.product noobs;
title ’The Input Data Set’;

run;

proc transpose data=proclib.product
out=proclib.product_transposed;

run;

proc print data=proclib.product_transposed noobs;
title ’The Output Data Set’;

run;

Output 46.1 A Simple Transposition

The Input Data Set 1

Tester1 Tester2 Tester3 Tester4

22 25 21 21
15 19 18 17
17 19 19 19
20 19 16 19
14 15 13 13
15 17 18 19
10 11 9 10
22 24 23 21

The Output Data Set 2

_NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

Tester1 22 15 17 20 14 15 10 22
Tester2 25 19 19 19 15 17 11 24
Tester3 21 18 19 16 13 18 9 23
Tester4 21 17 19 19 13 19 10 21

The next example, which uses BY groups, is more complex. The input data set
represents measurements of the weight and length of fish at two lakes. The statements
that create the output data set do the following:

� transpose only the variables that contain the length measurements
� create six BY groups, one for each lake and date
� use a data set option to name the transposed variable.



The TRANSPOSE Procedure � Syntax: TRANSPOSE Procedure 1389

Output 46.2 A Transposition with BY Groups

Input Data Set 1

L
o L W L W L W L W
c e e e e e e e e
a n i n i n i n i
t D g g g g g g g g
i a t h t h t h t h
o t h t h t h t h t
n e 1 1 2 2 3 3 4 4

Cole Pond 02JUN95 31 0.25 32 0.30 32 0.25 33 0.30
Cole Pond 03JUL95 33 0.32 34 0.41 37 0.48 32 0.28
Cole Pond 04AUG95 29 0.23 30 0.25 34 0.47 32 0.30
Eagle Lake 02JUN95 32 0.35 32 0.25 33 0.30 . .
Eagle Lake 03JUL95 30 0.20 36 0.45 . . . .
Eagle Lake 04AUG95 33 0.30 33 0.28 34 0.42 . .

Fish Length Data for Each Location and Date 2

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .

For a complete explanation of the SAS program that produces these results, see
Example 4 on page 1400.

Syntax: TRANSPOSE Procedure
Tip: Does not support the Output Delivery System
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.



1390 PROC TRANSPOSE Statement � Chapter 46

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

COPY variable(s);
ID variable;

IDLABEL variable;
VAR variable(s);

To do this Use this statement

Transpose each BY group BY

Copy variables directly without transposing them COPY

Specify a variable whose values name the transposed
variables

ID

Create labels for the transposed variables IDLABEL

List the variables to transpose VAR

PROC TRANSPOSE Statement
Reminder: You can use data set options with the DATA= and OUT= options. See “Data
Set Options” on page 17 for a list.

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

Options

DATA= input-data-set
names the SAS data set to transpose.
Default: most recently created SAS data set

LABEL= label
specifies a name for the variable in the output data set that contains the label of the
variable that is being transposed to create the current observation.
Default: _LABEL_

LET
allows duplicate values of an ID variable. PROC TRANSPOSE transposes the
observation containing the last occurrence of a particular ID value within the data
set or BY group.
Featured in: Example 5 on page 1402

NAME= name



The TRANSPOSE Procedure � BY Statement 1391

specifies the name for the variable in the output data set that contains the name of
the variable that is being transposed to create the current observation.
Default: _NAME_
Featured in: Example 2 on page 1398

OUT= output-data-set
names the output data set. If output-data-set does not exist, PROC TRANSPOSE
creates it by using the DATAn naming convention.
Default: DATAn
Featured in: Example 1 on page 1396

PREFIX= prefix
specifies a prefix to use in constructing names for transposed variables in the output
data set. For example, if PREFIX=VAR, the names of the variables are VAR1, VAR2,
...,VARn.
Interaction: when you use PREFIX= with an ID statement, the value prefixes to

the ID value.
Featured in: Example 2 on page 1398

BY Statement

Defines BY groups.

Main discussion: “BY” on page 54
Featured in: Example 4 on page 1400
Restriction: You cannot use PROC TRANSPOSE with a BY statement or an ID
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

Required Arguments

variable
specifies the variable that PROC TRANSPOSE uses to form BY groups. You can
specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, either the observations must be sorted by all the variables that you
specify, or they must be indexed appropriately. Variables in a BY statement are
called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, such as chronological order.



1392 BY Statement � Chapter 46

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Transpositions with BY Groups
PROC TRANSPOSE does not transpose BY groups. Instead, for each BY group,

PROC TRANSPOSE creates one observation for each variable that it transposes.
Figure 46.1 on page 1392 shows what happens when you transpose a data set with

BY groups. TYPE is the BY variable, and SOLD, NOTSOLD, REPAIRED, and
JUNKED are the variables to transpose.

Figure 46.1 Transposition with BY Groups

TYPE MONTH SOLD NOTSOLD REPAIRED JUNKED

sedan
sedan
sports
sports
trucks
trucks

jan
feb
jan
feb
jan
feb

SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED

26
28
16
19
29
35

6
9
6
7
1
3

41
48
15
20
20
22

4
2
0
1
3
4

26
6

41
4

16
6

15
0

29
1

20
3

28
9

48
2

19
7

20
1

35
3

22
4

sedan
sedan
sedan
sedan
sports
sports
sports
sports
trucks
trucks
trucks
trucks

TYPE _NAME_ COL1 COL2

input
data set

output
data set

� The number of observations in the output data set (12) is the number of BY groups
(3) multiplied by the number of variables that are transposed (4).

� The BY variable is not transposed.

� _NAME_ contains the name of the variable in the input data set that was
transposed to create the current observation in the output data set. You can use
the NAME= option to specify another name for the _NAME_ variable.

� The maximum number of observations in any BY group in the input data set is
two; therefore, the output data set contains two variables, COL1 and COL2. COL1
and COL2 contain the values of SOLD, NOTSOLD, REPAIRED, and JUNKED.

Note: If a BY group in the input data set has more observations than other BY
groups, PROC TRANSPOSE assigns missing values in the output data set to the
variables that have no corresponding input observations. �



The TRANSPOSE Procedure � ID Statement 1393

COPY Statement

Copies variables directly from the input data set to the output data set without transposing them.

Featured in: Example 6 on page 1404

COPY variable(s);

Required Argument

variable(s)
names one or more variables that the COPY statement copies directly from the input
data set to the output data set without transposing them.

Details
Because the COPY statement copies variables directly to the output data set, the

number of observations in the output data set is equal to the number of observations in
the input data set.

The procedure pads the output data set with missing values if the number of
observations in the input data set is not equal to the number of variables that it
transposes.

ID Statement

Specifies a variable in the input data set whose formatted values name the transposed variables
in the output data set.

Featured in: Example 2 on page 1398
Restriction: You cannot use PROC TRANSPOSE with an ID statement or a BY
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

ID variable;

Required Argument

variable
names the variable whose formatted values name the transposed variables.

Duplicate ID Values
Typically, each formatted ID value occurs only once in the input data set or, if you

use a BY statement, only once within a BY group. Duplicate values cause PROC
TRANSPOSE to issue a warning message and stop. However, if you use the LET option



1394 IDLABEL Statement � Chapter 46

in the PROC TRANSPOSE statement, the procedure issues a warning message about
duplicate ID values and transposes the observation that contains the last occurrence of
the duplicate ID value.

Making Variable Names out of Numeric Values
When you use a numeric variable as an ID variable, PROC TRANSPOSE changes

the formatted ID value into a valid SAS name.
However, SAS variable names cannot begin with a number. Thus, when the first

character of the formatted value is numeric, the procedure prefixes an underscore to the
value, truncating the last character of a 32-character value. Any remaining invalid
characters are replaced by underscores. The procedure truncates to 32 characters any
ID value that is longer than 32 characters when it uses that value to name a
transposed variable.

If the formatted value looks like a numeric constant, PROC TRANSPOSE changes
the characters ‘+’, ‘−’, and ‘.’ to ‘P’, ‘N’, and ‘D’, respectively. If the formatted value has
characters that are not numerics, PROC TRANSPOSE changes the characters ‘+’, ‘−’,
and ‘.’ to underscores.

Note: If the value of the VALIDVARNAME system option is V6, PROC
TRANSPOSE truncates transposed variable names to eight characters. �

Missing Values
If you use an ID variable that contains a missing value, PROC TRANSPOSE writes

an error message to the log. The procedure does not transpose observations that have a
missing value for the ID variable.

IDLABEL Statement

Creates labels for the transposed variables.

Restriction: Must appear after an ID statement.

Featured in: Example 3 on page 1399

IDLABEL variable;

Required Argument

variable
names the variable whose values the procedure uses to label the variables that the
ID statement names. variable can be character or numeric.

Note: To see the effect of the IDLABEL statement, print the output data set with
the PRINT procedure by using the LABEL option, or print the contents of the output
data set by using the CONTENTS statement in the DATASETS procedure. �



The TRANSPOSE Procedure � Output Data Set 1395

VAR Statement

Lists the variables to transpose.

Featured in: Example 4 on page 1400 and Example 6 on page 1404

VAR variable(s);

Required Argument

variable(s)
names one or more variables to transpose.

Details

� If you omit the VAR statement, the TRANSPOSE procedure transposes all
numeric variables in the input data set that are not listed in another statement.

� You must list character variables in a VAR statement if you want to transpose
them.

Results: TRANSPOSE Procedure

Output Data Set
The TRANSPOSE procedure always produces an output data set, regardless of

whether you specify the OUT= option in the PROC TRANSPOSE statement. PROC
TRANSPOSE does not print the output data set. Use PROC PRINT, PROC REPORT, or
some other SAS reporting tool to print the output data set.

The output data set contains the following variables:
� variables that result from transposing the values of each variable into an

observation.
� a variable that PROC TRANSPOSE creates to identify the source of the values in

each observation in the output data set. This variable is a character variable
whose values are the names of the variables that are transposed from the input
data set. By default, PROC TRANSPOSE names this variable _NAME_. To
override the default name, use the NAME= option. The label for the _NAME_
variable is NAME OF FORMER VARIABLE.

� variables that PROC TRANSPOSE copies from the input data set when you use
either the BY or COPY statement. These variables have the same names and
values as they do in the input data set.

� a character variable whose values are the variable labels of the variables that are
being transposed (if any of the variables that the procedure is transposing have
labels). Specify the name of the variable by using the LABEL= option. The default
is _LABEL_.



1396 Examples: TRANSPOSE Procedure � Chapter 46

Note: If the value of the LABEL= option or the NAME= option is the same as a
variable that appears in a BY or COPY statement, the output data set does not
contain a variable whose values are the names or labels of the transposed
variables. �

Attributes of Transposed Variables

� All transposed variables are the same type and length.
� If all variables that the procedure is transposing are numeric, the transposed

variables are numeric. Thus, if the numeric variable has a character string as a
formatted value, its unformatted numeric value is transposed.

� If any variable that the procedure is transposing is character, all transposed
variables are character. Thus, if you are transposing a numeric variable that has a
character string as a formatted value, the formatted value is transposed.

� The length of the transposed variables is equal to the length of the longest
variable that is being transposed.

Names of Transposed Variables
PROC TRANSPOSE names transposed variables by using the following rules:
1 An ID statement specifies a variable in the input data set whose formatted values

become names for the transposed variables.
2 The PREFIX= option specifies a prefix to use in constructing the names of

transposed variables.
3 If you do not use an ID statement or the PREFIX= option, then PROC

TRANSPOSE looks for an input variable called _NAME_ from which to get the
names of the transposed variables.

4 If you do not use an ID statement or the PREFIX= option, and if the input data
set does not contain a variable named _NAME_, then PROC TRANSPOSE assigns
the names COL1, COL2, …, COLn to the transposed variables.

Examples: TRANSPOSE Procedure

Example 1: Performing a Simple Transposition
Procedure features:

PROC TRANSPOSE statement option:
OUT=

This example performs a default transposition and uses no subordinate statements.

Program



The TRANSPOSE Procedure � Output 1397

options nodate pageno=1 linesize=80 pagesize=40;

The data set SCORE contains students’ names, their identification numbers, and their grades
on two tests and a final exam.

data score;
input Student $9. +1 StudentID $ Section $ Test1 Test2 Final;
datalines;

Capalleti 0545 1 94 91 87
Dubose 1252 2 51 65 91
Engles 1167 1 95 97 97
Grant 1230 2 63 75 80
Krupski 2527 2 80 76 71
Lundsford 4860 1 92 40 86
Mcbane 0674 1 75 78 72
;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final, because no
VAR statement appears and none of the numeric variables appear in another statement. OUT=
puts the result of the transposition in the data set SCORE_TRANSPOSED.

proc transpose data=score out=score_transposed;
run;

PROC PRINT prints the output data set.

proc print data=score_transposed noobs;
title ’Student Test Scores in Variables’;

run;

Output

In the output data set SCORE_TRANSPOSED, the variables COL1 through COL7 contain the
individual scores for the students. Each observation contains all the scores for one test. The
variable _NAME_ contains the names of the variables from the input data set that were
transposed.

Student Test Scores in Variables 1

_NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72



1398 Example 2: Naming Transposed Variables � Chapter 46

Example 2: Naming Transposed Variables
Procedure features:

PROC TRANSPOSE statement options:
NAME=
PREFIX=

ID statement
Data set: SCORE on page 1397

This example uses the values of a variable and a user-supplied value to name
transposed variables.

Program

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final, because no
VAR statement appears. OUT= puts the result of the transposition in the IDNUMBER data set.
NAME= specifies Test as the name for the variable that contains the names of the variables in
the input data set that the procedure transposes. The procedure names the transposed variables
by using the value from PREFIX=, sn, and the value of the ID variable StudentID.

proc transpose data=score out=idnumber name=Test
prefix=sn;

id studentid;
run;

PROC PRINT prints the data set.

proc print data=idnumber noobs;
title ’Student Test Scores’;

run;

Output

This is the output data set, IDNUMBER.

Student Test Scores 1

Test sn0545 sn1252 sn1167 sn1230 sn2527 sn4860 sn0674

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72



The TRANSPOSE Procedure � Output 1399

Example 3: Labeling Transposed Variables

Procedure features:
PROC TRANSPOSE statement option:

PREFIX=

IDLABEL statement

Data set: SCORE on page 1397

This example uses the values of the variable in the IDLABEL statement to label
transposed variables.

Program

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final, because no
VAR statement appears. OUT= puts the result of the transposition in the IDLABEL data set.
NAME= specifies Test as the name for the variable that contains the names of the variables in
the input data set that the procedure transposes. The procedure names the transposed variables
by using the value from PREFIX=, sn, and the value of the ID variable StudentID.

proc transpose data=score out=idlabel name=Test
prefix=sn;

id studentid;

PROC TRANSPOSE uses the values of the variable Student to label the transposed variables.
The procedure provides the following as the label for the _NAME_ variable:

NAME OF FORMER VARIABLE

idlabel student;
run;

PROC PRINT prints the output data set and uses the variable labels as column headers. The
LABEL option causes PROC PRINT to print variable labels for column headers.

proc print data=idlabel label noobs;
title ’Student Test Scores’;

run;

Output



1400 Example 4: Transposing BY Groups � Chapter 46

This is the output data set, IDLABEL.

Student Test Scores 1

NAME OF
FORMER

VARIABLE Capalleti Dubose Engles Grant Krupski Lundsford Mcbane

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

Example 4: Transposing BY Groups
Procedure features:

BY statement
VAR statement

Other features: Data set option:
RENAME=

This example illustrates transposing BY groups and selecting variables to transpose.

Program

options nodate pageno=1 linesize=80 pagesize=40;

The input data represent length and weight measurements of fish that were caught at two
ponds on three separate days. The data are sorted by Location and Date.

data fishdata;
infile datalines missover;
input Location & $10. Date date7.

Length1 Weight1 Length2 Weight2 Length3 Weight3
Length4 Weight4;

format date date7.;
datalines;

Cole Pond 2JUN95 31 .25 32 .3 32 .25 33 .3
Cole Pond 3JUL95 33 .32 34 .41 37 .48 32 .28
Cole Pond 4AUG95 29 .23 30 .25 34 .47 32 .3
Eagle Lake 2JUN95 32 .35 32 .25 33 .30
Eagle Lake 3JUL95 30 .20 36 .45
Eagle Lake 4AUG95 33 .30 33 .28 34 .42
;

OUT= puts the result of the transposition in the FISHLENGTH data set. RENAME= renames
COL1 in the output data set to Measurement.



The TRANSPOSE Procedure � Output 1401

proc transpose data=fishdata
out=fishlength(rename=(col1=Measurement));

PROC TRANSPOSE transposes only the Length1-Length4 variables because they appear in the
VAR statement.

var length1-length4;

The BY statement creates BY groups for each unique combination of values of Location and
Date. The procedure does not transpose the BY variables.

by location date;
run;

PROC PRINT prints the output data set.

proc print data=fishlength noobs;
title ’Fish Length Data for Each Location and Date’;

run;

Output



1402 Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values � Chapter 46

This is the output data set, FISHLENGTH. For each BY group in the original data set, PROC
TRANSPOSE creates four observations, one for each variable that it is transposing. Missing
values appear for the variable Measurement (renamed from COL1) when the variables that are
being transposed have no value in the input data set for that BY group. Several observations
have a missing value for Measurement. For example, in the last observation, a missing value
appears because the input data contained no value for Length4 on 04AUG95 at Eagle Lake.

Fish Length Data for Each Location and Date 1

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .

Example 5: Naming Transposed Variables When the ID Variable Has
Duplicate Values

Procedure features:
PROC TRANSPOSE statement option:

LET

This example shows how to use values of a variable (ID) to name transposed
variables even when the ID variable has duplicate values.

Program

options nodate pageno=1 linesize=64 pagesize=40;



The TRANSPOSE Procedure � Output 1403

STOCKS contains stock prices for two competing kite manufacturers. The prices are recorded
three times a day – at opening, at noon, and at closing – on two days. Notice that the input data
set contains duplicate values for the Date variable.

data stocks;
input Company $14. Date $ Time $ Price;
datalines;

Horizon Kites jun11 opening 29
Horizon Kites jun11 noon 27
Horizon Kites jun11 closing 27
Horizon Kites jun12 opening 27
Horizon Kites jun12 noon 28
Horizon Kites jun12 closing 30
SkyHi Kites jun11 opening 43
SkyHi Kites jun11 noon 43
SkyHi Kites jun11 closing 44
SkyHi Kites jun12 opening 44
SkyHi Kites jun12 noon 45
SkyHi Kites jun12 closing 45
;

LET transposes only the last observation for each BY group. PROC TRANSPOSE transposes
only the Price variable. OUT= puts the result of the transposition in the CLOSE data set.

proc transpose data=stocks out=close let;

The BY statement creates two BY groups, one for each company.

by company;

The values of Date are used as names for the transposed variables.

id date;
run;

PROC PRINT prints the output data set.

proc print data=close noobs;
title ’Closing Prices for Horizon Kites and SkyHi Kites’;

run;

Output



1404 Example 6: Transposing Data for Statistical Analysis � Chapter 46

This is the output data set, CLOSE.

Closing Prices for Horizon Kites and SkyHi Kites 1

Company _NAME_ jun11 jun12

Horizon Kites Price 27 30
SkyHi Kites Price 44 45

Example 6: Transposing Data for Statistical Analysis

Procedure features:
COPY statement
VAR statement

This example arranges data to make them suitable for either a multivariate or a
univariate repeated-measures analysis.

The data are from Chapter 8, “Repeated-Measures Analysis of Variance,” in SAS
System for Linear Models, Third Edition.

Program 1

options nodate pageno=1 linesize=80 pagesize=40;

The data represent the results of an exercise therapy study of three weight-lifting programs:
CONT is control, RI is a program in which the number of repetitions is increased, and WI is a
program in which the weight is increased.

data weights;
input Program $ s1-s7;
datalines;

CONT 85 85 86 85 87 86 87
CONT 80 79 79 78 78 79 78
CONT 78 77 77 77 76 76 77
CONT 84 84 85 84 83 84 85
CONT 80 81 80 80 79 79 80
RI 79 79 79 80 80 78 80
RI 83 83 85 85 86 87 87
RI 81 83 82 82 83 83 82
RI 81 81 81 82 82 83 81
RI 80 81 82 82 82 84 86
WI 84 85 84 83 83 83 84
WI 74 75 75 76 75 76 76
WI 83 84 82 81 83 83 82



The TRANSPOSE Procedure � Program 2 1405

WI 86 87 87 87 87 87 86
WI 82 83 84 85 84 85 86
;

The DATA step rearranges WEIGHTS to create the data set SPLIT. The DATA step transposes
the strength values and creates two new variables: Time and Subject. SPLIT contains one
observation for each repeated measure. SPLIT can be used in a PROC GLM step for a
univariate repeated-measures analysis.

data split;
set weights;
array s{7} s1-s7;
Subject + 1;
do Time=1 to 7;

Strength=s{time};
output;

end;
drop s1-s7;

run;

PROC PRINT prints the data set. The OBS= data set option limits the printing to the first 15
observations. SPLIT has 105 observations.

proc print data=split(obs=15) noobs;
title ’SPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 1

SPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength

CONT 1 1 85
CONT 1 2 85
CONT 1 3 86
CONT 1 4 85
CONT 1 5 87
CONT 1 6 86
CONT 1 7 87
CONT 2 1 80
CONT 2 2 79
CONT 2 3 79
CONT 2 4 78
CONT 2 5 78
CONT 2 6 79
CONT 2 7 78
CONT 3 1 78

Program 2



1406 Output 2 � Chapter 46

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes SPLIT to create TOTSPLIT. The TOTSPLIT data set contains
the same variables as SPLIT and a variable for each strength measurement (Str1-Str7).
TOTSPLIT can be used for either a multivariate repeated-measures analysis or a univariate
repeated-measures analysis.

proc transpose data=split out=totsplit prefix=Str;

The variables in the BY and COPY statements are not transposed. TOTSPLIT contains the
variables Program, Subject, Time, and Strength with the same values that are in SPLIT. The
BY statement creates the first observation in each BY group, which contains the transposed
values of Strength. The COPY statement creates the other observations in each BY group by
copying the values of Time and Strength without transposing them.

by program subject;
copy time strength;

The VAR statement specifies the Strength variable as the only variable to be transposed.

var strength;
run;

PROC PRINT prints the output data set.

proc print data=totsplit(obs=15) noobs;
title ’TOTSPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 2



The TRANSPOSE Procedure � Output 2 1407

The variables in TOTSPLIT with missing values are used only in a multivariate
repeated-measures analysis. The missing values do not preclude this data set from being used
in a repeated-measures analysis because the MODEL statement in PROC GLM ignores
observations with missing values.

TOTSPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength _NAME_ Str1 Str2 Str3 Str4 Str5 Str6 Str7

CONT 1 1 85 Strength 85 85 86 85 87 86 87
CONT 1 2 85 . . . . . . .
CONT 1 3 86 . . . . . . .
CONT 1 4 85 . . . . . . .
CONT 1 5 87 . . . . . . .
CONT 1 6 86 . . . . . . .
CONT 1 7 87 . . . . . . .
CONT 2 1 80 Strength 80 79 79 78 78 79 78
CONT 2 2 79 . . . . . . .
CONT 2 3 79 . . . . . . .
CONT 2 4 78 . . . . . . .
CONT 2 5 78 . . . . . . .
CONT 2 6 79 . . . . . . .
CONT 2 7 78 . . . . . . .
CONT 3 1 78 Strength 78 77 77 77 76 76 77



1408



1409

C H A P T E R

47
The TRANTAB Procedure

Overview: TRANTAB Procedure 1409
Concepts: TRANTAB Procedure 1410

Understanding Translation Tables and Character Sets for PROC TRANTAB 1410

Storing Translation Tables with PROC TRANTAB 1410

Modifying SAS-supplied Translation Tables with PROC TRANTAB 1411

Using Translation Tables Outside PROC TRANTAB 1411
Using Translation Tables in the SORT Procedure 1411

Using Translation Tables with the CPORT and CIMPORT Procedures 1411

Using Translation Tables with Remote Library Services 1412

Using Translation Tables in SAS/GRAPH Software 1412

Syntax: TRANTAB Procedure 1413

PROC TRANTAB Statement 1413
CLEAR Statement 1415

INVERSE Statement 1415

LIST Statement 1415

LOAD Statement 1416

REPLACE Statement 1417
SAVE Statement 1418

SWAP Statement 1418

Examples: TRANTAB Procedure 1419

Example 1: Viewing a Translation Table 1419

Example 2: Creating a Translation Table 1420
Example 3: Editing by Specifying a Decimal Value for Starting Position 1422

Example 4: Editing by Using a Quoted Character for Starting Position 1425

Example 5: Creating the Inverse of a Table 1427

Example 6: Using Different Translation Tables for Sorting 1429

Example 7: Editing Table 1 and Table 2 1431

Overview: TRANTAB Procedure

The TRANTAB procedure creates, edits, and displays customized translation tables.
In addition, you can use PROC TRANTAB to view and modify translation tables that
are supplied by SAS. These SAS-supplied tables are stored in the SASHELP.HOST
catalog. Any translation table that you create or customize is stored in your
SASUSER.PROFILE catalog. Translation tables have an entry type of TRANTAB.

Translation tables are operating environment-specific SAS catalog entries that are
used to translate the values of one (coded) character set to another. A translation table
has two halves: table one provides a translation, such as ASCII to EBCDIC; table two
provides the inverse (or reverse) translation, such as EBCDIC to ASCII. Each half of a



1410 Concepts: TRANTAB Procedure � Chapter 47

translation table is an array of 256 two-digit positions, each of which contains a
one-byte unsigned number that corresponds to a coded character.

The SAS System uses translation tables for the following purposes:
� determining the collating sequence in the SORT procedure
� performing transport-format translations when you transfer files with the CPORT

and CIMPORT procedures
� performing translations between operating environments when you access remote

data in SAS/CONNECT or SAS/SHARE software
� facilitating data communications between the operating environment and a

graphics device when you run SAS/GRAPH software in an IBM environment
� accommodating national language character sets other than U.S. English.

PROC TRANTAB produces no output. It can display translation tables and notes in
the SAS log.

Concepts: TRANTAB Procedure

Understanding Translation Tables and Character Sets for PROC
TRANTAB

The kth element in a translation table corresponds to the kth element of an ordered
character set. For example, position 00 (which is byte 1) in a translation table contains
a coded value that corresponds to the first element of the ordered character set. To
determine the position of a character in your operating environment’s character set, use
the SAS function RANK. The following example shows how to use RANK:

data _null_;
x=rank(’a’);
put "The position of a is " x ".";

The SAS log prints the following message: The position of a is 97 .
Each position in a translation table contains a hexadecimal number that is within

the range of 0 (’00’x) to 255 (’FF’x). Hexadecimal values always end with an x. You can
represent one or more consecutive hexadecimal values within quotation marks followed
by a single x. For example, a string of three consecutive hexadecimal values can be
written as ’08090A’x. The SAS log displays each row of a translation table as 16
hexadecimal values enclosed in quotes followed by an x. The SAS log also lists reference
numbers in the vertical and horizontal margins that correspond to the positions in the
table. Example 1 on page 1419 shows how the SAS log displays a translation table.

Storing Translation Tables with PROC TRANTAB
When you use PROC TRANTAB to create a customized translation table, the

procedure automatically stores the table in your SASUSER.PROFILE catalog. This
enables you to use customized translation tables without affecting other users. When
you specify the translation table in the SORT procedure or in a GOPTIONS statement,
the software first looks in your SASUSER.PROFILE catalog to find the table. If the
specified translation table is not in your SASUSER.PROFILE catalog, the software
looks in the SASHELP.HOST catalog.



The TRANTAB Procedure � Using Translation Tables Outside PROC TRANTAB 1411

If you want the translation table you create to be globally accessed, have your SAS
Installation Coordinator copy the table from your SASUSER.PROFILE catalog (using
the CATALOG procedure) to the SASHELP.HOST catalog. If the table is not found
there, the software will continue to search in SASHELP.LOCALE for the table.

Modifying SAS-supplied Translation Tables with PROC TRANTAB
If a SAS-supplied translation table does not meet your needs, you can use PROC

TRANTAB to edit it and create a new table. That is, you can issue the PROC
TRANTAB statement that specifies the SAS-supplied table, edit the table, and then
save the table using the SAVE statement. The modified translation table is saved in
your SASUSER.PROFILE catalog. If you are a SAS Installation Coordinator, you can
modify a translation table with PROC TRANTAB and then use the CATALOG
procedure to copy the modified table from your SASUSER.PROFILE catalog to the
SASHELP.HOST catalog, as shown in the following example:

proc catalog c=sasuser.profile;
copy out=sashelp.host entrytype=trantab;

run;

You can use PROC TRANTAB to modify translation tables stored in the
SASHELP.HOST catalog only if you have update (or write) access to that data library
and catalog.

Using Translation Tables Outside PROC TRANTAB

Using Translation Tables in the SORT Procedure

PROC SORT uses translation tables to determine the collating sequence to be used
by the sort. You can specify an alternative translation table with the SORTSEQ= option
of PROC SORT. For example, if your operating environment sorts with the EBCDIC
sequence by default, and you want to sort with the ASCII sequence, you can issue the
following statement to specify the ASCII translation table:

proc sort sortseq=ascii;

You can also create a customized translation table with PROC TRANTAB and specify
the new table with PROC SORT. This is useful when you want to specify sorting
sequences for languages other than U.S. English.

See Example 6 on page 1429 for an example that uses translation tables to sort data
in different ways. For information on the tables available for sorting and the
SORTSEQ= option, see Chapter 39, “The SORT Procedure,” on page 1091.

Using Translation Tables with the CPORT and CIMPORT Procedures

The CPORT and CIMPORT procedures use translation tables to translate characters
in catalog entries that you export from one operating environment and import on
another operating environment. You may specify the name of a SAS-supplied or a
customized translation table in the TRANTAB statement of PROC CPORT. See
“TRANTAB Statement” on page 315 in Chapter 13, “The CPORT Procedure,” on page
307 for more information.



1412 Using Translation Tables Outside PROC TRANTAB � Chapter 47

Using Translation Tables with Remote Library Services
Remote Library Services (RLS) use translation tables to translate characters when

you access remote data. SAS/CONNECT and SAS/SHARE software use translation
tables to translate characters when you transfer or share files between two operating
environments that use different encoding standards.

Using Translation Tables in SAS/GRAPH Software
In SAS/GRAPH software, translation tables are most commonly used on an IBM

operating environment where tables are necessary because graphics commands must
leave IBM operating environments in EBCDIC representation but must reach
asynchronous graphics devices in ASCII representation. Specifically, SAS/GRAPH
software builds the command stream for these devices internally in ASCII
representation but must convert the commands to EBCDIC representation before they
can be given to the communications software for transmission to the device. SAS/
GRAPH software uses a translation table internally to make the initial conversion from
ASCII to EBCDIC. The communications software then translates the command stream
back to ASCII representation before it reaches the graphics device.

Translation tables are operating environment-specific. In most cases, you can simply
use the default translation table, SASGTAB0, or one of the SAS-supplied graphics
translation tables. However, if these tables are not able to do all of the translation
correctly, you can create your own translation table with PROC TRANTAB. The
SASGTAB0 table may fail to do the translation correctly when it encounters characters
from languages other than U.S. English.

To specify an alternative translation table for SAS/GRAPH software, you can either
use the TRANTAB= option in a GOPTIONS statement or modify the TRANTAB device
parameter in the device entry. For example, the following GOPTIONS statement
specifies the GTABTCAM graphics translation table:

goptions trantab=gtabtcam;

Translation tables used in SAS/GRAPH software perform both device-to-operating
environment translation and operating environment-to-device translation. Therefore, a
translation table is made up of 512 bytes, with the first 256 bytes used to perform
device-to-operating environment translation (ASCII to EBCDIC on IBM mainframes)
and the second 256 bytes used to perform operating environment-to-device translation
(EBCDIC to ASCII on IBM mainframes). For PROC TRANTAB, the area of a
translation table for device-to-operating environment translation is considered to be
table one, and the area for operating environment-to-device translation is considered to
be table two. See Example 1 on page 1419 for a listing of the ASCII translation table (a
SAS-provided translation table), which shows both areas of the table.

On operating environments other than IBM mainframes, translation tables can be
used to translate specific characters in the data stream that are created by the driver.
For example, if the driver normally generates a vertical bar in the data stream, but you
want another character to be generated in place of the vertical bar, you can create a
translation table that translates the vertical bar to an alternate character.

For details on how to specify translation tables with the TRANTAB= option in SAS/
GRAPH software, see SAS/GRAPH Software: Reference, Version 6, First Edition,
Volume 1 and Volume 2.

SAS/GRAPH software also uses key maps and device maps to map codes generated
by the keyboard to specified characters and to map character codes to codes required by
the graphics output device. These maps are specific to SAS/GRAPH software and are
discussed in "The GKEYMAP Procedure" in SAS/GRAPH Software: Reference.



The TRANTAB Procedure � PROC TRANTAB Statement 1413

Syntax: TRANTAB Procedure
Tip: Supports RUN-group processing

PROC TRANTAB TABLE=table-name <NLS>;
CLEAR <ONE|TWO|BOTH>;
INVERSE;
LIST <ONE|TWO|BOTH>;

LOAD TABLE=table-name <NLS>;
REPLACE position value-1<…value-n>;
SAVE <TABLE=table-name> <ONE|TWO|BOTH>;
SWAP;

To do this Use this statement

Set all positions in the translation table to zero CLEAR

Create an inverse of table one INVERSE

Display a translation table in hexadecimal
representation

LIST

Load a translation table into memory for editing LOAD

Replace the characters in a translation table with
specified values

REPLACE

Save the translation table in your
SASUSER.PROFILE catalog

SAVE

Exchange table one with table two SWAP

Note: PROC TRANTAB is an interactive procedure. Once you submit a PROC
TRANTAB statement, you can continue to enter and execute statements without
repeating the PROC TRANTAB statement. To terminate the procedure, submit a QUIT
statement or submit another DATA or PROC statement. �

PROC TRANTAB Statement
Tip: If there is an incorrect table name in the PROC TRANTAB statement, use the
LOAD statement to load the correct table. You do not need to reinvoke PROC
TRANTAB. New tables are not stored in the catalog until you issue the SAVE
statement, so you will not have unwanted tables in your catalog.



1414 PROC TRANTAB Statement � Chapter 47

PROC TRANTAB TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the translation table to create, edit, or display. The specified table name
must be a valid one-level SAS name with no more than 8 characters.

Options

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables provided with every copy of the SAS System. You must
use the NLS option when you specify one of the five special tables in the TABLE=
argument:

SASXPT
the local-to-transport format translation table (used by the CPORT procedure)

SASLCL
the transport-to-local format translation table (used by the CIMPORT procedure)

SASUCS
the lowercase-to-uppercase translation table (used by the UPCASE function)

SASLCS
the uppercase-to-lowercase translation table (used by the LOWCASE macro)

SASCCL
the character classification table (used internally), which contains flag bytes that
correspond to each character position that indicate the class or classes to which
each character belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to translate characters that exist in languages other than
English. To make SAS use the modified NLS table, specify its name in the SAS system
option TRANTAB= .

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 at all for translation in these
special cases, so you do not need to be concerned about this note. �



The TRANTAB Procedure � LIST Statement 1415

CLEAR Statement

Sets all positions in the translation table to zero. This statement is useful when you create a new
table.

CLEAR <ONE|TWO|BOTH>;

Options

ONE | TWO | BOTH

ONE
clears table one.

TWO
clears table two.

BOTH
clears both table one and table two.

Default: ONE

INVERSE Statement
Creates an inverse of table one in a translation table. That is, it creates table two.

Featured in: Example 5 on page 1427

INVERSE;

Details
INVERSE does not preserve multiple translations. Suppose table one has two (or

more) different characters translated to the same value; for example, "A" and "B" are
both translated to "1". For table two, INVERSE uses the last translated character for
the value; that is, "1" is always translated to "B" and not "A", assuming that "A"
appears before "B" in the first table.

Operating environment sort programs in the SAS System require an inverse table for
proper operation.

LIST Statement

Displays a translation table in hexadecimal representation. The translation table listing appears in
the SAS log.

Featured in: All examples



1416 LOAD Statement � Chapter 47

LIST <ONE|TWO|BOTH>;

Options

ONE | TWO | BOTH

ONE
displays table one.

TWO
displays table two.

BOTH
displays both table one and table two.

Default: ONE

LOAD Statement

Loads a translation table into memory for editing.

Tip: Use LOAD when you specify an incorrect table name in the PROC TRANTAB
statement. You can specify the correct name without the need to reinvoke the procedure.
Tip: Use LOAD to edit multiple translation tables in a single PROC TRANTAB step.
(Be sure to save the first table before you load another one.)
Featured in: Example 4 on page 1425

LOAD TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the name of an existing translation table to be edited. The specified table
name must be a valid one-level SAS name.

Option

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables provided with every copy of the SAS System. You must
use the NLS option when you specify one of the five special tables in the TABLE=
argument:

SASXPT
the local-to-transport format translation table

SASLCL
the transport-to-local format translation table

SASUCS



The TRANTAB Procedure � REPLACE Statement 1417

the lowercase-to-uppercase translation table

SASLCS
the uppercase-to-lowercase translation table

SASCCL
the character classification table, which contains flag bytes that correspond to each
character position that indicate the class or classes to which each character
belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to map characters that exist in languages other than English
to programs, displays, files, or products of the SAS System.

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 at all for translation in these
special cases, so you do not need to be concerned about this note. �

REPLACE Statement

Replaces characters in a translation table with the values given, starting at the specified position.

Alias: REP

Tip: To save edits, you must issue the SAVE statement.

Featured in: Example 2 on page 1420, Example 3 on page 1422, and Example 4 on page
1425

REPLACE position value-1<…value-n>;

Required Arguments

position
specifies the position in a translation table where the replacement is to begin. The
editable positions in a translation table begin at position decimal 0 and end at
decimal 255. To specify the position, you can

� use a decimal or hexadecimal value to specify an actual location. If you specify
a decimal value, for example, 20, PROC TRANTAB locates position 20 in the
table, which is byte 21. If you specify a hexadecimal value, for example, ’14’x,
PROC TRANTAB locates the decimal position that is equivalent to the specified
hexadecimal value, which in this case is position 20 (or byte 21) in the table.

� use a quoted character. PROC TRANTAB locates the quoted character in the
table (that is, the quoted character’s hexadecimal value) and uses that
character’s position as the starting position. For example, if you specify the
following REPLACE statement, the statement replaces the first occurrence of
the hexadecimal value for "a" and the next two hexadecimal values with the
hexadecimal equivalent of "ABC":

replace ’a’ ’ABC’;



1418 SAVE Statement � Chapter 47

This is useful when you want to locate alphabetic and numerical characters
when you do not know their actual location. If the quoted character is not
found, PROC TRANTAB displays an error message and ignores the statement.

To edit positions 256 through 511 (table two), follow this procedure:
1 Issue the SWAP statement.
2 Issue the appropriate REPLACE statement.
3 Issue the SWAP statement again to reposition the table.

value-1 <...value-n>
is one or more decimal, hexadecimal, or character constants that give the actual
value to be put into the table, starting at position. You can also use a mixture of the
types of values. That is, you can specify a decimal, a hexadecimal, and a character
value in one REPLACE statement. Example 3 on page 1422 shows a mixture of all
three types of values in the REPLACE statement.

SAVE Statement
Saves the translation table in your SASUSER.PROFILE catalog.

Featured in: Example 2 on page 1420 and Example 4 on page 1425

SAVE <TABLE=table-name> <ONE|TWO|BOTH>;

Options

TABLE=table-name
specifies the table name under which the current table is to be saved. The name
must be a valid one-level SAS name.
Default: If you omit the TABLE= option, the current table is saved under the name

you specify in the PROC TRANTAB statement or the LOAD statement.

ONE | TWO | BOTH

ONE
saves table one.

TWO
saves table two.

BOTH
saves both table one and table two.

Default: BOTH

SWAP Statement
Exchanges table one with table two to enable you to edit positions 256 through 511.

Tip: After you edit the table, you must issue SWAP again to reposition the table.
Featured in: Example 7 on page 1431



The TRANTAB Procedure � Program 1419

SWAP;

Examples: TRANTAB Procedure

Note: All examples were produced in the UNIX environment. �

Example 1: Viewing a Translation Table

Procedure features:
LIST statement

This example uses PROC TRANTAB to display the SAS-supplied ASCII translation
table.

Program

Set the options and specify a translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display both halves of the translation table. The LIST BOTH statement displays both the
table that provides the translation and the table that provides the inverse translation.

list both;



1420 SAS Log � Chapter 47

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

ASCII table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 2: Creating a Translation Table

Procedures features:
LIST statement

REPLACE statement
SAVE statement

This example uses PROC TRANTAB to create a customized translation table.

Program



The TRANTAB Procedure � SAS Log 1421

Set the system options and specify the translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Replace characters in the translation table starting at a specified position. The
REPLACE statement places the values in the table starting at position 0. You can use
hexadecimal strings of any length in the REPLACE statement. This example uses strings of
length 16 to match the way that translation tables appear in the SAS log.

replace 0
’00010203a309e57ff9ecc40b0c0d0e0f’x
’10111213a5e008e71819c6c51c1d1e1f’x
’c7fce9e2e40a171beaebe8efee050607’x
’c9e616f4f6f2fb04ffd6dca2b6a7501a’x
’20e1edf3faf1d1aababfa22e3c282b7c’x
’265facbdbca1abbb5f5f21242a293bac’x
’2d2f5fa6a6a6a62b2ba6a62c255f3e3f’x
’a62b2b2b2b2b2b2d2d603a2340273d22’x
’2b6162636465666768692d2ba6a62b2b’x
’2d6a6b6c6d6e6f7071722da62d2b2d2d’x
’2d7e737475767778787a2d2b2b2b2b2b’x
’2b2b2b5f5fa65f5f5fdf5fb65f5fb55f’x
’7b4142434445464748495f5f5f5f5f5f’x
’7d4a4b4c4d4e4f5051525f5f5fb15f5f’x
’5c83535455565758595a5f5ff75f5fb0’x
’30313233343536373839b75f6eb25f5f’x
;

Save the table. The SAVE statement saves the table under the name that is specified in the
PROC TRANTAB statement. By default, the table is saved in your SASUSER.PROFILE catalog.

save;

Display both halves of the translation table in the SAS log. The LIST BOTH statement
displays both the table that provides the translation and the table that provides the inverse
translation.

list both;

SAS Log



1422 Example 3: Editing by Specifying a Decimal Value for Starting Position � Chapter 47

Create and edit table 2. Table 2 is empty; that is, it consists entirely of 0s. To create table 2,
you can use the INVERSE statement. (See Example 5 on page 1427.) To edit table 2, you can
use the SWAP statement with the REPLACE statement. (See Example 7 on page 1431.)

NOTE: Table specified is NEWTABLE.
WARNING: Table NEWTABLE not found! New table is assumed.
NOTE: NEWTABLE table 1 is uninitialized.
NOTE: NEWTABLE table 2 is uninitialized.

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 2:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00000000000000000000000000000000’x
10 ’00000000000000000000000000000000’x
20 ’00000000000000000000000000000000’x
30 ’00000000000000000000000000000000’x
40 ’00000000000000000000000000000000’x
50 ’00000000000000000000000000000000’x
60 ’00000000000000000000000000000000’x
70 ’00000000000000000000000000000000’x
80 ’00000000000000000000000000000000’x
90 ’00000000000000000000000000000000’x
A0 ’00000000000000000000000000000000’x
B0 ’00000000000000000000000000000000’x
C0 ’00000000000000000000000000000000’x
D0 ’00000000000000000000000000000000’x
E0 ’00000000000000000000000000000000’x
F0 ’00000000000000000000000000000000’x

Example 3: Editing by Specifying a Decimal Value for Starting Position

Procedure features:
LIST statement

REPLACE statement

SAVE statement



The TRANTAB Procedure � 1423

This example edits the translation table created in Example 2 on page 1420. The
decimal value specified in the REPLACE statement marks the starting position for the
changes to the table.

The vertical arrow in both SAS logs marks the point at which the changes begin.

Program

Set the system options and specify which translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Display the original table. This LIST statement displays the original NEWTABLE
translation table.

list one;

SAS Log

The Original NEWTABLE Translation Table

NOTE: Table specified is NEWTABLE.
NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x



1424 SAS Log � Chapter 47

Replace characters in the translation table starting at a specified position. The
REPLACE statement starts at position decimal 10, which is byte 11 in the original table, and
performs a byte-to-byte replacement with the given values.

replace 10
20 10 200 ’x’ ’ux’ ’092040’x;

Save your changes. The SAVE statement saves the changes that you made to the
NEWTABLE translation table.

save;

Display the new table. The second LIST statement displays the edited NEWTABLE
translation table.

list one;

SAS Log

The Edited NEWTABLE Translation Table

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9EC140AC8787578’x
10 ’09204013A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

At position 10 (which is byte 11), a vertical arrow denotes the starting point for the
changes to the translation table.

� At byte 11, decimal 20 (which is hexadecimal 14) replaces hexadecimal C4.
� At byte 12, decimal 10 (which is hexadecimal 0A) replaces hexadecimal 0B.
� At byte 13, decimal 200 (which is hexadecimal C8) replaces hexadecimal 0C.
� At byte 14, character ’x’ (which is hexadecimal 78) replaces hexadecimal 0D.



The TRANTAB Procedure � Program 1425

� At bytes 15 and 16, characters ’ux’ (which are hexadecimal 75 and 78, respectively)
replace hexadecimal 0E and 0F.

� At bytes 17, 18, and 19, hexadecimal 092040 replaces hexadecimal 101112.

Example 4: Editing by Using a Quoted Character for Starting Position

Procedure features:
LIST statement
LOAD statement
REPLACE statement
SAVE statement

This example creates a new translation table by editing the SAS-supplied ASCII
translation table. The first occurrence of the hexadecimal equivalent of the quoted
character specified in the REPLACE statement is the starting position for the changes
to the table. This differs from Example 3 on page 1422 in that you do not need to know
the exact position at which to start the changes to the table. PROC TRANTAB finds the
correct position for you.

The edited table is saved under a new name. Horizontal arrows in both SAS logs
denote the edited rows in the translation table.

Program

Set the system options and specify which translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display the translation table. The LIST statement displays the original translation table in
the SAS log.

list one;



1426 SAS Log � Chapter 47

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x �

70 ’707172737475767778797A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Replace characters in the translation table starting at a specified position. The
REPLACE statement finds the first occurrence of the hexadecimal "a" (which is 61) and replaces
it and the next 25 hexadecimal values with the hexadecimal values for uppercase "A" through
"Z."

replace ’a’ ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’;

Save your changes. The SAVE statement saves the changes made to the ASCII translation
table under the new table name UPPER. The stored contents of the ASCII translation table
remain unchanged.

save table=upper;

Load and display the translation table. The LOAD statement loads the edited translation
table UPPER. The LIST statement displays the translation table UPPER in the SAS log.

load table=upper;
list one;

SAS Log



The TRANTAB Procedure � Program 1427

The UPPER Translation Table

The horizontal arrows in the SAS log denote the rows in which the changes are made.

NOTE: Table UPPER being loaded.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x �

70 ’505152535455565758595A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 5: Creating the Inverse of a Table

Procedure features:
INVERSE statement
LIST statement
SAVE statement

This example creates the inverse of the translation table that was created in
Example 4 on page 1425. The new translation table created in this example is the
operating environment-to-device translation for use in data communications.

Program

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

Create the inverse translation table, save the tables, and display the tables. The
INVERSE statement creates table 2 by inverting the original table 1 (called UPPER). The SAVE
statement saves the translation tables. The LIST BOTH statement displays both the original
translation table and its inverse.

inverse;
save;
list both;



1428 SAS Log � Chapter 47

SAS Log

The UPPER Translation Table and Its Inverse
The SAS log lists all the duplicate values that it encounters as it creates the inverse of table
one. To conserve space, most of these messages are deleted in this example.

NOTE: Table specified is UPPER.
NOTE: This table cannot be mapped one to one.

duplicate of ’41’x found at ’61’x in table one.
duplicate of ’42’x found at ’62’x in table one.
duplicate of ’43’x found at ’63’x in table one.

.

.

.
duplicate of ’58’x found at ’78’x in table one.
duplicate of ’59’x found at ’79’x in table one.
duplicate of ’5A’x found at ’7A’x in table one.

NOTE: Saving table UPPER.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

The INVERSE statement lists in the SAS log all of the multiple translations that it
encounters as it inverts the translation table. In Example 4 on page 1425, all the



The TRANTAB Procedure � Program 1429

lowercase letters were converted to uppercase in the translation table UPPER, which
means that there are two sets of uppercase letters in UPPER. When INVERSE cannot
make a translation, PROC TRANTAB fills the value with 00. Note that the inverse of
the translation table UPPER has numerous 00 values.

Example 6: Using Different Translation Tables for Sorting
Procedure features:

PROC SORT statement option:
SORTSEQ=

Other features:
PRINT procedure

This example shows how to specify a different translation table to sort data in an
order that is different from the default sort order. Characters that are written in a
language other than U.S. English may require a sort order that is different from the
default order.

Note: You can use the TRABASE program in the SAS Sample Library to create
translation tables for several different languages. �

Program

Set the SAS system options.

options nodate pageno=1 linesize=80 pagesize=60;

Create the TESTSORT data set. The DATA step creates a SAS data set with four pairs of
words, each pair differing only in the case of the first letter.

data testsort;
input Values $10.;
datalines;

Always
always
Forever
forever
Later
later
Yesterday
yesterday
;

Sort the data in an order that is different from the default sort order. PROC SORT sorts
the data by using the default translation table, which sorts all lowercase words first, then all
uppercase words.



1430 SAS Output � Chapter 47

proc sort;
by values;

run;

Print the data set. PROC PRINT prints the sorted data set.

proc print noobs;
title ’Default Sort Sequence’;

run;

SAS Output

Output from Sorting Values with Default Translation Table

The default sort sequence sorts all the capitalized words in alphabetical order before it sorts any
lowercase words.

Default Sort Sequence 1

Values

Always
Forever
Later
Yesterday
always
forever
later
yesterday

Sort the data according to the translation table UPPER and print the new data set.
The SORTSEQ= option specifies that PROC SORT sort the data according to the customized
translation table UPPER, which treats lowercase and uppercase letters alike. This is useful for
sorting without regard for case. PROC PRINT prints the sorted data set.

proc sort sortseq=upper;
by values;

run;
proc print noobs;

title ’Customized Sort Sequence’;
run;

SAS Output



The TRANTAB Procedure � SAS Log 1431

Output from Sorting Values with Customized Translation Table

The customized sort sequence sorts all the words in alphabetical order, without regard for the
case of the first letters.

Customized Sort Sequence 2

Values

Always
always
Forever
forever
Later
later
Yesterday
yesterday

Example 7: Editing Table 1 and Table 2
Procedure features:

LIST statement
REPLACE statement
SAVE statement
SWAP statement

This example shows how to edit both areas of a translation table. To edit positions
256 through 511 (table two), you must

1 Issue the SWAP statement to have table two change places with table one.
2 Issue an appropriate REPLACE statement to make changes to table two.
3 Issue the SWAP statement again to reposition the table.

Arrows in the SAS logs mark the rows and columns that are changed.

Program

Set the SAS system options and specify the translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

Display the original translation table. The LIST statement displays the original UPPER
translation table.

list both;

SAS Log



1432 SAS Log � Chapter 47

The Original UPPER Translation Table

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Replace characters in the translation table starting at a specified position. The
REPLACE statement starts at position 1 and replaces the current value of 01 with ’0A’.

replace 1 ’0A’x;

Prepare table 2 to be edited. The first SWAP statement positions table 2 so that it can be
edited. The second REPLACE statement makes the same change in table 2 that was made in
table 1.

swap;
replace 1 ’0A’x;



The TRANTAB Procedure � SAS Log 1433

Save and display the tables in their original positions. The second SWAP statement
restores tables 1 and table 2 to their original positions. The SAVE statement saves both areas of
the translation table by default. The LIST statement displays both areas of the table.

swap;
save;
list both;

SAS Log

The Edited UPPER Translation Table

In byte 2, in both areas of the translation table, hexadecimal value ’0A’ replaces hexadecimal
value 01. Arrows denote the rows and columns of the table in which this change is made.

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x



1434



1435

C H A P T E R

48
The UNIVARIATE Procedure

Overview: UNIVARIATE Procedure 1436
Syntax: UNIVARIATE Procedure 1442

PROC UNIVARIATE Statement 1443

BY Statement 1451

CLASS Statement 1451

FREQ Statement 1454
HISTOGRAM Statement 1455

ID Statement 1473

INSET Statement 1473

OUTPUT Statement 1482

PROBPLOT Statement 1485

QQPLOT Statement 1497
VAR Statement 1510

WEIGHT Statement 1510

Concepts: UNIVARIATE Procedure 1511

Rounding 1511

Generating Line Printer Plots 1512
Stem-and-Leaf Plot 1512

Box Plot 1513

Normal Probability Plot 1513

Side-by-Side Box Plots 1514

Generating High-Resolution Graphics 1514
Quantile-Quantile and Probability Plots 1514

Interpreting Quantile-Quantile and Probability Plots 1515

Determining Computer Resources 1516

Statistical Computations: UNIVARIATE Procedure 1517

Confidence Limits for Parameters of the Normal Distribution 1517

Tests for Location 1518
Student’s t Test 1518

Sign Test 1519

Wilcoxon Signed Rank Test 1519

Goodness-of-Fit Tests 1520

Shapiro-Wilk Statistic 1521
EDF Goodness-of-Fit Tests 1521

Kolmogorov D Statistic 1522

Anderson-Darling Statistic 1522

Cramer-von Mises Statistic 1523

Probability Values of EDF Tests 1523
Robust Estimators 1525

Winsorized Means 1525

Trimmed Means 1526



1436 Overview: UNIVARIATE Procedure � Chapter 48

Robust Measures of Scale 1527
Calculating Percentiles 1528

Confidence Limits for Quantiles 1528

Weighted Quantiles 1529

Calculating the Mode 1530

Formulas for Fitted Continuous Distributions 1530
Beta Distribution 1530

Exponential Distribution 1531

Gamma Distribution 1532

Lognormal Distribution 1533

Normal Distribution 1533

Weibull Distribution 1534
Kernel Density Estimates 1534

Theoretical Distributions for Quantile-Quantile and Probability Plots 1536

Beta Distribution 1536

Exponential Distribution 1537

Gamma Distribution 1537
Lognormal Distribution 1537

Normal Distribution 1538

Three-Parameter Weibull Distribution 1538

Two-Parameter Weibull Distribution 1538

Shape Parameters 1539
Location and Scale Parameters 1539

Results: UNIVARIATE Procedure 1540

Missing Values 1540

Histograms 1541

Histogram Intervals 1541

Quantiles 1541
ODS Table Names 1541

Output Data Set 1542

OUTHISTOGRAM= Data Set 1543

Examples: UNIVARIATE Procedure 1543

Example 1: Univariate Analysis for Multiple Variables 1543
Example 2: Identifying Extreme Values and Creating a Histogram 1546

Example 3: Computing Robust Estimators 1549

Example 4: Performing a Sign Test Using Paired Data 1552

Example 5: Examining the Data Distribution and Saving Percentiles 1555

Example 6: Creating an Output Data Set with Multiple Analysis Variables 1560
Example 7: Fitting Density Curves 1561

Example 8: Displaying a Reference Line on a Normal Quantile-Quantile Plot 1566

Example 9: Creating a Two-Way Comparative Histogram 1568

References 1572

Overview: UNIVARIATE Procedure
k
The UNIVARIATE procedure provides a variety of descriptive measures,

high-resolution graphical displays, and statistical methods to summarize, visualize,
analyze, and model the statistical distributions of numeric variables. These tools are
useful for a broad range of tasks and applications:

� Exploring the distributions of the variables in a data set is an important
preliminary step in data analysis, data warehousing, and data mining. With the
UNIVARIATE procedure you can use tables and graphical displays, such as



The UNIVARIATE Procedure � Overview: UNIVARIATE Procedure 1437

histograms and nonparametric density estimates, to find key features of
distributions, identify outliers and extreme observations, determine the need for
data transformations, and compare distributions.

� Modeling the distributions of data and validating distributional assumptions are
basic steps in statistical analysis. You can use the UNIVARIATE procedure to fit
parametric distributions (beta, exponential, gamma, lognormal, normal, and
Weibull) and to compute probabilities and percentiles from these models. You can
assess goodness of fit with hypothesis tests and with graphical displays such as
probability plots and quantile-quantile plots. You can also use the UNIVARIATE
procedure to validate distributional assumptions for other types of statistical
analysis. When standard assumptions are not met, you can use the UNIVARIATE
procedure to perform nonparametric tests and compute robust estimates of
location and scale.

� Summarizing the distribution of the data is often helpful for creating effective
statistical reports and presentations. You can use the UNIVARIATE procedure to
create tables of summary measures, such as means and percentiles, together with
graphical displays, such as histograms and comparative histograms, which
facilitate the interpretation of the report.

The following examples illustrate a few of the tables and plots that you can produce
with the UNIVARIATE procedure.

The following output shows a table of summary measures and a table of extreme
observations for the loan-to-value ratios of 5,840 home mortgages in the data set
HOMELOANS. The DATA step that creates the HomeLoans data set is shown in
“HOMELOANS” on page 1627. The statements that produce this output follow:

ods select BasicMeasures ExtremeObs;

proc univariate data=homeloans;
var LoanToValueRatio;

run;

Note: The ODS SELECT statement restricts the default output so that only the
relevant tables appear in the preliminary analysis of this data. �



1438 Overview: UNIVARIATE Procedure � Chapter 48

Output 48.1

The SAS System

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

Basic Statistical Measures

Location Variability

Mean 0.292512 Std Deviation 0.16476
Median 0.248050 Variance 0.02715
Mode 0.250000 Range 1.24780

Interquartile Range 0.16419

Extreme Observations

-------Lowest------ -----Highest-----

Value Obs Value Obs

0.0651786 1 1.13976 5776
0.0690157 3 1.14209 5791
0.0699755 59 1.14286 5801
0.0702412 84 1.17090 5799
0.0704787 4 1.31298 5811

Figure 48.1 on page 1439 shows a histogram that enables you to visualize the
distribution of loan-to-value ratios. The histogram reveals features of the distribution,
such as its skewness and the peak at 0.175, which are not evident from the tables in
the previous example. The following statements create the histogram:

proc univariate data=homeloans noprint;
histogram LoanToValueRatio / cfill=ltgray;
inset n = ’Number of Homes’ / position=ne;
title1 ’Home Loan Analysis’;

run;

Note: The NOPRINT option suppresses the display of summary statistics. The
INSET statement inserts the total number of analyzed home loans in the upper-right
corner of the plot. �



The UNIVARIATE Procedure � Overview: UNIVARIATE Procedure 1439

Figure 48.1 Histogram for Loan-to-Value Ratio

The following output shows the quantiles for the distributions of loan-to-value ratios
for two types of loans. Figure 48.2 on page 1441 shows a comparative histogram, which
enables you to compare the two distributions more easily. The following statements
produce the output and histogram:

ods select Quantiles;

proc univariate data=HomeLoans;
var LoanToValueRatio;
class LoanType;
histogram LoanToValueRatio / cfill=ltgray

kernel(color=black);
inset n=’Number of Homes’ median=’Median Ratio’(5.3) / position=ne;
title ’Comparison of Loan Types’;
label LoanType = ’Type of Loan’;

run;

Note: The CLASS statement specifies LoanType as a classification variable for the
comparative histogram. The KERNEL option adds a smooth nonparametric estimate of
the ratio density to each histogram. �



1440 Overview: UNIVARIATE Procedure � Chapter 48

Output 48.2

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Gold

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.0617647
99% 0.8974576
95% 0.6385908
90% 0.4471369
75% Q3 0.2985099
50% Median 0.2217033
25% Q1 0.1734568
10% 0.1411130
5% 0.1213079
1% 0.0942167
0% Min 0.0651786

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Platinum

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.312981
99% 1.050000
95% 0.691803
90% 0.549273
75% Q3 0.430160
50% Median 0.366168
25% Q1 0.314452
10% 0.273670
5% 0.253124
1% 0.231114
0% Min 0.215504



The UNIVARIATE Procedure � Overview: UNIVARIATE Procedure 1441

Figure 48.2 Comparative Histogram for Loan-to-Value Ratio

In addition to summarizing the distribution of population data, you can use PROC
UNIVARIATE to analyze the distribution of sample data. The following output shows
an analysis of the distribution for measurements of position deviation in a sample of 30
aircraft components. Because this small sample is from an unknown population, an
initial question is whether the sample measurements are from a normal distribution.
The DATA step that creates the Aircraft data set is shown in “AIRCRAFT” on page
1615. The goodness-of-fit tests reject the hypothesis that the measurements are
normally distributed. Figure 48.3 on page 1442 shows a normal probability plot for
these measurements. The curved point pattern suggests that a skewed distribution,
such as the lognormal, may be more appropriate than the normal distribution, which
the diagonal reference line represents. The following statements produce the output
and probability plot:

ods select Moments TestsForNormality;
symbol v=dot;

proc univariate data=aircraft normaltest;
var Deviation;
probplot Deviation / normal (mu=est sigma=est) square;
label Deviation = ’Adjusted Position Deviation’;
inset mean std / format=6.4;
title ’Position Deviation Analysis’;

run;



1442 Syntax: UNIVARIATE Procedure � Chapter 48

Output 48.3

Position Deviation Analysis 1

The UNIVARIATE Procedure
Variable: Deviation (Position Deviation - Adjusted Tolerance)

Moments

N 30 Sum Weights 30
Mean -0.0053067 Sum Observations -0.1592
Std Deviation 0.00254362 Variance 6.47002E-6
Skewness 1.2562507 Kurtosis 0.69790426
Uncorrected SS 0.00103245 Corrected SS 0.00018763
Coeff Variation -47.932613 Std Error Mean 0.0004644

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.845364 Pr < W 0.0005
Kolmogorov-Smirnov D 0.208921 Pr > D <0.0100
Cramer-von Mises W-Sq 0.329274 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 1.784881 Pr > A-Sq <0.0050

Figure 48.3 Normal Probability Plot

Syntax: UNIVARIATE Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.



The UNIVARIATE Procedure � PROC UNIVARIATE Statement 1443

PROC UNIVARIATE <option(s)>;

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable-1<(variable-option(s))> <variable-2<(variable-option(s))>>
</ KEYLEVEL=’value1’|(’value1’ ’value2’)>;

FREQ variable;

HISTOGRAM <variable(s)> </ option(s)>;

ID variable(s);

INSET <keyword(s) DATA=SAS-data-set> </ option(s)>;

OUTPUT <OUT=SAS-data-set> statistic-keyword-1=name(s)
<… statistic-keyword-n=name(s)> <percentiles-specification>;

PROBPLOT <variable(s)> </ option(s)>;

QQPLOT <variable(s)> </ option(s)>;

VAR variable(s);

WEIGHT variable;

To do this Use this statement

Calculate separate statistics for each BY group BY

Specify up to two class variables to categorize the analysis CLASS

Specify a variable that contains the frequency of each observation FREQ

Create a high-resolution graph of a histogram HISTOGRAM

Specify one or more variables whose values identify the extreme
observations

ID

Inset a table of summary statistics in a high-resolution graph INSET

Create an output data set that contains specified statistics OUTPUT

Create a high-resolution graph of a probability plot PROBPLOT

Create a high-resolution graph of a quantile-quantile plot QQPLOT

Select the analysis variables and determine their order in the report VAR

Identify a variable whose values weight each observation in the
statistical calculations

WEIGHT

PROC UNIVARIATE Statement

PROC UNIVARIATE <option(s)>;



1444 PROC UNIVARIATE Statement � Chapter 48

To do this Use this option

Specify the input data set DATA=

Specify the input data set that contains annotate variables ANNOTATE=

Specify the SAS catalog to save high-resolution graphics output GOUT=

Control the statistical analysis

Request all statistics and tables that the FREQ, MODES,
NEXTRVAL=, PLOT, and CIBASIC options generate

ALL

Specify the confidence level for the confidence limits ALPHA=

Request confidence limits for the mean, standard deviation,
and variance based on normally distributed data

CIBASIC

Request confidence limits for quantiles using a
distribution-free method

CIPCTLDF

Request confidence limits for quantiles based on normally
distributed data

CIPCTLNORMAL

Exclude observations with nonpositive weights from the
analysis

EXCLNPWGT

Specify the value of the mean or location parameter MU0=

Specify the number of extreme observations displayed NEXTROBS=

Specify the number of extreme values displayed NEXTRVAL=

Request tests for normality NORMAL

Specify the mathematical definition used to compute quantiles PCTLDEF=

Compute robust estimates of scale ROBUSTSCALE

Specify the units to round the analysis variable prior to
computing statistics

ROUND=

Compute trimmed means TRIMMED=

Specify the variance divisor VARDEF=

Compute Winsorized means WINSORIZED=

Control the displayed output

Request a frequency table FREQ

Request a table that shows number of observations greater
than, equal to, and less than MU0=

LOCCOUNT

Request a table of all possible modes MODES

Suppress side-by-side plots NOBYPLOT

Suppress tables of descriptive statistics NOPRINT

Create low-resolution stem-and-leaf, box, and normal
probability plots

PLOTS

Specify the approximate number of rows the plots use PLOTSIZE=

Options



The UNIVARIATE Procedure � PROC UNIVARIATE Statement 1445

ALL
requests all statistics and tables that the FREQ, MODES, NEXTRVAL=5, PLOT, and
CIBASIC options generate. If the analysis variables are not weighted, this option
also requests the statistics and tables that the CIPCTLDF, CIPCTLNORMAL,
LOCCOUNT, NORMAL, ROBUSTCALE, TRIMMED=.25, and WINSORIZED=.25
options generate. PROC UNIVARIATE also uses any values that you specify for
ALPHA=, MU0=, NEXTRVAL=, CIBASIC, CIPCTLDF, CIPCTLNORMAL,
TRIMMED=, or WINSORIZED= to produce the output.

ALPHA=value
specifies the default confidence level to compute confidence limits. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.
Default: .05
Range: between 0 and 1
Main discussion: “Confidence Limits for Parameters of the Normal Distribution” on

page 1517
Featured in: Example 5 on page 1555

ANNOTATE=SAS-data-set
specifies an input data set that contains annotate variables as described in
SAS/GRAPH Reference. You can use this data set to add features to your
high-resolution graphics. PROC UNIVARIATE adds the features in this data set to
every high-resolution graph that is produced in the PROC step.
Alias: ANNO=
Interaction: PROC UNIVARIATE does not use the ANNOTATE= data set unless

you create a high-resolution graph with the HISTOGRAM, PROBPLOT, or
QQPLOT statement.

Tip: Use the ANNOTATE= option in the HISTOGRAM, PROBPLOT, or QQPLOT
statement if you want to add a feature to a specific graphics display.

CIBASIC<(<TYPE=keyword> <ALPHA=value>)>
requests confidence limits for the mean, standard deviation, and variance based on
the assumption that the data are normally distributed. For large sample sizes, this
assumption is not required for the mean because of the Central Limit Theorem.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED.
Default: TWOSIDED

ALPHA=value
specifies the confidence level to compute the confidence limit. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.
Default: The value of ALPHA= in the PROC statement
Range: between 0 and 1

Requirement: You must use the default value of VARDEF=, which is DF.
Main discussion: “Confidence Limits for Parameters of the Normal Distribution” on

page 1517
Featured in: Example 4 on page 1552 and Example 5 on page 1555

CIPCTLDF<(<TYPE=keyword> <ALPHA=value>)>
requests confidence limits for quantiles by using a method that is distribution-free.
In other words, no specific parametric distribution such as the normal is assumed for



1446 PROC UNIVARIATE Statement � Chapter 48

the data. PROC UNIVARIATE uses order statistics (ranks) to compute the confidence
limits as described by Hahn and Meeker (1991).

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER,
SYMMETRIC, or ASYMMETRIC.
Default: SYMMETRIC

ALPHA=value
specifies the confidence level to compute the confidence limit. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.
Default: The value of ALPHA= in the PROC statement
Range: between 0 and 1

Alias: CIQUANTDF
Restriction: This option is not available if you specify a WEIGHT statement.
Main discussion: “Confidence Limits for Quantiles” on page 1528
Featured in: Example 4 on page 1552

CIPCTLNORMAL <(<TYPE=keyword> <ALPHA=value>)>
requests confidence limits for quantiles based on the assumption that the data are
normally distributed.

TYPE=keyword
specifies the type of confidence limit, where keyword is LOWER, UPPER, or
TWOSIDED.
Default: TWOSIDED

ALPHA=value
specifies the confidence level to compute the confidence limit. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.
Default: The value of ALPHA= in the PROC statement
Range: between 0 and 1

Alias: CIQUANTNORMAL
Requirement: You must use the default value of VARDEF=, which is DF.
Restriction: This option is not available if you specify a WEIGHT statement.
Main discussion: “Confidence Limits for Quantiles” on page 1528

DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC UNIVARIATE treats observations with negative weights
like those with zero weights and counts them in the total number of observations.
Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 1510

FREQ
requests a frequency table that consists of the variable values, frequencies, cell
percentages, and cumulative percentages.
Interaction: If you specify the WEIGHT statement, PROC UNIVARIATE includes

the weighted count in the table and uses this value to compute the percentages.



The UNIVARIATE Procedure � PROC UNIVARIATE Statement 1447

GOUT=graphics-catalog
specifies the SAS catalog that PROC UNIVARIATE uses to save the high-resolution
graphics output.
Tip: If you omit the libref, PROC UNIVARIATE looks for the catalog in the

temporary library called WORK and creates the catalog if it does not exist.

See also: For information on storing graphics output in SAS catalogs, see
SAS/GRAPH Reference

LOCCOUNT
requests a table that shows the number of observations greater than, not equal to,
and less than the value of MU0=. PROC UNIVARIATE uses these values to
construct the sign test and the signed rank test.

Restriction: This option is not available if you specify a WEIGHT statement.
See also: MU0= on page 1447
Featured in: Example 4 on page 1552

MODES
requests a table of all possible modes. By default, when the data contain multiple
modes, PROC UNIVARIATE displays the lowest mode in the table of basic statistical
measures. When all the values are unique, PROC UNIVARIATE does not produce a
table of modes.
Alias: MODE

Main discussion: “Calculating the Mode” on page 1530
Featured in: Example 4 on page 1552

MU0=value(s)
specifies the value of the mean or location parameter (�

�
) in the null hypothesis for

tests of location. If you specify one value, PROC UNIVARIATE tests the same null
hypothesis for all analysis variables. If you specify multiple values, a VAR statement
is required, and PROC UNIVARIATE tests a different null hypothesis for each
analysis variable in the corresponding order.
Alias: LOCATION=
Default: 0

Main discussion: “Tests for Location” on page 1518
Example statement: The following statement tests if the mean of the first variable

equals 0 and the mean of the second variable equals 0.5.

proc univariate mu0=0 0.5;

Featured in: Example 5 on page 1555

NEXTROBS=n
specifies the number of extreme observations that PROC UNIVARIATE lists in the
table of extreme observations. The table lists the n lowest observations and the n
highest observations.
Default: 5

Range: an integer between 0 and the half the maximum number of observations
Tip: Use NEXTROBS=0 to suppress the table of extreme observations.
Featured in: Example 2 on page 1546

NEXTRVAL=n
specifies the number of extreme values that PROC UNIVARIATE lists in the table of
extreme values. The table lists the n lowest unique values and the n highest unique
values.



1448 PROC UNIVARIATE Statement � Chapter 48

Default: 0
Range: an integer between 0 and half the maximum number of observations
Featured in: Example 2 on page 1546

NOBYPLOT
suppresses side-by-side box plots when you use the BY statement and the ALL option
or the PLOT option in the PROC statement.

NOPRINT
suppresses all the tables of descriptive statistics that the PROC UNIVARIATE
statement creates. NOPRINT does not suppress the tables that the HISTOGRAM
statement creates.
Tip: Use NOPRINT when you want to create an OUT= output data set only.
Featured in: Example 6 on page 1560 and Example 7 on page 1561

NORMAL
requests tests for normality that include the Shapiro-Wilk test and a series of
goodness-of-fit tests based on the empirical distribution function.
Alias: NORMALTEST
Restriction: This option is not available if you specify a WEIGHT statement.
Main discussion: “Goodness-of-Fit Tests” on page 1520
Featured in: Example 5 on page 1555

PCTLDEF=value
specifies the definition that PROC UNIVARIATE uses to calculate quantiles.
Alias: DEF=
Default: 5
Range: 1, 2, 3, 4, 5
Restriction: You cannot use PCTLDEF= when you compute weighted quantiles.
Main discussion: “Percentile and Related Statistics” on page 1583

PLOTS
produces a stem-and-leaf plot (or a horizontal bar chart), a box plot, and a normal
probability plot. If you use a BY statement, side-by-side box plots that are labeled
Schematic Plots appear after the univariate analysis for the last BY group.
Alias: PLOT
Main discussion: “Generating Line Printer Plots” on page 1512
Featured in: Example 5 on page 1555

PLOTSIZE=n
specifies the approximate number of rows that the plots use. If n is larger than the
value of the SAS system option PAGESIZE=, PROC UNIVARIATE uses the value of
PAGESIZE=. If n is less than eight, PROC UNIVARIATE uses eight rows to draw
the plots.
Default: the value of PAGESIZE=
Range: 8 to the value of PAGESIZE=

ROBUSTSCALE
produces a table with robust estimates of scale. The statistics include the
interquartile range, Gini’s mean difference, the median absolute deviation about the
median (MAD), and two statistics proposed by Rousseeuw and Croux (1993), �

�
, and

��.
Restriction: This option is not available if you specify a WEIGHT statement.
Main discussion: “Robust Measures of Scale” on page 1527



The UNIVARIATE Procedure � PROC UNIVARIATE Statement 1449

ROUND=unit(s)
specifies the units to use to round the analysis variables prior to computing statistics.
If you specify one unit, PROC UNIVARIATE uses this unit to round all analysis
variables. If you specify multiple units, a VAR statement is required, and each unit
rounds the values of the corresponding analysis variable. If ROUND=0, no rounding
occurs.
Default: 0
Tip: ROUND= reduces the number of unique variable values, thereby reducing the

memory requirements.
Range: ≥ 0
Main discussion: “Rounding” on page 1511
Example statement: To make 1 the rounding unit for the first analysis variable

and 0.5 the rounding unit for second analysis variable, submit the statement

proc univariate round=1 0.5;

TRIMMED=value(s) <(<TYPE=keyword> <ALPHA=value>)>
requests a table of trimmed means, where value specifies the number or the
proportion of observations that PROC UNIVARIATE trims. If value is a proportion p
between 0 and .5, the number of observations that PROC UNIVARIATE trims is the
smallest integer that is greater than or equal to np, where n is the number of
observations.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER,
UPPER, or TWOSIDED.
Default: TWOSIDED

ALPHA=value
specifies the confidence level to compute the confidence limit. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.
Default: The value of ALPHA= in the PROC statement
Range: between 0 and 1

Alias: TRIM=
Range: between 0 and half the number of nonmissing observations. When a

proportion is specified, value must be less than .5.
Requirement: To compute confidence limits for the mean and the Student’s t test,

you must use the default value of VARDEF=, which is DF.
Restriction: This option is not available if you specify a WEIGHT statement.
Main discussion: “Trimmed Means” on page 1526
Featured in: Example 3 on page 1549

VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation.
Table 48.1 on page 1449shows the possible values for divisor and associated divisors.

Table 48.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n



1450 PROC UNIVARIATE Statement � Chapter 48

Value Divisor Formula for Divisor

WDF sum of weights minus one (�i wi) − 1

WEIGHT
|WGT

sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � 	��. When you weight the analysis variables,

��� equals
�


� �	� � 	��
�, where 	� is the weighted mean.

Default: DF

Requirement: To compute the standard error of the mean, confidence limits, and
Student’s t test, use the default value of VARDEF=.

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “Keywords and Formulas” on page 1578 and “WEIGHT Statement” on
page 1510

WINSORIZED=value(s) <(<TYPE=keyword> <ALPHA=value>)>
requests of a table of Winsorized means, where value is the number or the proportion
of observations that PROC UNIVARIATE uses to compute the Winsorized mean. If
value is a proportion p between 0 and .5, the number of observations that PROC
UNIVARIATE uses is equal to the smallest integer that is greater than or equal to
np, where n is the number of observations.

TYPE=keyword
specifies the type of confidence limit for the mean, where keyword is LOWER,
UPPER, or TWOSIDED.

Default: TWOSIDED

ALPHA=value
specifies the confidence level to compute the confidence limit. The percentage for
the confidence limits is (1–value) � 100. For example, ALPHA=.05 results in a 95
percent confidence limit.

Default: The value of ALPHA= in the PROC statement

Range: between 0 and 1

Alias: WINSOR=

Range: between 0 and half the number of nonmissing observations. When a
proportion is specified, value must be less than .5.

Requirement: To compute confidence limits and the Student’s t test, you must use
the default value of VARDEF=, which is DF.

Restriction: This option is not available if you specify a WEIGHT statement.

Main discussion “Winsorized Means” on page 1525

Featured in: Example 3 on page 1549



The UNIVARIATE Procedure � CLASS Statement 1451

BY Statement

Calculates univariate statistics separately for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. These variables are called
BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

CLASS Statement

Specifies up to two variables whose values define the classification levels for the analysis.

Interaction: When you use the HISTOGRAM, PROBPLOT, or QQPLOT statement, PROC
UNIVARIATE creates comparative histograms, comparative probability plots, or
comparative quantile-quantile plots.

Featured in: Example 9 on page 1568

CLASS variable-1<(variable-option(s))> <variable-2<(variable-option(s))>>
</ KEYLEVEL=’value1’|(’value1’ ’value2’)>;



1452 CLASS Statement � Chapter 48

Required Arguments

variable-n
specifies one or two variables that the procedure uses to group the data into
classification levels. Variables in a CLASS statement are referred to as class
variables.

Class variables can be numeric or character. Class variables can have continuous
values, but they typically have a few discrete values that define levels of the variable.
You do not have to sort the data by class variables. PROC UNIVARIATE uses the
formatted values of the class variables to determine the classification levels.

You can use the HISTOGRAM, PROBPLOT, or QQPLOT statement with the
CLASS statement to create one-way and two-way comparative plots. When you use
one class variable, PROC UNIVARIATE displays an array of component plots
(stacked or side-by-side), one for each level of the classification variable. When you
use two class variables, PROC UNIVARIATE displays a matrix of component plots,
one for each combination of levels of the classification variables. The observations in
a given level are referred to collectively as a cell.
Restriction: The length of a character class variable cannot exceed 16.
Interaction: When you create a one-way comparative plot, the observations in the

input data set are sorted by the formatted values (levels) of the variable. PROC
UNIVARIATE creates a separate plot for the analysis variable values in each level,
and arranges these component plots in an array to form the comparative plot with
uniform horizontal and vertical axes.

When you create a two-way comparative plot, the observations in the input data
set are cross-classified according to the values (levels) of these variables. PROC
UNIVARIATE creates a separate plot for the analysis variable values in each cell
of the cross-classification and arranges these component plots in a matrix to form
the comparative plot with uniform horizontal and vertical axes. The levels of
variable-1 are the labels for the rows of the matrix, and the levels of variable-2 are
the labels for the columns of the matrix.

Interaction: If you associate a label with a variable, PROC UNIVARIATE displays
the variable label in the comparative plot and this label is parallel to the column
(or row) labels.

Tip: Use the MISSING option to treat missing values as valid levels.
Tip: To reduce the number of classification levels, use a FORMAT statement to

combine variable values.

Options

KEYLEVEL=’value1’|(’value1’ ’value2’)
specifies the key cell in a comparative plot. PROC UNIVARIATE first determines the
bin size and midpoints for the key cell, and then extends the midpoint list to
accommodate the data ranges for the remaining cells. Thus, the choice of the key cell
determines the uniform horizontal axis that PROC UNIVARIATE uses for all cells.

If you specify only one class variable and use a HISTOGRAM statement,
KEYLEVEL=’value’ identifies the key cell as the level for which variable is equal to
value. By default, PROC UNIVARIATE sorts the levels in the order that is
determined by the ORDER= option. Then, the key cell is the first occurrence of a
level in this order. The cells display in order from top to bottom or left to right.
Consequently, the key cell appears at the top (or left). When you specify a different
key cell with the KEYLEVEL= option, this cell appears at the top (or left).



The UNIVARIATE Procedure � CLASS Statement 1453

Likewise, with the PROBPLOT statement and the QQPLOT statement the key cell
determines uniform axis scaling.

If you specify two class variables, use KEYLEVEL=(’value1’ ’value2’) to identify
the key cell as the level for which variable-n is equal to value-n. By default, PROC
UNIVARIATE sorts the levels of the first variable in the order that is determined by
its ORDER= option and, within each of these levels, it sorts the levels of the second
variable in the order that is determined by its ORDER= option. Then, the default
key cell is the first occurrence of a combination of levels for the two variables in this
order. The cells display in the order of variable-1 from top to bottom and in the order
of variable-2 from left to right. Consequently, the default key cell appears at the
upper left corner. When you specify a different key cell with the KEYLEVEL= option,
this cell appears at the upper left corner.
Restriction: The length of the KEYLEVEL= value cannot exceed 16 characters and

you must specify a formatted value.
Requirement: This option is not available unless you specify a HISTOGRAM,

PROBPLOT, or QQPLOT statement.
See also: the ORDER= option on page 1453

MISSING
specifies to treat the missing values for the class variable as valid classification
levels. Special missing values that represent numeric values (the letters A through Z
and the underscore (_) character) are each considered as a separate value.
Default: If you omit MISSING, PROC UNIVARIATE excludes the observations with

a missing class variable value from the analysis.
Requirement: Enclose this option in parentheses after the class variable.
See also: SAS Language Reference: Concepts for a discussion of missing values that

have special meaning.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the display order for the class variable values, where

DATA
orders values according to their order in the input data set.
Interaction: When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement,

PROC UNIVARIATE displays the rows (columns) of the comparative plot from
top to bottom (left to right) in the order that the class variable values first
appear in the input data set.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.
Interaction: When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement,

PROC UNIVARIATE displays the rows (columns) of the comparative plot from
top to bottom (left to right) in increasing order of the formatted class variable
values. For example, a numeric class variable DAY (with values 1, 2, and 3) has
a user-defined format that assigns Wednesday to the value 1, Thursday to the
value 2, and Friday to the value 3. The rows of the comparative plot will
appear in alphabetical order (Friday, Thursday, Wednesday) from top to bottom.

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first. If two or more values have the same frequency count,
PROC UNIVARIATE uses the formatted values to determine the order.
Interaction: When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement,

PROC UNIVARIATE displays the rows (columns) of the comparative plot from



1454 FREQ Statement � Chapter 48

top to bottom (left to right) in order of decreasing frequency count for the class
variable values.

INTERNAL
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment.

If there are two or more distinct internal values with the same formatted value
then PROC UNIVARIATE determines the order by the internal value that occurs
first in the input data set.
Interaction: When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement,

PROC UNIVARIATE displays the rows (columns) of the comparative plot from
top to bottom (left to right) in increasing order of the internal (unformatted)
values of the class variable. The first class variable is used to label the rows of
the comparative plots (top to bottom). The second class variable are used to
label the columns of the comparative plots (left to right). For example, a
numeric class variable DAY (with values 1, 2, and 3) has a user-defined format
that assigns Wednesday to the value 1, Thursday to the value 2, and Friday to
the value 3. The rows of the comparative plot will appear in day-of-the-week
order (Wednesday, Thursday, Friday) from top to bottom.

Default: INTERNAL
Requirement: Enclose this option in parentheses after the class variable.
Interaction: When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement

and ORDER=INTERNAL, PROC UNIVARIATE constructs the levels of the class
variables by using the formatted values of the variables. The formatted values of
the first class variable are used to label the rows of the comparative plots (top to
bottom). The formatted values of a second class variable are used to label the
columns of the comparative plots (left to right).

PROC UNIVARIATE determines the layout of a two-way comparative plot by
using the order for the first class variable to obtain the order of the rows from top
to bottom. Then it applies the order for the second class variable to the
observations that correspond to the first row to obtain the order of the columns
from left to right. If any columns remain unordered (that is, the categories are
unbalanced), PROC UNIVARIATE applies the order for the second class variable
to the observations in the second row, and so on, until all the columns have been
ordered.

Featured in: Example 9 on page 1568

FREQ Statement

Specifies a numeric variable whose values represent the frequency of the observation.

Tip: The FREQ statement affects the degrees of freedom, but the WEIGHT statement
does not.
See also: For an example that uses the FREQ statement, see “FREQ” on page 56

FREQ variable;

Required Arguments



The UNIVARIATE Procedure � HISTOGRAM Statement 1455

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If variable is not an
integer, the SAS System truncates it. If variable is less than 1 or is missing, the
procedure excludes that observation from the analysis.

HISTOGRAM Statement

Creates histograms using high-resolution graphics and optionally superimposes parametric and
nonparametric density curve estimates.

Alias: HIST

Restriction: You can not specify the WEIGHT statement with the HISTOGRAM
statement.

Tip: You can use multiple HISTOGRAM statements.

Featured in: Example 2 on page 1546, Example 7 on page 1561 and Example 9 on page
1568

HISTOGRAM <variable(s)> </ option(s)>;

To do this Use this option

Create output data set with information on
histogram intervals

OUTHISTOGRAM=

Request estimated density curve

Fit beta density with threshold parameter �, scale
parameter �, and shape parameters � and �

BETA(beta-suboptions)

Fit exponential density with threshold parameter �
and scale parameter �

EXPONENTIAL(exponential-suboptions)

Fit gamma density with threshold parameter �,
scale parameter �, and shape parameter �

GAMMA(gamma-suboptions)

Fit nonparametric kernel density estimates KERNEL(kernel-suboptions)

Fit lognormal density with threshold parameter �,
scale parameter � , and shape parameter �

LOGNORMAL(lognormal-suboptions)

Fit normal density with mean � and standard
deviation �

NORMAL(normal-suboptions)

Fit Weibull density with threshold parameter �,
scale parameter �, and shape parameter �

WEIBULL(Weibull-suboptions)

Parametric density curve suboptions

Specify shape parameter � for fitted beta or
gamma curve

ALPHA=



1456 HISTOGRAM Statement � Chapter 48

To do this Use this option

Specify second shape parameter � for beta fitted
curve

BETA=

Specify shape parameter � for fitted Weibull curve C=

Specify the mean � for fitted normal curve MU=

Specify scale parameter � for the fitted beta curve,
exponential curve, gamma curve and Weibull curve;
standard deviation � for fitted normal curve; or the
scale parameter � for the fitted lognormal curve

SIGMA=

Specify threshold parameter � for fitted beta curve,
exponential curve, gamma curve, lognormal curve,
and Weibull curve

THETA=

Specify scale parameter � for fitted lognormal curve ZETA=

Nonparametric density curve suboptions

Specify standardized bandwidth parameter � for
fitted kernel density estimates

C=

Specify type of kernel density curve K=

Specify lower bounds for fitted kernel density
estimates

LOWER=

Specify upper bounds for fitted kernel density
estimates

UPPER=

Control appearance of fitted density curves

Specify color of fitted curve COLOR=

Fill area under fitted curve FILL

Specify line type of fitted curve L=

Display table of histogram interval midpoints MIDPERCENTS

Suppress the table summarizing the fitted curve NOPRINT

List percentages for calculated and estimated
quantiles

PERCENTS=

Specify width of fitted density curve W=

Control general histogram layout

Specify width for the bars BARWIDTH=

Force creation of a histogram FORCEHIST

Draw reference lines in front of the histogram bars FRONTREF

Create a grid GRID

Specify offset for horizontal axis HOFFSET=

Specify reference lines perpendicular to the
horizontal axis

HREF=

Specify labels for HREF= lines HREFLABELS=

Specify vertical position of labels for HREF= lines HREFLABPOS=

Specify a line style for grid lines LGRID=



The UNIVARIATE Procedure � HISTOGRAM Statement 1457

To do this Use this option

List percentages for histogram intervals MIDPOINTS=

Suppress histogram bars NOBARS

Suppress frame around plotting area NOFRAME

Suppress label for horizontal axis NOHLABEL

Suppress plot NOPLOT

Suppress label for vertical axis NOVLABEL

Suppress tick marks and tick mark labels for
vertical axis

NOVTICK

Include right endpoint in interval RTINCLUDE

Turn and vertically string out characters in labels
for vertical axis

TURNVLABELS

Specify tick mark values for vertical axis VAXIS=

Specify label for vertical axis VAXISLABEL=

Specify length of offset at upper end of vertical axis VOFFSET=

Specify reference lines perpendicular to the vertical
axis

VREF=

Specify labels for VREF= lines VREFLABELS=

Specify horizontal position of labels for VREF= lines VREFLABPOS=

Specify scale for vertical axis VSCALE=

Specify line thickness for axes and frame WAXIS=

Specify line thickness for grid WGRID=

Enhance the graph

Specify annotate data set ANNOTATE=

Specify color for axis CAXIS=

Specify color of outlines of histogram bars CBARLINE=

Specify color for filling under curve CFILL=

Specify color for frame CFRAME=

Specify color for grid lines CGRID=

Specify color for HREF= lines CHREF=

Specify color for text CTEXT=

Specify color for VREF= lines CVREF=

Specify description for plot in graphics catalog DESCRIPTION=

Specify software font for text FONT=

Specify height of text used outside framed areas HEIGHT=

Specify number of horizontal minor tick marks HMINOR=

Specify software font for text inside framed areas INFONT=

Specify height of text inside framed areas INHEIGHT=

Specify line style for HREF= lines LHREF=



1458 HISTOGRAM Statement � Chapter 48

To do this Use this option

Specify line style for VREF= lines LVREF=

Specify name for plot in graphics catalog NAME=

Specify pattern for filling under curve PFILL=

Specify number of vertical minor tick marks VMINOR=

Specify line thickness for bar outlines WBARLINE=

Enhance comparative histograms

Apply annotation requested in ANNOTATE= data
set to key cell only

ANNOKEY

Specify color for filling frame for row labels CFRAMESIDE=

Specify color for filling frame for column labels CFRAMETOP=

Specify color for proportion of frequency bar CPROP=

Specify distance between tiles INTERTILE=

Specify maximum number of bins to display MAXNBIN=

Limit the number of bins that display to within a
specified number of standard deviations above and
below mean of data in key cell

MAXSIGMAS=

Specify number of columns in comparative
histogram

NCOLS=

Specify number of rows in comparative histogram NROWS=

Arguments

variable(s)
identifies one or more analysis variables that the procedure uses to create histograms.
Default: If you omit variable(s) in the HISTOGRAM statement, then the procedure

creates a histogram for each variable that you list in the VAR statement, or for
each numeric variable in the DATA= data set if you omit a VAR statement.

Requirement: If you specify a VAR statement, use a subset of the variable(s) that
you list in the VAR statement. Otherwise, variable(s) are any numeric variables in
the DATA= data set.

Options

ALPHA=value
specifies the shape parameter � for fitted density curves when you request the BETA
and GAMMA options.
Alias: A= if you use it as a beta-suboption. SHAPE= if you use it as a

gamma-suboption
Default: a maximum likelihood estimate
Requirement: Enclose this suboption in parentheses after the BETA option or

GAMMA option.



The UNIVARIATE Procedure � HISTOGRAM Statement 1459

ANNOKEY
specifies to apply the annotation requested with the ANNOTATE= option to the key
cell only. By default, PROC UNIVARIATE applies annotation to all of the cells.
Requirement: This option is not available unless you specify the CLASS statement.
Tip: Use the KEYLEVEL= option in the CLASS statement to specify the key cell.
See also: the KEYLEVEL= option on page 1452

ANNOTATE=SAS-data-set
specifies an input data set that contains annotate variables as described in
SAS/GRAPH Reference.
Alias: ANNO=
Tip: You can also specify an ANNOTATE= data set in the PROC UNIVARIATE

statement to enhance all the graphic displays that the procedure creates.
See also: ANNOTATE= on page 1445 in the PROC UNIVARIATE statement

BARWIDTH=value
specifies the width of the histogram bars in screen percent units.

BETA<(beta-suboptions)>
displays a fitted beta density curve on the histogram.
Restriction: The BETA option can occur only once in a HISTOGRAM statement.
Interaction: The beta distribution is bounded below by the parameter � and above

by the value � � �. Use the THETA= and SIGMA= suboptions to specify these
parameters. The default values for THETA= and SIGMA= are 0 and 1,
respectively. You can specify THETA=EST and SIGMA=EST to request maximum
likelihood estimates for � and �.

Note: Three- and four-parameter maximum likelihood estimation may not
always converge. �

Interaction: The beta distribution has two shape parameters, � and �. If these
parameters are known, you can specify their values with the ALPHA= and BETA=
options. By default, PROC UNIVARIATE computes maximum likelihood estimates
for � and �.

Main Discussion: See “Beta Distribution” on page 1530
See also: the ALPHA= suboption on page 1458, BETA= suboption on page 1459,

SIGMA= suboption on page 1470, and THETA= suboption on page 1470

BETA=value
specifies the second shape parameter � for the fitted beta density curves when you
request the BETA option.
Alias: B=
Default: a maximum likelihood estimate
Requirement: Enclose this suboption in parentheses after the BETA option.

C=value
specifies the shape parameter � for the fitted Weibull density curve when you request
the WEIBULL option.
Default: a maximum likelihood estimate
Requirement: Enclose this suboption in parentheses after the WEIBULL option.

C=value(s)|MISE
specifies the standardized bandwidth parameter � for kernel density estimates when
you request the KERNEL option.
Default: the bandwidth that minimizes the approximate MISE.



1460 HISTOGRAM Statement � Chapter 48

Restriction: You can specify up to five values to request multiple estimates.
Requirement: Enclose this suboption in parentheses after the KERNEL option.
Interaction: You can also use the C= suboption with the K= suboption, which

specifies the kernel function, to compute multiple estimates. If you specify more
kernel functions than bandwidths, PROC UNIVARIATE repeats the last
bandwidth in the list for the remaining estimates. Likewise, if you specify more
bandwidths than kernel functions, then PROC UNIVARIATE repeats the last
kernel function for the remaining estimates. For example, the following
statements compute three density estimates:

proc univariate;
var length;
histogram length / kernel(c=1 2 3 k=normal quadratic);
run;

The first uses a normal kernel and a bandwidth of 1, the second uses a quadratic
kernel and a bandwidth of 2, and the third uses a quadratic kernel and a
bandwidth of 3.

Tip: To estimate a bandwidth that minimizes the approximate mean integrated
square error (MISE) use the C=MISE suboption. For example, the following
statements compute three density estimates:

proc univariate;
var length;
histogram length / kernel(c=0.5 1.0 mise);

run;

The first two estimates have standardized bandwidths of 0.5 and 1.0, respectively,
and the third has a bandwidth that minimizes the approximate MISE.

CAXIS=color
specifies the color for the axes and tick marks.
Alias: CAXES= and CA=
Default: the first color in the device color list

CBARLINE=color
specifies the color for the outline of the histogram bars.
Default: the first color in the device color list
Featured in: Example 7 on page 1561

CFILL=color
specifies the color to fill the bars of the histogram (or the area under a fitted density
curve if you also specify the FILL option).
See also: FILL option on page 1463 and PFILL=option on page 1470
Featured in: Example 2 on page 1546, Example 7 on page 1561, and Example 9 on

page 1568

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame.
Default: The area is not filled.

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of the comparative histogram. This color also fills the frame area for the label of
the corresponding class variable (if you associate a label with the variable).
Default: These areas are not filled.
Requirement: This option is not available unless you specify the CLASS statement.



The UNIVARIATE Procedure � HISTOGRAM Statement 1461

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of the comparative histogram. This color also fills the frame area for the label of
the corresponding class variable (if you associate a label with the variable).

Default: These areas are not filled.

Requirement: This option is not available unless you specify the CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the histogram.

Default: the first color in the device color list

Interaction: This option automatically invokes the GRID= option.

CHREF=color
specifies the color for horizontal axis reference lines when you specify the HREF=
option.

Alias: CH=

Default: the first color in the device color list

COLOR=color
specifies the color of the density curve.

Requirement: You must enclose this suboption in parentheses after the density
curve option or the KERNEL option.

Interaction: You can specify as a KERNEL suboption a list of up to five colors in
parentheses for multiple kernel density estimates. If there are more estimates
than colors, the remaining estimates use the last color that you specify.

CPROP=color| EMPTY
specifies the color for a horizontal bar whose length (relative to the width of the tile)
indicates the proportion of the total frequency that is represented by the
corresponding cell in a comparative histogram.

Default: bars do not display

Requirement: This option is not available unless you specify the CLASS statement.

Tip: Use the keyword EMPTY to display empty bars.

CTEXT=color
specifies the color for tick mark values and axis labels.

Alias: CT=

Default: The color that you specify for the CTEXT= option in the GOPTIONS
statement. If you omit the GOPTIONS statement, the default is the first color in
the device color list.

CTEXTSIDE=color
specifies the color for the row labels that display along the left side of the
comparative histogram.

Default: The color for CTEXT=. If you omit this option, the color that you specify
for the CTEXT= option in the GOPTIONS statement. If you omit the GOPTIONS
statement, the default is the first color in the device color list.

Requirement: This option is not available unless you specify the CLASS statement.

Tip: Use CFRAMESIDE= to change the background color for the row labels.

CTEXTTOP=color
specifies the color for the row labels that display along the left side of the
comparative histogram.



1462 HISTOGRAM Statement � Chapter 48

Default: The color for CTEXT=. If you omit this option, the color that you specify
for the CTEXT= option in the GOPTIONS statement. If you omit the GOPTIONS
statement, the default is the first color in the device color list.

Requirement: This option is not available unless you specify the CLASS statement.
Tip: Use CFRAMETOP= to change the background color for the column labels.

CVREF=color
specifies the color for the reference lines that you request with the VREF= option.
Alias: CV=
Default: the first color in the device color list

DESCRIPTION=’string’
specifies a description, up to 40 characters long, that appears in the PROC
GREPLAY master menu.
Alias: DES=
Default: the variable name

ENDPOINTS<=value(s)|KEY|UNIFORM>
uses the endpoints as the tick mark values for the horizontal axis and determines
how to compute the bin width of the histogram bars, where

value(s)
specifies values for both the left and right endpoint of each histogram interval.
The width of the histogram bars is the difference between consecutive endpoints.
PROC UNIVARIATE uses the same value(s) for all variables.
Range: The range of endpoints must cover the range of the data. For example, if

you specify

endpoints=2 to 10 by 2

then all of the observations fall in the intervals [2,4) [4,6) [6,8) [8,10].
Requirement: You must use evenly spaced endpoints which you list in increasing

order.

KEY
determines the endpoints for the data in the key cell. The initial number of
endpoints is based on the number of observations in the key cell using the method
of Terrell and Scott (1985). PROC UNIVARIATE extends the endpoint list for the
key cell in either direction as necessary until it spans the data in the remaining
cells.
Requirement: This option is not available unless you specify the CLASS statement.

UNIFORM
determines the endpoints by using all the observations as if there were no cells. In
other words, the number of endpoints is based on the total sample size by using
the method of Terrell and Scott (1985).
Requirement: This option does not apply unless you specify the CLASS statement.

Default: If you omit ENDPOINTS, then PROC UNIVARIATE uses the midpoints. If
you specify ENDPOINTS, PROC UNIVARIATE computes the endpoints by using
an algorithm (Terrell and Scott, 1985) that is primarily applicable to continuous
data that are approximately normally distributed.

Interaction: If you specify both MIDPOINTS= and ENDPOINTS, then PROC
UNIVARIATE issues a warning message and uses the endpoints.

Interaction: If you specify RTINCLUDE, then PROC UNIVARIATE includes the
right endpoint of each histogram interval in that interval instead of including the
left endpoint.



The UNIVARIATE Procedure � HISTOGRAM Statement 1463

Interaction: If you use a CLASS statement and specify ENDPOINTS, then PROC
UNIVARIATE use ENDPOINTS=KEY as the default. However if the key cell is
empty, then PROC UNIVARIATE use ENDPOINTS=UNIFORM.

See also: MIDPOINTS= option on page 1467 and RTINCLUDE option on page 1470

EXPONENTIAL<(exponential-suboptions)>
displays a fitted exponential density curve on the histogram.
Alias EXP
Restriction: The EXPONENTIAL option can occur only once in a HISTOGRAM

statement.
Interaction: The parameter � must be less than or equal to the minimum data

value. Use the THETA= suboption to specify �. The default value for � is zero.
Specify THETA=EST to request the maximum likelihood estimate for �.

Interaction: Use the SIGMA= suboption to specify �. By default, PROC
UNIVARIATE computes a maximum likelihood estimate for �. For example, the
following statements fit an exponential curve with � � �� and with a maximum
likelihood estimate for �:

proc univariate;
var length;
histogram / exponential(theta=10 l=2 color=red);

run;

Main discussion: See “Exponential Distribution” on page 1531
See also: the SIGMA= suboption on page 1470 and THETA= suboption on page 1470
Featured in: Example 7 on page 1561

FILL
fills areas under the fitted density curve or the kernel density estimate with colors
and patterns.
Restriction: The FILL suboption can occur with only one fitted curve.
Requirement: Enclose the FILL suboption in parentheses after a density curve

option or the KERNEL option.
Interaction: The CFILL= and PFILL= options specify the color and pattern for the

area under the curve.
See also: For a list of available colors and patterns, see SAS/GRAPH Reference

Featured in: Example 7 on page 1561

FONT=font
specifies a software font for the axis labels.
Default: hardware characters
Interaction: The FONT= font takes precedence over the FTEXT= font that you

specify in the GOPTIONS statement.
Tip: Reference line labels use the font that you specify in the GOPTIONS statement.

FRONTREF
draws reference lines in front of the histogram bars instead of behind them.
Tip: Use FRONTREF when a vertical reference line intersects a histogram bar that

is close to the top of the chart. Otherwise, the reference line is almost completely
obscured because it is drawn behind the bar. The reference line is visible when it
is drawn in front of the bar.

See also: HREF= option on page 1464and VREF= option on page 1471

FORCEHIST



1464 HISTOGRAM Statement � Chapter 48

forces PROC UNIVARIATE to create a histogram when there is only one unique
observation. By default, if the standard deviation of the data is zero then PROC
UNIVARIATE does not create a histogram.

GAMMA<(gamma-suboptions)>
displays a fitted gamma density curve on the histogram.
Restriction: The GAMMA option can occur only once in a HISTOGRAM statement.
Interaction: The parameter � must be less than the minimum data value. Use the

THETA= suboption to specify �. The default value for � is zero. Specify
THETA=EST to request the maximum likelihood estimate for �.

Interaction: Use the ALPHA= and the SIGMA= suboptions to specify the shape
parameter � and the scale parameter �. By default, PROC UNIVARIATE
computes maximum likelihood estimates for � and �. For example, the following
statements fit a gamma curve with � � � and with a maximum likelihood
estimate for � and �:

proc univariate;
var length;
histogram length/ gamma(theta=4);

run;

PROC UNIVARIATE calculates the maximum likelihood estimate of � iteratively
using the Newton-Raphson approximation.

Main discussion: See “Gamma Distribution” on page 1532
See also: the SIGMA= suboption on page 1470, ALPHA= suboption on page 1458,

and the THETA= suboption on page 1470

GRID
specifies to display a grid on the histogram. Grid lines are horizontal lines that are
positioned at major tick marks on the vertical axis.
See also: the CGRID= option on page 1461

HEIGHT=value
specifies the height in percentage screen units of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.

HMINOR=n
specifies the number of minor tick marks between each major tick mark on the
horizontal axis. PROC UNIVARIATE does not label minor tick marks.
Alias: HM=
Default: 0

HOFFSET=value
specifies the offset in percentage screen units at both ends of the horizontal axis.
Tip: Use HOFFSET=0 to eliminate the default offset.

HREF=value(s)
draws reference lines that are perpendicular to the horizontal axis at the values that
you specify.
Tip: If a reference line is almost completely obscured, then use the FRONTREF

option to draw the reference lines in front of the histogram bars.
See also: CHREF= option on page 1461, FRONTREF on page 1463, and LHREF=

option on page 1466.

HREFLABELS=’label1’ … ’labeln’
specifies labels for the reference lines that you request with the HREF= option.



The UNIVARIATE Procedure � HISTOGRAM Statement 1465

Alias: HREFLABEL= and HREFLAB=
Restriction: The number of labels must equal the number of reference lines. Labels

can have up to 16 characters.

HREFLABPOS=n
specifies the vertical position of HREFLABELS= labels, where n is

1 positions the labels along the top of the histogram

2 staggers the labels from top to bottom

3 positions the labels along the bottom.
Default: 1

INFONT=font
specifies a software font to use for text inside the framed areas of the histogram. The
INFONT= option takes precedence over the FTEXT= option in the GOPTIONS
statement.
See also: For a list of fonts, see SAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units of text, to use inside the framed areas
of the histogram.
Default: the height that you specify with the HEIGHT= option. If you do not

specify the HEIGHT= option, the default height is the height that you specify with
the HTEXT= option in the GOPTIONS statement.

INTERTILE=value
specifies the distance in horizontal percentage screen units between the framed
areas, which are called tiles.
Default: .75 in percentage screen units.
Requirement: This option is not available unless you specify the CLASS statement.
Tip: Use INTERTILE=0 to create contiguous tiles.
Featured in: Example 9 on page 1568

K=NORMAL | QUADRATIC | TRIANGULAR
specifies the kernel function (normal, quadratic, or triangular) that PROC
UNIVARIATE uses to compute a kernel density estimate.
Default: normal kernel
Restriction: You can specify up to five values to request multiple estimates.
Requirement: You must enclose this suboption in parentheses after the KERNEL

option.
Interaction: You can also use the K= suboption with the C= suboption, which

specifies standardized bandwidths. If you specify more kernel functions than
bandwidths, PROC UNIVARIATE repeats the last bandwidth in the list for the
remaining estimates. Likewise, if you specify more bandwidths than kernel
functions, PROC UNIVARIATE repeats the last kernel function for the remaining
estimates. For example, the following statements compute three estimates with
bandwidths of 0.5, 1.0, and 1.5:

proc univariate;
var length;
histogram length / kernel(c=0.5 1.0 1.5 k=normal quadratic);

run;

The first estimate uses a normal kernel, and the last two estimates use a
quadratic kernel.



1466 HISTOGRAM Statement � Chapter 48

KERNEL<(kernel-suboptions)>
superimposes up to five kernel density estimates on the histogram. By default,
PROC UNIVARIATE uses the AMISE method to compute kernel density estimates.
Tip: To request multiple kernel density estimates on the same histogram, specify a

list of values for either the C= suboption or K= suboption.
Main discussion: “Kernel Density Estimates” on page 1534
See also: C= suboption on page 1459, K= suboption on page 1465, LOWER=

suboption on page 1466, and UPPER= suboption on page 1471

L=linetype
specifies the line type for a fitted density curve or kernel density estimate curve.
Default: 1, which produces a solid line.
Requirement: You must enclose the L= suboption in parentheses after a density

curve option or the KERNEL option.
Interaction: If you use the L= suboption with the KERNEL option, you can specify

a single line type or a list of line types.
See also: For a list of available line types, see SAS/GRAPH Reference

Featured in: Example 7 on page 1561

LGRID=linetype
specifies the line type for the grid when a grid displays on the histogram.
Default: 1, which produces a solid line
Interaction: This option automatically invokes the GRID= option.

LHREF=linetype
specifies the line type for the reference lines that you request with the HREF= option.
Alias: LH=
Default: 2, which produces a dashed line

LOGNORMAL<(lognormal-suboptions)>
displays a fitted lognormal density curve on the histogram.
Restriction: The LOGNORMAL option can occur only once in a HISTOGRAM

statement.
Interaction: The parameter � must be less than the minimum data value. Use the

THETA= suboption to specify �. The default value for � is zero. Specify
THETA=EST to request the maximum likelihood estimate for �.

Interaction: Use the SIGMA= and ZETA= suboptions to specify � and � . By
default, PROC UNIVARIATE computes a maximum likelihood estimate for � and
� . For example, the following statements fit a lognormal distribution function with
a default value of � � � and with maximum likelihood estimates for � and � :

proc univariate;
var length;
histogram length/ lognormal;

run;

Main discussion: See “Lognormal Distribution” on page 1533
See also: the ZETA= suboption on page 1473, SIGMA= suboption on page 1470, and

THETA= suboption on page 1470

LOWER=value(s)
specifies the lower bounds for fitted kernel density curves when you request the
KERNEL option.
Default: a missing value, no lower bounds for fitted kernel density curves.



The UNIVARIATE Procedure � HISTOGRAM Statement 1467

Requirement: Enclose this suboption in parentheses after the KERNEL option.

Interaction: If you specify more kernel curves than lower bounds, PROC
UNIVARIATE repeats the last lower bound in the list for the remaining density
curves.

LVREF=linetype
specifies the line type for the reference lines that you request with the VREF= option.

Alias: LV=

Default: 2, which produces a dashed line

MAXNBIN=n
specifies the maximum number of bins in the comparative histogram that display.
This option is useful when the scales or ranges of the data distributions differ greatly
from cell to cell.

By default, PROC UNIVARIATE determines the bin size and midpoints for the key
cell, and then extends the midpoint list to accommodate the data ranges for the
remaining cells. However, if the cell scales differ considerably, the resulting number
of bins may be so great that each cell histogram is scaled into a narrow region. By
using MAXNBIN= to limit the number of bins, you can narrow the window about the
data distribution in the key cell.

Requirement: This option is not available unless you specify the CLASS statement.

Tip: MAXNBIN= provides an alternative to the MAXSIGMAS= option.

MAXSIGMAS=value
specifies to limit the number of bins in the comparative histogram that display to a
range of value standard deviations (of the data in the key cell) above and below the
mean of the data in the key cell. This option is useful when the scales or ranges of
the data distributions differ greatly from cell to cell.

By default, PROC UNIVARIATE determines the bin size and midpoints for the key
cell, and then extends the midpoint list to accommodate the data ranges for the
remaining cells. However, if the cell scales differ considerably, the resulting number
of bins may be so great that each cell histogram is scaled into a narrow region. By
using MAXSIGMAS= to limit the number of bins, you can narrow the window that
surrounds the data distribution in the key cell.

Requirement: This option is not available unless you specify the CLASS statement.

MIDPERCENTS
requests a table that lists the midpoints and percentage of observations in each
histogram interval.

Interaction: If you specify MIDPERCENTS in parentheses after a density estimate
option, PROC UNIVARIATE displays a table that lists the midpoints, the observed
percentage of observations, and the estimated percentage of the population in each
interval (estimated from the fitted distribution).

MIDPOINTS=value(s)|KEY|UNIFORM
specifies how to determine the midpoints for the histogram intervals, where

value(s)
determines the width of the histogram bars as the difference between consecutive
midpoints. PROC UNIVARIATE uses the same value(s) for all variables.

Range: The range of midpoints, extended at each end by half of the bar width,
must cover the range of the data. For example, if you specify

midpoints=2 to 10 by 0.5

then all of the observations should fall between 1.75 and 10.25.



1468 HISTOGRAM Statement � Chapter 48

Requirement: You must use evenly spaced midpoints which you list in increasing
order.

KEY
determines the midpoints for the data in the key cell. The initial number of
midpoints is based on the number of observations in the key cell that use the
method of Terrell and Scott (1985). PROC UNIVARIATE extends the midpoint list
for the key cell in either direction as necessary until it spans the data in the
remaining cells.
Requirement: This option is not available unless you specify the CLASS statement.

UNIFORM
determines the midpoints by using all the observations as if there were no cells. In
other words, the number of midpoints is based on the total sample size by using
the method of Terrell and Scott (1985).
Requirement: This option does not apply unless you specify the CLASS statement.

Default: If you use a CLASS statement, MIDPOINTS=KEY; however, if the key cell
is empty then MIDPOINTS=UNIFORM. Otherwise, PROC UNIVARIATE computes
the midpoints by using an algorithm (Terrell and Scott, 1985) that is primarily
applicable to continuous data that are approximately normally distributed.

Featured in: Example 2 on page 1546, Example 7 on page 1561, and Example 9 on
page 1568

MU=value
specifies the parameter � for normal density curves.
Default: the sample mean
Requirement: You must enclose this suboption in parentheses after the NORMAL

option.

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu.
Default: UNIVAR

NCOLS=n
specifies the number of columns in the comparative histogram.
Alias: NCOL=
Default: NCOLS=1, if you specify only one class variable, and NCOLS=2, if you

specify two class variables.
Requirement: This option is not available unless you specify the CLASS statement.
Interaction: If you specify two class variables, you can use the NCOLS= option

with the NROWS= option.
Featured in: Example 9 on page 1568

NOBARS
suppresses drawing of histogram bars.
Tip: Use this option to display only the fitted curves.

NOFRAME
suppresses the frame that surrounds the subplot area.

NOHLABEL
suppresses the label for the horizontal axis.
Tip: Use this option to reduce clutter.

NOPLOT



The UNIVARIATE Procedure � HISTOGRAM Statement 1469

suppresses the creation of a plot.
Alias: NOCHART
Tip: Use NOPLOT when you want to display only descriptive statistics for a fitted

density or create an OUTHISTOGRAM= data set.

NOPRINT
suppresses the table of statistics that summarizes the fitted density curve.
Requirement: Enclose this option in the parentheses that follow the density curve

option.
Featured in: Example 7 on page 1561

NORMAL<(normal-suboptions)>
displays a fitted normal density curve on the histogram.
Restriction: The NORMAL option can occur only once in a HISTOGRAM statement.
Interaction: Use the MU= and SIGMA= suboptions to specify � and �. By default,

PROC UNIVARIATE uses the sample mean and sample standard deviation for �
and �.

Main discussion: See “Normal Distribution” on page 1533
See also: the MU= suboption on page 1468 and the SIGMA= suboption on page 1470
Featured in: Example 7 on page 1561

NOVLABEL
suppresses the label for the vertical axis.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis.
Interaction: This option automatically invokes the NOVLABEL option.

NROWS=n
specifies the number of rows in the comparative histogram.
Alias: NROW=
Default: 2
Requirement: This option is not available unless you specify the CLASS statement.
Interaction: If you specify two class variables, you can use the NCOLS= option

with the NROWS= option.
Featured in: Example 9 on page 1568

OUTHISTOGRAM=SAS-data-set
creates a SAS data set that contains information about histogram intervals.
Specifically, the data set contains the midpoints of the histogram intervals, the
observed percentage of observations in each interval, and the estimated percentage of
observations in each interval (estimated from each of the specified fitted curves).
Alias: OUTHIST=
See also: “OUTHISTOGRAM= Data Set” on page 1543

PERCENTS=value(s)
specifies a list of percentages that PROC UNIVARIATE uses to calculate quantiles
from the data and to estimate quantiles from the fitted density curve.
Alias: PERCENT=
Default: 1, 5, 10, 25, 50, 75, 90, 95, and 99 percent
Range: between 0 and 100
Requirement: You must enclose this suboption in parentheses after the curve

option.



1470 HISTOGRAM Statement � Chapter 48

PFILL=pattern
specifies a pattern to fill the bars of the histograms (or the areas that are under a
fitted density curve if you also specify the FILL option).
Default: The bars and curve areas are not filled.

See also: CFILL= option on page 1460 and FILL option on page 1463
See also: SAS/GRAPH Reference

Featured in: Example 2 on page 1546

RTINCLUDE
includes the right endpoint of each histogram interval in that interval. By default,
PROC UNIVARIATE includes the left endpoint in the histogram interval.

SCALE=value
is an alias for the SIGMA= suboption when you request density curves with the
BETA, EXPONENTIAL, GAMMA, and WEIBULL options and an alias for the
ZETA= suboption when you request density curves with the LOGNORMAL option.
See also: SIGMA= suboption on page 1470 and ZETA= suboption on page 1473

SHAPE=value
is an alias for the ALPHA= suboption when you request gamma curves with the
GAMMA option, the SIGMA= suboption when you request lognormal curves with the
LOGNORMAL option, and the C= suboption when you request Weibull curves with
the WEIBULL option.
See also: ALPHA suboption on page 1458, SIGMA suboption on page 1470, and C=

suboption on page 1459

SIGMA=value|EST
specifies the parameter � for the fitted density curve when you request the BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, and WEIBULL options. See
Table 48.2 on page 1470 for a summary of how to use the SIGMA= suboption.
Default: see Table 48.2 on page 1470
Requirement: You must enclose this suboption in parentheses after the density

curve option.
Tip: As a BETA suboption, you can specify SIGMA=EST to request a maximum

likelihood estimate for �.

Table 48.2 Uses of the SIGMA Suboption

Distribution Keyword SIGMA= Specifies Default Value Alias

BETA scale parameter � 1 SCALE=

EXPONENTIAL scale parameter � maximum likelihood estimate SCALE=

GAMMA scale parameter � maximum likelihood estimate SCALE=

WEIBULL scale parameter � maximum likelihood estimate SCALE=

LOGNORMAL shape parameter � maximum likelihood estimate SCALE=

NORMAL scale parameter � standard deviation SHAPE=

THETA=value|EST
specifies the lower threshold parameter � for the fitted density curve when you
request the BETA, EXPONENTIAL, GAMMA, LOGNORMAL, and WEIBULL
options.



The UNIVARIATE Procedure � HISTOGRAM Statement 1471

Default: 0
Requirement: You must enclose this suboption in parentheses after the curve

option.

Tip: To compute a maximum likelihood estimate for �, specify THETA=EST.

THRESHOLD= value
is an alias for the THETA= option. See the THETA= suboption on page 1470.

TURNVLABELS
specifies that PROC UNIVARIATE turn the characters in the vertical axis labels so
that they display vertically. This happens by default when you use a hardware font.
Alias: TURNVLABEL

UPPER=value(s)
specifies the upper bounds for fitted kernel density curves when you request the
KERNEL option.
Default: a missing value, no upper bounds for fitted kernel density curves.

Requirement: Enclose this suboption in parentheses after the KERNEL option.
Interaction: If you specify more kernel curves than upper bounds, PROC

UNIVARIATE repeats the last upper bound in the list for the remaining density
curves.

VAXIS=value(s)
specifies tick mark values for the vertical axis.
Requirement: Use evenly spaced values which you list in increasing order. The

first value must be zero and the last value must be greater than or equal to the
height of the largest bar. You must scale the values in the same units as the bars.

See also: the VSCALE= option on page 1472

Featured in: Example 9 on page 1568

VAXISLABEL=’label’
specifies a label for the vertical axis.
Requirement: Labels can have up to 40 characters.
Featured in: Example 9 on page 1568

VMINOR=n
specifies the number of minor tick marks between each major tick mark on the
vertical axis. PROC UNIVARIATE does not label minor tick marks.
Alias: VM=

Default: 0

VOFFSET=value
specifies the offset in percentage screen units at the upper end of the vertical axis.

VREF=value(s)
draws reference lines that are perpendicular to the vertical axis at the value(s) that
you specify.
Tip: If a reference line is almost completely obscured, then use the FRONTREF

option to draw the reference lines in front of the histogram bars.
See also: CVREF= option on page 1462,FRONTREF on page 1463, and LVREF=

option on page 1467.

VREFLABELS=’ label1’… ’labeln’
specifies labels for the reference lines that you request with the VREF= option.
Alias: VREFLABEL= and VREFLAB=



1472 HISTOGRAM Statement � Chapter 48

Restriction: The number of labels must equal the number of reference lines. Labels
can have up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of VREFLABELS= labels, where n is

1 positions the labels at the left of the histogram.

2 positions the labels at the right of the histogram.
Default: 1

VSCALE=scale
specifies the scale of the vertical axis, where scale is

COUNT
scales the data in units of the number of observations per data unit.

PERCENT
scales the data in units of percentage of observations per data unit.

PROPORTION
scales the data in units of proportion of observations per data unit.

Default: PERCENT
Featured in: Example 9 on page 1568

W=n
specifies the width in pixels of the fitted density curve or the kernel density estimate
curve.
Default: 1
Requirement: You must enclose this suboption in parentheses after the density

curve option or the KERNEL option.
Interaction: As a KERNEL suboption, you can specify a list of up to five W= values.

WAXIS=n
specifies the line thickness (in pixels) for the axes and frame.
Default: 1

WBARLINE=n
specifies the line thickness for the histogram bar outlines.
Default: 1

WEIBULL<(Weibull-suboptions)>
displays a fitted Weibull density curve on the histogram.
Restriction: The WEIBULL option can occur only once in a HISTOGRAM

statement.
Interaction: The parameter � must be less than the minimum data value. Use the

THETA= suboption to specify �. The default value for � is zero. Specify
THETA=EST to request the maximum likelihood estimate for �.

Interaction: Use ALPHA= and the SIGMA= suboptions to specify the shape
parameter � and the scale parameter �. By default, PROC UNIVARIATE
computes the maximum likelihood estimates for � and �. For example, the
following statements fit a Weibull curve with � � �� and with a maximum
likelihood estimate for � and �:

proc univariate;
var length;
histogram length/ weibull(theta=4);



The UNIVARIATE Procedure � INSET Statement 1473

run;

PROC UNIVARIATE calculates the maximum likelihood estimate of � iteratively
by using the Newton-Raphson approximation.

Main discussion: See “Weibull Distribution” on page 1534
See also: the C= suboption on page 1459, SIGMA= suboption on page 1470, and

THETA= suboption on page 1470

WGRID=n
specifies the line thickness for the grid.

ZETA= value
specifies a value for the scale parameter � for the lognormal density curve when you
request the LOGNORMAL option.
Default: a maximum likelihood estimate
Requirement: You must enclose this suboption in parentheses after the

LOGNORMAL option.

ID Statement

Identifies the extreme observations in the table of extreme observations.

Featured in: Example 2 on page 1546

ID variable(s);

Required Arguments

variable(s)
specifies one or more variables to include in the table of extreme observations. The
corresponding values of the ID variables appear beside the n largest and n smallest
observations, where n is the value of NEXTROBS= option.
See also: NEXTROBS= on page 1447

INSET Statement

Places a box or table of summary statistics, called an inset, directly in the high-resolution graph.

Requirement: The INSET statement must follow the HISTOGRAM, PROBPLOT, or
QQPLOT statement that creates the plot that you want to augment. The inset appears
in all the graphs that the preceding plot statement produces.
Tip: You can use multiple INSET statements.
Featured in: Example 8 on page 1566 and Example 9 on page 1568

INSET <keyword(s) DATA=SAS-data-set> </ option(s)>;



1474 INSET Statement � Chapter 48

Arguments

keyword(s)
specifies one or more keywords that identify the information to display in the inset.
PROC UNIVARIATE displays the information in the order that you request the
keywords.

You can specify statistical keywords, primary keywords, and secondary keywords.
The available statistical keywords are

Descriptive statistic keywords

CSS CV KURTOSIS

MAX MEAN N

MIN MODE RANGE

NMISS NOBS STDMEAN

SKEWNESS STD USS

SUM SUMWGT VAR

Quantile statistic keywords

MEDIAN P1 P5

P10 P90 P95

P99 Q1 Q3

QRANGE

Robust statistic keywords

GINI MAD QN

SN STD_GINI STD_MAD

STD_QN STD_QRANGE STD_SN

Hypothesis testing keywords

MSIGN PROBM PROBT

NORMALTEST PROBN SIGNRANK

PNORMAL PROBS T

A primary keyword allows you to specify secondary keywords in parentheses
immediately after the primary keyword. Primary keywords are BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, WEIBULL, WEIBULL2,
KERNEL, and KERNELn. If you specify a primary keyword but omit a secondary
keyword, the inset displays a colored line and the distribution name as a key for the
density curve. For a list of the secondary keywords, see Table 48.3 on page 1475.

By default, PROC UNIVARIATE identifies inset statistics with appropriate labels
and prints numeric values using appropriate formats. To customize the label, specify
the keyword followed by an equal sign (=) and the desired label in quotes. To
customize the format, specify a numeric format in parentheses after the keyword.
Labels can have up to 24 characters. If you specify both a label and a format for a
statistic, the label must appear before the format. For example,

inset n=’Sample Size’ std=’Std Dev’ (5.2);



The UNIVARIATE Procedure � INSET Statement 1475

requests customized labels for two statistics and displays the standard deviation with
field width of 5 and two decimal places.

Table 48.3 Available Secondary Keywords

Keyword Alias Description

For BETA primary keyword

ALPHA SHAPE1 first shape parameter �

BETA SHAPE2 second shape parameter �

SIGMA SCALE scale parameter �

THETA THRESHOLD lower threshold parameter �

For EXP primary keyword

SIGMA SCALE scale parameter �

THETA THRESHOLD threshold parameter �

For GAMMA primary keyword

ALPHA SHAPE shape parameter �

SIGMA SCALE scale parameter �

THETA THRESHOLD threshold parameter �

For LOGNORMAL primary keyword

SIGMA SHAPE shape parameter �

THETA THRESHOLD threshold parameter �

ZETA SCALE scale parameter �

For NORMAL primary keyword

MU MEAN mean parameter �

SIGMA STD shape parameter �

For WEIBULL primary keyword

C SHAPE shape parameter �

SIGMA SCALE scale parameter �

THETA THRESHOLD threshold parameter �

For WEIBULL2 primary keyword

C SHAPE shape parameter �

SIGMA SCALE scale parameter �

THETA THRESHOLD known lower threshold parameter ��

For any parametric distribution primary keyword*

AD Anderson-Darling EDF test statistic

ADPVAL Anderson-Darling EDF test p-value

CVM Cramer-von Mises EDF test statistic



1476 INSET Statement � Chapter 48

Keyword Alias Description

CVMPVAL Cramer-von Mises EDF test p-value

KSD Kolmogorov-Smirnov EDF test statistic

KSDPVAL Kolmogorov-Smirnov EDF test p-value

For KERNEL or KERNELn primary keyword*

TYPE kernel type: normal, quadratic, or triangular

BANDWIDTH BWIDTH bandwidth � for the density estimate

C standardized bandwidth � for the density estimate:

� � �
�
�

�

� where � �sample size, � �bandwidth, and

� �interquartile range

AMISE approximate mean integrated square error (MISE) for the
kernel density

* Available with only the HISTOGRAM statement and a BETA, EXPONENTIAL,
LOGNORMAL, NORMAL, or WEIBULL distribution.

Requirement: Some inset statistics are not available unless you request a plot
statement and options that calculate these statistics. For example:

proc univariate data=score;
histogram final / normal;
inset mean std normal(ad adpval);

run;

The MEAN and STD keywords display the sample mean and standard deviation of
FINAL. The NORMAL keyword with the secondary keywords AD and ADPVAL
display the Anderson-Darling goodness-of-fit test statistic and p-value. The
statistics that are specified with the NORMAL keyword are available only because
the NORMAL option is requested in the HISTOGRAM statement.

The KERNEL or KERNELn keyword is available only if you request a kernel
density estimate in a HISTOGRAM statement. The WEIBULL2 keyword is
available only if you request a two-parameter Weibull distribution in the
PROBPLOT or QQPLOT statement.

Tip: To specify the same format for all the statistics in the INSET statement, use
the FORMAT= option.

Tip: To create a completely customized inset, use a DATA= data set. The data set
contains the label and the value that you want to display in the inset.

Tip: If you specify multiple kernel density estimates, you can request inset
statistics for all the estimates with the KERNEL keyword. Alternatively, you can
display inset statistics for individual curves with KERNELn keyword, where n is
the curve number between 1 and 5.

Featured in: Example 8 on page 1566 and Example 9 on page 1568

DATA=SAS-data-set
requests that PROC UNIVARIATE display customized statistics from a SAS data set
in the inset table. The data set must contain two variables:

_LABEL_ a character variable whose values provide labels for inset entries.

_VALUE_ a variable that is either character or numeric and whose values
provide values for inset entries.



The UNIVARIATE Procedure � INSET Statement 1477

The label and value from each observation in the data set occupy one line in the
inset. The position of the DATA= keyword in the keyword list determines the
position of its lines in the inset.

Options
Figure 48.4 on page 1477 illustrates the meaning of terms that are used in this

section.

Figure 48.4 The Inset

Summary Statistics

Mean

Std Deviation

Minimum

15.643

1.787

9

Header text

Label

Frame

Background

Header background

Value

Drop shadow

CFILL=color | BLANK
specifies the color of the background which, if you omit the CFILLH= option, includes
the header background.

Default The background is empty which causes items that overlap the inset (such
as curves, histogram bars, or specification limits) to show through the inset.

Tip: Specify a value for CFILL= so that items that overlap no longer show through
the inset. Use CFILL=BLANK to leave the background uncolored.

Featured in: Example 8 on page 1566

CFILLH=color
specifies the color of the header background.

Default: the CFILL= color

CFRAME=color
specifies the color of the frame.

Default: the same color as the axis of the plot

CHEADER=color
specifies the color of the header text.
Default: the CTEXT=color

CSHADOW=color
specifies the color of the drop shadow.
Default: A drop shadow is not displayed.

CTEXT=color
specifies the color of the text.
Default: the same color as the other text on the plot

DATA



1478 INSET Statement � Chapter 48

specifies how to use data coordinates to position the inset with the POSITION=
option.
Requirement: The DATA option is available only when you specify

POSITION=(x,y). You must place DATA immediately after the coordinates (x,y).
Main Discussion: “Positioning the Inset Using Coordinates” on page 1480
See also: POSITION= option on page 1478

FONT=font
specifies the font of the text.
Default: If you locate the inset in the interior of the plot then the font is SIMPLEX.

If you locate the inset in the exterior of the plot then the font is the same as the
other text on the plot.

Featured in: Example 9 on page 1568

FORMAT=format
specifies a format for all the values in the inset.
Interaction: If you specify a format for a particular statistic, then this format

overrides FORMAT=format.
See also: For more information about SAS formats, see SAS Language Reference:

Dictionary
Featured in: Example 8 on page 1566

HEADER=string
specifies the header text where string cannot exceed 40 characters.
Default: No header line appears in the inset.
Interaction: If all the keywords that you list in the INSET statement are secondary

keywords that correspond to a fitted curve on a histogram, PROC UNIVARIATE
displays a default header that indicates the distribution and identifies the curve.

Featured in: Example 8 on page 1566

HEIGHT=value
specifies the height of the text.
Featured in: Example 9 on page 1568

NOFRAME
suppresses the frame drawn around the text.
Featured in: Example 9 on page 1568

POSITION=position
determines the position of the inset. The position is a compass point keyword, a
margin keyword, or a pair of coordinates (x,y).
Alias: POS=
Default: NW, which positions the inset in the upper left (northwest) corner of the

display.
Requirement: You must specify coordinates in axis percentage units or axis data

units.
Main discussion: “Positioning the Inset Using Compass Point” on page 1479,

“Positioning the Inset in the Margins” on page 1480, and “Positioning the Inset
Using Coordinates” on page 1480

Featured in: Example 8 on page 1566 and Example 9 on page 1568

REFPOINT=BR | BL | TR | TL
specifies the reference point for an inset that PROC UNIVARIATE positions by a pair
of coordinates with the POSITION= option. The REFPOINT= option specifies which



The UNIVARIATE Procedure � INSET Statement 1479

corner of the inset frame that you want to position at coordinates (x,y). The reference
points are

BL bottom left

BR bottom right

TL top left

TR top right
Default: BL
Requirement: You must use REFPOINT= with POSITION=(x,y) coordinates.
Featured in: Example 8 on page 1566

Positioning the Inset Using Compass Point
To position the inset by using a compass point position, use the keyword N, NE, E,

SE, S, SW, W, or NW in the POSITION= option. The default position of the inset is NW.
The following statements produce a histogram to show the position of the inset for

the eight compass points:

proc univariate data=score noprint;
histogram final / cfill=gray midpoints=45 to 95 by 10 barwidth=5;
inset n / cfill=blank header=’Position = NW’ pos=nw;
inset mean / cfill=blank header=’Position = N ’ pos=n ;
inset sum / cfill=blank header=’Position = NE’ pos=ne;
inset max / cfill=blank header=’Position = E ’ pos=e ;
inset min / cfill=blank header=’Position = SE’ pos=se;
inset nobs / cfill=blank header=’Position = S ’ pos=s ;
inset range / cfill=blank header=’Position = SW’ pos=sw;
inset mode / cfill=blank header=’Position = W ’ pos=w ;
label final=’Final Examination Score’;
title ’Test Scores for a College Course’;

run;



1480 INSET Statement � Chapter 48

Positioning the Inset in the Margins

To position the inset in one of the four margins that surround the plot area use the
margin keywords LM, RM, TM, or BM in the POSITION= option. Figure 48.5 on page
1480 shows the location of the inset in the margin.

Figure 48.5 Locating the Inset in the Margins

Plot Area

RM

TM

LM

BM

Margin positions are recommended if you list a large number of statistics in the
INSET statement. If you attempt to display a lengthy inset in the interior of the plot, it
is most likely that the inset will collide with the data display.

Positioning the Inset Using Coordinates

To position the inset with coordinates, use POSITION=(x,y). You specify the
coordinates in axis data units or in axis percentage units (the default).

data unit
If you specify the DATA option immediately following the coordinates, PROC
UNIVARIATE positions the inset by using axis data units. For example, the
following statements place the bottom left corner of the inset at 12.5 on the
horizontal axis and 10 on the vertical axis:

proc univariate data=score;
histogram final / midpoints 45 to 95 by 10 barwidth=5

cfill=gray ;
inset n / header = ’Position=(12.5,10)’

position = (12.5,10) data;
run;



The UNIVARIATE Procedure � INSET Statement 1481

By default, the specified coordinates determine the position of the bottom left corner
of the inset. To change this reference point, use the REFPOINT= option (see the next
example).

axis percent unit
If you omit the DATA option, PROC UNIVARIATE positions the inset by using axis
percentage units. The coordinates in axis percentage units must be between 0 and
100. The coordinates of the bottom left corner of the display are (0,0), while the
upper right corner is (100,100). For example, the following statements create a
histogram and use coordinates in axis percentage units to position the two insets:

proc univariate data=sccore;
histogram final / midpoints 45 to 95 by 10 barwidth=5

cfill=gray;
inset min / position = (5,25)

header = ’Position=(5,25)’
refpoint = tl;

inset max / position = (95,95)
header = ’Position=(95,95)’
refpoint = tr;

run;

The REFPOINT= option determines which corner of the inset to place at the
coordinates that are specified with the POSITION= option. The first inset uses
REFPOINT=TL, so that the top left corner of the inset is positioned 5% of the way
across the horizontal axis and 25% of the way up the vertical axis. The second inset
uses REFPOINT=TR, so that the top right corner of the inset is positioned 95% of the
way across the horizontal axis and 95% of the way up the vertical axis.



1482 OUTPUT Statement � Chapter 48

OUTPUT Statement

Saves statistics and BY variables in an output data set.

Tip: You can save percentiles that are not automatically computed.
Tip: You can use multiple OUTPUT statements to create several OUT= data sets.
Main discussion: “Output Data Set” on page 1542
Featured in: Example 5 on page 1555 andExample 6 on page 1560

OUTPUT <OUT=SAS-data-set> statistic-keyword-1=name(s)
<…statistic-keyword-n=name(s)> <percentiles-specification> ;

Options

OUT=SAS-data-set
identifies the output data set. If SAS-data-set does not exist, PROC UNIVARIATE
creates it. If you omit OUT=, the data set is named DATAn, where n is the smallest
integer that makes the name unique.
Default: DATAn

statistic-keyword=name(s)
specifies a statistic to store in the OUT= data set and names the new variable that
will contain the statistic. The available statistical keywords are

Descriptive statistic keywords

CSS CV KURTOSIS

MAX MEAN N

MIN MODE RANGE



The UNIVARIATE Procedure � OUTPUT Statement 1483

NMISS NOBS STDMEAN

SKEWNESS STD USS

SUM SUMWGT VAR

Quantile statistic keywords

MEDIAN P1 P5

P10 P90 P95

P99 Q1 Q3

QRANGE

Robust statistic keywords

GINI MAD QN

SN STD_GINI STD_MAD

STD_QN STD_QRANGE STD_SN

Hypothesis testing keywords

NORMAL PROBN MSIGN

PROBM SIGNRANK PROBS

T PROBT

See Appendix 1, “SAS Elementary Statistics Procedures,” on page 1577 and
“Statistical Computations: UNIVARIATE Procedure” on page 1517 for the keyword
definitions and statistical formulas.

To store the same statistic for several analysis variables, specify a list of names.
The order of the names corresponds to the order of the analysis variables in the VAR
statement. PROC UNIVARIATE uses the first name to create a variable that
contains the statistic for the first analysis variable, the next name to create a
variable that contains the statistic for the second analysis variable, and so on. If you
do not want to output statistics for all the analysis variables, specify fewer names
than the number of analysis variables.

percentiles-specification
specifies one or more percentiles to store in the OUT= data set and names the new
variables that contain the percentiles. The form of percentiles-specification is

PCTLPTS=percentile(s) PCTLPRE=prefix-name(s) <PCTLNAME=suffix-name(s)>

PCTLPTS=percentile(s)
specifies one or more percentiles to compute. You can specify percentiles with the
expression start TO stop BY increment where start is a starting number, stop is an
ending number, and increment is a number to increment by.
Range: any decimal numbers between 0 and 100, inclusive
Example statement: To compute the 50th, 95th, 97.5th, and 100th percentiles,

submit the statement

output pctlpre=P_ pctlpts=50,95 to 100 by 2.5;

PCTLPRE=prefix-name(s)
specifies one or more prefixes to create the variable names for the variables that
contain the PCTLPTS= percentiles. To save the same percentiles for more than
one analysis variable, specify a list of prefixes. The order of the prefixes
corresponds to the order of the analysis variables in the VAR statement.



1484 OUTPUT Statement � Chapter 48

Interaction: PROC UNIVARIATE creates a variable name by combining the
PCTLPRE= value and either suffix-name or (if you omit PCTLNAME= or if you
specify too few suffix-name(s)) the PCTLPTS= value.

PCTLNAME=suffix-name(s)
specifies one or more suffixes to create the names for the variables that contain
the PCTLPTS= percentiles. PROC UNIVARIATE creates a variable name by
combining the PCTLPRE= value and suffix-name. Because the suffix names are
associated with the percentiles that are requested, list the suffix names in the
same order as the PCTLPTS= percentiles.

Requirement: You must specify PCTLPRE= to supply prefix names for the
variables that contain the PCTLPTS= percentiles.

Interaction: If the number of PCTLNAME= values is fewer than the number of
percentile(s) or if you omit PCTLNAME=, PROC UNIVARIATE uses percentile as
the suffix to create the name of the variable that contains the percentile. For an
integer percentile, PROC UNIVARIATE uses percentile. For a noninteger
percentile, PROC UNIVARIATE truncates decimal values of percentile to two
decimal places and replaces the decimal point with an underscore.

Interaction: If either the prefix and suffix name combination or the prefix and
percentile name combination is longer than 32 characters, PROC UNIVARIATE
truncates the prefix name so that the variable name is 32 characters.

Saving Percentiles Not Automatically Computed
You can use PCTLPTS= to output percentiles that are not in the list of quantile

statistics. PROC UNIVARIATE computes the requested percentiles based on the
method that you specify with the PCTLDEF= option in the PROC UNIVARIATE
statement. You must use PCTLPRE=, and optionally PCTLNAME=, to specify variable
names for the percentiles. For example, the following statements create an output data
set that is named PCTLS that contains the 20th and 40th percentiles of the analysis
variables Test1 and Test2:

proc univariate data=score;
var Test1 Test2;
output out=pctls pctlpts=20 40 pctlpre=Test1_ Test2_

pctlname=P20 P40;
run;

PROC UNIVARIATE saves the 20th and 40th percentiles for Test1 and Test2 in the
variables Test1_P20, Test2_P20, Test1_P40, and Test2_P40.

Using the BY Statement with the OUTPUT Statement
When you use a BY statement, the number of observations in the OUT= data set

corresponds to the number of BY groups. Otherwise, the OUT= data set contains only
one observation.



The UNIVARIATE Procedure � PROBPLOT Statement 1485

PROBPLOT Statement

Creates a probability plot by using high-resolution graphs, which compare ordered variable values
with the percentiles of a specified theoretical distribution.

Alias: PROB

Default: Normal probability plot

Restriction: You can not specify the WEIGHT statement with the PROBPLOT statement.

Restriction: You can specify only one theoretical distribution.

Tip: You can use multiple PROBPLOT statements.

Main discussion:

Featured in: Example 5 on page 1555

PROBPLOT <variable(s)> </ option(s)>;

To do this: Use this option:

Request a distribution

Specify beta probability plot with required shape
parameters �, � .

BETA(beta-suboptions)

Specify exponential probability plot EXPONENTIAL(exponential-suboptions)

Specify gamma probability plot with a required
shape parameter �

GAMMA(gamma-suboptions)

Specify lognormal probability plot with a required
shape parameter �

LOGNORMAL(lognormal-suboptions)

Specify normal probability plot NORMAL(normal-suboptions)

Specify three-parameter Weibull probability plot
with a required shape parameter �

WEIBULL(Weibull-suboptions)

Specify two-parameter Weibull probability plot WEIBULL2(Weibull2-suboptions)

Distribution suboptions

Specify shape parameter � for the beta or gamma
distribution

ALPHA=

Specify shape parameter � for the beta distribution BETA=

Specify shape parameter � for the Weibull
distribution or �� for distribution reference line of
the Weibull2 distribution

C=

Specify �� for distribution reference line for the
normal distribution

MU=

Specify �� for distribution reference line for the
beta, exponential, gamma, normal, Weibull, or
Weibull2 distribution or the required shape
parameter � for the lognormal option

SIGMA=



1486 PROBPLOT Statement � Chapter 48

To do this: Use this option:

Specify slope of distribution reference line for the
lognormal or Weibull2 distribution

SLOPE=

Specify �� for distribution reference line for the
beta, exponential, gamma, lognormal, or Weibull
distribution, or the lower known threshold �� for
the Weibull2 distribution

THETA=

Specify �� for distribution reference line for the
lognormal distribution

ZETA=

Control appearance of distribution reference line

Specify color of distribution reference line COLOR=

Specify line type of distribution reference line L=

Specify width of distribution reference line W=

Control general plot layout

Create a grid GRID

Specify reference lines perpendicular to the
horizontal axis

HREF=

Specify labels for HREF lines HREFLABELS=

Specify a line style for grid lines LGRID=

Adjust sample size when computing percentiles NADJ=

Suppress frame around plotting area NOFRAME

Suppress label for horizontal axis NOHLABEL

Suppress label for vertical axis NOVLABEL

Suppress tick marks and tick mark labels for
vertical axis

NOVTICK

Request minor tick marks for percentile axis PCTLMINOR

Specify tick mark labels for percentile axis PCTLORDER=

Adjust ranks when computing percentiles RANKADJ=

Display plot in square format SQUARE

Specify label for vertical axis VAXISLABEL=

Specify reference lines perpendicular to the vertical
axis

VREF=

Specify labels for VREF lines VREFLABELS=

Specify horizontal position of labels for VREF= lines VREFLABPOS=

Specify line thickness for axes and frame WAXIS=

Enhance the probability plot

Specify annotate data set ANNOTATE=

Specify color for axis CAXIS=

Specify color for frame CFRAME=

Specify color for grid lines CGRID=



The UNIVARIATE Procedure � PROBPLOT Statement 1487

To do this: Use this option:

Specify color for HREF= lines CHREF=

Specify color for text CTEXT=

Specify color for VREF= lines CVREF=

Specify description for plot in graphics catalog DESCRIPTION=

Specify software font for text FONT=

Specify height of text used outside framed areas HEIGHT=

Specify number of horizontal minor tick marks HMINOR=

Specify software font for text inside framed areas INFONT=

Specify height of text inside framed areas INHEIGHT=

Specify line style for HREF= lines LHREF=

Specify line style for VREF= lines LVREF=

Specify name for plot in graphics catalog NAME=

Specify number of vertical minor tick marks VMINOR=

Enhance the comparative probability plot

Apply annotation requested in ANNOTATE= data
set to key cell only

ANNOKEY

Specify color for filling frame for row labels CFRAMESIDE=

Specify color for filling frame for column labels CFRAMETOP=

Specify distance between tiles INTERTILE=

Specify number of columns in comparative
probability plot

NCOLS=

Specify number of rows in comparative probability
plot

NROWS=

Arguments

variable(s)
identifies one or more variables that the procedure uses to create probability plots.

Default: If you omit variable(s) in the PROBPLOT statement then the procedure
creates a probability plot for each variable that you list in the VAR statement, or
for each numeric variable in the DATA= data set if you omit a VAR statement.

Requirement: If you specify a VAR statement, use a subset of the variable(s) that
you list in the VAR statement. Otherwise, variable(s) are any numeric variables in
the DATA= data set.

Options

ALPHA=value|EST



1488 PROBPLOT Statement � Chapter 48

specifies the required shape parameter ��� � �� for probability plots when you
request the BETA or GAMMA options. The PROBPLOT statement creates a plot for
each value that you specify.
Requirement: Enclose this suboption in parentheses following the BETA or

GAMMA options.

Tip: To compute a maximum likelihood estimate for �, specify ALPHA=EST.

ANNOKEY
specifies to apply the annotation requested with the ANNOTATE= option to the key
cell only. By default, PROC UNIVARIATE applies annotation to all of the cells.
Requirement: This option is not available unless you specify the CLASS statement.
Tip: Use the KEYLEVEL= option in the CLASS statement to specify the key cell.

See also: the KEYLEVEL= option on page 1452

ANNOTATE=SAS-data-set
specifies an input data set that contains annotate variables as described in
SAS/GRAPH Reference.
Alias: ANNO=
Tip: The ANNOTATE = data set that you specify in the PROBPLOT statement is

used by all plots that this statement creates. You can also specify an ANNOTATE=
data set in the PROC UNIVARIATE statement to enhance all the graphics
displays that the procedure creates.

See also: the ANNOTATE= option on page 1445 in the PROC UNIVARIATE
statement

BETA(ALPHA=value|EST BETA=value|EST <beta-suboptions>)
displays a beta probability plot for each combination of the required shape
parameters � and �.

Requirement: You must specify the shape parameters with the ALPHA= and
BETA= suboptions.

Interaction: To create a plot that is based on maximum likelihood estimates for �
and �, specify ALPHA=EST and BETA=EST.

Tip: To obtain graphical estimates of � and �, specify lists of values in the ALPHA=
and BETA= suboptions. Then select the combination of � and � that most nearly
linearizes the point pattern.

To assess the point pattern, add a diagonal distribution reference line that
corresponds to the lower threshold parameter �� and the scale parameter �� with
the THETA= and SIGMA= suboptions. Alternatively, you can add a line that
corresponds to estimated values of �� and �� with THETA=EST and SIGMA=EST.

Agreement between the reference line and the point pattern indicates that the
beta distribution with parameters �, �, ��, and �� is a good fit.

Main discussion: “Beta Distribution” on page 1530

See also: the ALPHA= on page 1487 suboption and BETA= suboption on page 1488

BETA=value|EST
specifies the shape parameter � �� � �� for probability plots when you request the
BETA distribution option. PROC UNIVARIATE creates a plot for each value that you
specify.
Alias: B=
Requirement: Enclose this suboption in parentheses after the BETA option.

Tip: To compute a maximum likelihood estimate for �, specify BETA=EST.

C=value|EST



The UNIVARIATE Procedure � PROBPLOT Statement 1489

specifies the shape parameter � �� � �� for probability plots when you request the
WEIBULL option or WEIBULL2 option. C= is a required suboption in the WEIBULL
option.
Requirement: Enclose this suboption in parentheses after the WEIBULL option or

WEIBULL2 option.
Interaction: To request a distribution reference line in the WEIBULL2 option, you

must specify both the C= and SIGMA= suboptions.
Tip: To compute a maximum likelihood estimate for �, specify C=EST.

CAXIS=color
specifies the color for the axes.
Alias: CAXES=
Default: the first color in the device color list
Interaction: This option overrides any COLOR= specification.

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame.
Default: the area is not filled

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of the comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
Default: These areas are not filled.
Requirement: This option is not available unless you specify the CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of the comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
Default: These areas are not filled.
Requirement: This option does not apply unless you specify the CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the plot.
Default: the first color in the device color list
Interaction: This option automatically invokes the GRID= option.

CHREF=color
specifies the color for horizontal axis reference lines when you specify the HREF=
option.
Alias: CH=
Default: the first color in the device color list

COLOR=color
specifies the color of the diagonal distribution reference line.
Default: the first color in the device color list
Requirement: You must enclose this suboption in parentheses after a distribution

option keyword.

CTEXT=color
specifies the color for tick mark values and axis labels.
Default: the color that you specify for the CTEXT= option in the GOPTIONS

statement. If you omit the GOPTIONS statement, the default is the first color in
the device color list.



1490 PROBPLOT Statement � Chapter 48

CVREF=color
specifies the color for the reference lines that you request with the VREF= option.
Alias: CV=
Default: the first color in the device color list

DESCRIPTION=’string’
specifies a description, up to 40 characters long, that appears in the PROC
GREPLAY master menu.
Alias: DES=
Default: the variable name

EXPONENTIAL<(exponential-options)>
displays an exponential probability plot.
Alias: EXP
Tip: To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the THETA= and SIGMA= suboptions.
Alternatively, you can add a line that corresponds to estimated values of the
threshold parameter �� and the scale parameter �� with the THETA=EST and
SIGMA=EST suboptions.

Agreement between the reference line and the point pattern indicates that the
exponential distribution with parameters �� and �� is a good fit.

Main discussion: “Exponential Distribution” on page 1537
See also: the SIGMA= suboption on page 1494 and the THETA= suboption on page

1495

FONT=font
specifies a software font for the reference lines and the axis labels.
Default: hardware characters
Interaction: FONT=font takes precedence over the FTEXT=font that you specify in

the GOPTIONS statement.

GAMMA(ALPHA=value|EST <gamma-suboptions>)
displays a gamma probability plot for each value of the required shape parameter �.
Requirement: You must specify the shape parameter with the ALPHA= suboption.
Interaction: To create a plot that is based on a maximum likelihood estimate for �,

specify ALPHA=EST.
Tip: To obtain a graphical estimate of �, specify a list of values in the ALPHA=

suboption. Then select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that

corresponds to the threshold parameter �� and the scale parameter �� with the
THETA= and SIGMA= suboptions. Alternatively, you can add a line that
corresponds to estimated values of �� and �� with THETA=EST and SIGMA=EST.

Agreement between the reference line and the point pattern indicates that the
exponential distribution with parameters �, ��, and �� is a good fit.

Main discussion: “Gamma Distribution” on page 1537
See also: the ALPHA= on page 1487 suboption, SIGMA suboption on page 1494,

and THETA suboption on page 1495

GRID
displays a grid, drawing reference lines that are perpendicular to the percentile axis
at major tick marks.
Default: 1
See also: the CGRID= option on page 1489



The UNIVARIATE Procedure � PROBPLOT Statement 1491

HEIGHT=value
specifies the height in percentage screen units of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.

HMINOR=n
specifies the number of minor tick marks between each major tick mark on the
horizontal axis. PROC UNIVARIATE does not label minor tick marks.
Alias: HM=
Default: 0

HREF=value(s)
draws reference lines that are perpendicular to the horizontal axis at the values you
specify.
See also: CHREF= option on page 1489

HREFLABELS=’label1’ … ’labeln’
specifies labels for the reference lines that you request with the HREF= option.
Alias: HREFLABEL= and HREFLAB=
Restriction: The number of labels must equal the number of reference lines. Labels

can have up to 16 characters.

HREFLABPOS=n
specifies the vertical position of HREFLABELS= labels, where n is

1 positions the labels along the top of the plot

2 staggers the labels from top to bottom

3 positions the labels along the bottom.

Default: 1

INFONT=font
specifies a software font to use for text inside the framed areas of the plot. The
INFONT= option takes precedence over the FTEXT= option in the GOPTIONS
statement.
See also For a list of fonts, see SAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units of text, to use inside the framed areas
of the plot.
Default: the height that you specify with the HEIGHT= option. If you do not

specify the HEIGHT= option, the default height is the height that you specify with
the HTEXT= option in the GOPTIONS statement.

INTERTILE=value
specifies the distance in horizontal percentage screen units between the framed
areas, which are called tiles.
Default: The tiles are contiguous.
Requirement: This option is not available unless you specify the CLASS statement.

L=linetype
specifies the line type for a diagonal distribution reference line.
Default: 1, which produces a solid line
Requirement: You must enclose this suboption in parentheses after a distribution

option.



1492 PROBPLOT Statement � Chapter 48

LGRID=linetype
specifies the line type for the grid that you request with the GRID= option.
Default: 1, which produces solid lines

LHREF=linetype
specifies the line type for the reference lines that you request with the HREF= option.
Alias: LH=
Default: 2, which produces a dashed line

LOGNORMAL(SIGMA=value|EST <lognormal-suboptions>)
displays a lognormal probability plot for each value of the required shape parameter
�.
Alias: LNORM
Requirement: You must specify the shape parameter with the SIGMA= suboption.
Interaction: To compute a maximum likelihood estimate for �, specify SIGMA=EST.
Tip: To obtain a graphical estimate of �, specify a list of values for the SIGMA=

suboption, and select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that

corresponds to the threshold parameter �� and the scale parameter �� with the
THETA= and ZETA= suboptions. Alternatively, you can add a line that
corresponds to estimated values of �� and �� with THETA=EST and ZETA=EST.

Agreement between the reference line and the point pattern indicates that the
lognormal distribution with parameters �, ��, and �� is a good fit.

Main discussion: “Lognormal Distribution” on page 1537
See also: the SIGMA= suboption on page 1494, SLOPE= suboption on page 1494,

THETA= suboption on page 1495, and ZETA= suboption on page 1496

LVREF=linetype
specifies the line type for the reference lines that you request with the VREF= option.
Default: 2, which produces a dashed line

MU=value|EST
specifies the mean �� for a normal probability plot requested with the NORMAL
option.
Default: the sample mean
Requirement: You must enclose this suboption in parentheses after the NORMAL

option.
Tip: Specify the MU= and SIGMA= suboptions together to request a distribution

reference line. Specify MU=EST to request a distribution reference line with ��
equal to the sample mean.

NADJ=value
specifies the adjustment value that is added to the sample size in the calculation of
theoretical percentiles. For additional information, see Chambers et al. (1983)

Default: �

�
as recommended by Blom (1958)

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu.
Default: UNIVAR

NCOLS=n
specifies the number of columns in the comparative probability plot.
Alias: NCOL=



The UNIVARIATE Procedure � PROBPLOT Statement 1493

Default: NCOLS=1, if you specify only one class variable, and NCOLS=2, if you
specify two class variables.

Requirement: This option is not available unless you specify the CLASS statement.

Interaction: If you specify two class variables, you can use the NCOLS= option
with the NROWS= option.

NOFRAME
suppresses the frame around the area that is bounded by the axes.

NOHLABEL
suppresses the label for the horizontal axis.
Tip: Use this option to reduce clutter.

NORMAL<(normal-suboptions)>
displays a normal probability plot. This is the default if you omit a distribution
option.
Tip: To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the MU= and SIGMA= suboptions. Alternatively,
you can add a line that corresponds to estimated values of �� and �� with the
THETA=EST and SIGMA=EST; the estimates of the mean ��and the standard
deviation �� are the sample mean and sample standard deviation.

Agreement between the reference line and the point pattern indicates that the
normal distribution with parameters �� and �� is a good fit.

Main discussion: “Normal Distribution” on page 1538

See also: the MU= suboption on page 1492 and SIGMA= suboption on page 1494

NOVLABEL
suppresses the label for the vertical axis.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis.
Interaction: This option automatically invokes the NOVLABEL option.

NROWS=n
specifies the number of rows in the comparative probability plot.
Alias: NROW=
Default: 2
Requirement: This option is not available unless you specify the CLASS statement.
Interaction: If you specify two class variables, you can use the NCOLS= option

with the NROWS= option.

PCTLMINOR
requests minor tick marks for the percentile axis.
Interaction: The HMINOR option overrides the minor tick marks that

PCTLMINOR determines.
Featured in: Example 5 on page 1555

PCTLORDER=value(s)
specifies the tick marks that are labeled on the theoretical percentile axis.
Default: 1, 5, 10, 25, 50, 75, 90, 95, and 99
Range: 0 ≤ value ≤ 100
Restriction: The values that you specify must be in increasing order and cover the

plotted percentile range. Otherwise, PROC UNIVARIATE uses the default.

RANKADJ=value



1494 PROBPLOT Statement � Chapter 48

specifies the adjustment value that PROC UNIVARIATE adds to the ranks in the
calculation of theoretical percentiles. For additional information, see Chambers et al.
(1983).
Default: ��

�
as recommended by Blom (1958)

SCALE=value
is an alias for the SIGMA= option when you request probability plots with the BETA,
EXPONENTIAL, GAMMA, and WEIBULL options and for the ZETA= option when
you request the LOGNORMAL option.
See also: the SIGMA= suboption on page 1494 and ZETA= suboption on page 1496

SHAPE=value|EST
is an alias for the ALPHA=option when you request gamma plots with the GAMMA
option, for the SIGMA= option when you request lognormal plots with the
LOGNORMAL option, and for the C= option when you request Weibull plots with the
WEIBULL and WEIBULL2 options.
See also: the ALPHA= suboption on page 1487, SIGMA= suboption on page 1494,

and C= suboption on page 1488

SIGMA=value|EST
specifies the parameter �, where � � �. The interpretation and use of the SIGMA=
option depend on which distribution you specify, as shown Table 48.4 on page 1494.

Table 48.4 Uses of the SIGMA Suboption

Distribution Option Uses of the SIGMA= Option

BETA, EXPONENTIAL

GAMMA, WEIBULL

THETA=�� and SIGMA=�� request a distribution reference
line that corresponds to �� and ��.

LOGNORMAL SIGMA=������� requests � probability plots with shape
parameters �������. The SIGMA= option is required.

NORMAL MU=�� and SIGMA=�� request a distribution reference line
that corresponds to �� and ��. SIGMA=EST requests a line
with �� equal to the sample standard deviation.

WEIBULL2 SIGMA=�� and C=�� request a distribution reference line that
corresponds to �� and ��.

Requirement: You must enclose this suboption in parentheses after the distribution
option.

Tip: To compute a maximum likelihood estimate for ��, specify SIGMA=EST.

SLOPE=value|EST
specifies the slope for a distribution reference when you request the LOGNORMAL
option or WEIBULL2 option.
Requirement: You must enclose this suboption in parentheses after the distribution

option.
Tip: When you use the LOGNORMAL option and SLOPE= to request the line, you

must also specify a threshold parameter value �� with the THETA= suboption.
SLOPE= is an alternative to the ZETA= suboption for specifying ��, because the
slope is equal to ��� ����.

When you use the WEIBULL2 option and SLOPE= option to request the line,
you must also specify a scale parameter value �� with the SIGMA= suboption.
SLOPE= is an alternative to the C= suboption for specifying ��, because the slope
is equal to �

��

.



The UNIVARIATE Procedure � PROBPLOT Statement 1495

For example, the first and second PROBPLOT statements produce the same
probability plots as the third and fourth PROBPLOT statements:

proc univariate data=measures;
probplot width /lognormal(sigma=2 theta=0 zeta=0);
probplot width /lognormal(sigma=2 theta=0 slope=1);
probplot width /weibull2(sigma=2 theta=0 c=.25);
probplot width /weibull2(sigma=2 theta=0 slope=4);

Main Discussion: “Three-Parameter Weibull Distribution” on page 1538

SQUARE
displays the probability plot in a square frame.
Default: rectangular frame
Featured in: Example 5 on page 1555

THETA=value|EST
specifies the lower threshold parameter � for probability plots when you request the
BETA, EXPONENTIAL, GAMMA, LOGNORMAL, WEIBULL, or WEIBULL2 option.
Default: 0
Requirement: You must enclose this suboption in parentheses after the distribution

option.
Interaction: When you use the WEIBULL2 option, the THETA= suboption specifies

the known lower threshold ��, which by default is 0.
When you use the THETA= suboption with another distribution option,

THETA= specifies �� for a distribution reference line. To compute a maximum
likelihood estimate for ��, specify THETA=EST. To request the line, you must also
specify a scale parameter.

THRESHOLD= value
is an alias for the THETA= option. See the THETA= suboption on page 1495.

VAXISLABEL=’label’
specifies a label for the vertical axis.
Requirement: Labels can have up to 40 characters.
Featured in:

VMINOR=n
specifies the number of minor tick marks between each major tick mark on the
vertical axis. PROBPLOT does not label minor tick marks.
Alias: VM=
Default: 0

VREF=value(s)
draws reference lines that are perpendicular to the vertical axis at the value(s) that
you specify.
See also: CVREF= option on page 1490 and LVREF= option on page 1492.

VREFLABELS=’ label1’… ’labeln’
specifies labels for the reference lines that you request with the VREF= option.
Alias: VREFLABEL= and VREFLAB=
Restriction: The number of labels must equal the number of reference lines. Labels

can have up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of VREFLABELS= labels, where n is

1 positions the labels at the left of the plot.



1496 PROBPLOT Statement � Chapter 48

2 positions the labels at the right of the plot.
Default: 1

W=n
specifies the width in pixels for a diagonal distribution line.
Default: 1
Requirement: You must enclose this suboption in parentheses after the distribution

option.

WAXIS=n
specifies the line thickness (in pixels) for the axes and frame.
Default: 1

WEIBULL(C=value|EST <Weibull-suboptions>)
creates a three-parameter Weibull probability plot for each value of the required
shape parameter �.
Alias: WEIB
Requirement: You must specify the shape parameter with the C= suboption.
Interaction: To create a plot that is based on a maximum likelihood estimate for �,

specify C=EST.
Tip: To obtain a graphical estimate of �, specify a list of values in the C= suboption.

Then select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the THETA= and SIGMA= suboptions.
Alternatively, you can add a line that corresponds to estimated values of �� and ��
with THETA=EST and SIGMA=EST.

Agreement between the reference line and the point pattern indicates that the
Weibull distribution with parameters �, ��, and �� is a good fit.

Main discussion: “Three-Parameter Weibull Distribution” on page 1538
See also: the C= suboption on page 1488, SIGMA= suboption on page 1494, and

THETA= suboption on page 1495

WEIBULL2<(Weibull-suboptions)>
creates a two-parameter Weibull probability plot. Use this distribution when your
data have a known lower threshold ��, which by default is 0. To specify the threshold
value ��, use the THETA= suboption.
Alias: W2
Tip: An advantage of the two-parameter Weibull plot over the three-parameter

Weibull plot is that the parameters � and � can be estimated from the slope and
intercept of the point pattern. A disadvantage is that the two-parameter Weibull
distribution applies only in situations where the threshold parameter is known.

Tip: To obtain a graphical estimate of ��, specify a list of values for the THETA=
suboption. Then select the value that most nearly linearizes the point pattern.

To assess the point pattern, add a diagonal distribution reference line that
corresponds to �� and �� with the SIGMA= and C= suboptions. Alternatively, you
can add a distribution reference line that corresponds to estimated values of ��
and �� with SIGMA=EST and C=EST.

Agreement between the reference line and the point pattern indicates that the
Weibull2 distribution with parameters ��, ��, and �� is a good fit.

Main discussion: “Two-Parameter Weibull Distribution” on page 1538
See also: the C= suboption on page 1488, SIGMA= suboption on page 1494,

SLOPE= suboption on page 1494, and THETA= suboption on page 1495

ZETA= value|EST



The UNIVARIATE Procedure � QQPLOT Statement 1497

specifies a value for the scale parameter � for the lognormal probability plots when
you request the LOGNORMAL option.

Requirement: You must enclose this suboption in parentheses after the
LOGNORMAL option.

Interaction: To request a distribution reference line with intercept �� and slope
99��� ����, specify THETA= �� and ZETA= ��.

QQPLOT Statement

Creates a quantile-quantile plot (Q-Q plot) (using high-resolution graphics) compares ordered
variable values with quantiles of a specified theoretical distribution.

Alias: QQ

Default: Normal Q-Q plot
Restriction: You can not specify the WEIGHT statement with the QQPLOT statement.
Restriction: You can specify only one theoretical distribution.
Tip: You can use multiple QQPLOT statements.
Main Discussion: “Quantile-Quantile and Probability Plots” on page 1514

QQPLOT <variable(s)> </ option(s)>;

To do this: Use this option:

Request a distribution

Specify beta probability plot with required shape
parameters �, � .

BETA(beta-suboptions)

Specify exponential probability plot EXPONENTIAL(exponential-suboptions)

Specify gamma probability plot with a required
shape parameter �

GAMMA(gamma-suboptions)

Specify lognormal probability plot with a required
shape parameter �

LOGNORMAL(lognormal-suboptions)

Specify normal probability plot NORMAL(normal-suboptions)

Specify three-parameter Weibull probability plot
with a required shape parameter �

WEIBULL(Weibull-suboptions)

Specify two-parameter Weibull probability plot WEIBULL2(Weibull2-suboptions)

Distribution suboptions

Specify shape parameter � for the beta or gamma
distribution

ALPHA=

Specify shape parameter � for the beta distribution BETA=

Specify shape parameter � for the Weibull
distribution or �� for distribution reference line of
the Weibull2 distribution

C=



1498 QQPLOT Statement � Chapter 48

To do this: Use this option:

Specify �� for distribution reference line of the
normal distribution

MU=

Specify �� for distribution reference line for the
beta, exponential, gamma, normal, Weibull, or
Weibull2 distribution or the required shape
parameter � for the lognormal option

SIGMA=

Specify slope of distribution reference line for the
lognormal or Weibull2 distribution

SLOPE=

Specify �� for distribution reference line for the
beta, exponential, gamma. lognormal, or Weibull
distribution, or the lower known threshold �� for
the Weibull2 distribution

THETA=

Specify �� for distribution reference line for the
lognormal distribution

ZETA=

Control appearance of distribution reference line

Specify color of distribution reference line COLOR=

Specify line type of distribution reference line L=

Specify width of distribution reference line W=

Control general plot layout

Create a grid GRID

Specify reference lines perpendicular to the
horizontal axis

HREF=

Specify labels for HREF lines HREFLABELS=

Specify vertical position of labels for HREF= lines HREFLABPOS=

Specify a line style for grid lines LGRID=

Adjust sample size when computing quantiles NADJ=

Suppress frame around plotting area NOFRAME

Suppress label for horizontal axis NOHLABEL

Suppress label for vertical axis NOVLABEL

Suppress tick marks and tick mark labels for
vertical axis

NOVTICK

Display a nonlinear percentile axis PCTLAXIS<(axis-options)>

Request minor tick marks for percentile axis PCTLMINOR

Replace theoretical quantiles with percentiles PCTLSCALE

Adjust ranks when computing quantiles RANKADJ=

Display Q-Q plot in square format SQUARE

Specify label for vertical axis VAXISLABEL=

Specify reference lines perpendicular to the vertical
axis

VREF=

Specify labels for VREF lines VREFLABELS=



The UNIVARIATE Procedure � QQPLOT Statement 1499

To do this: Use this option:

Specify horizontal position of labels for VREF= lines VREFLABPOS=

Specify line thickness for axes and frame WAXIS=

Enhance the Q-Q plot

Specify annotate data set ANNOTATE=

Specify color for axis CAXIS=

Specify color for frame CFRAME=

Specify color for grid lines CGRID=

Specify color for HREF= lines CHREF=

Specify color for text CTEXT=

Specify color for VREF= lines CVREF=

Specify description for plot in graphics catalog DESCRIPTION=

Specify software font for text FONT=

Specify height of text used outside framed areas HEIGHT=

Specify number of minor tick marks on horizontal
axis

HMINOR=

Specify software font for text inside framed areas INFONT=

Specify height of text inside framed areas INHEIGHT=

Specify line style for HREF= lines LHREF=

Specify line style for VREF= lines LVREF=

Specify name for plot in graphics catalog NAME=

Specify number of minor tick marks on vertical axis VMINOR=

Enhance the comparative Q-Q plot

Apply annotation requested in ANNOTATE= data
set to key cell only

ANNOKEY

Specify color for filling frame for row labels CFRAMESIDE=

Specify color for filling frame for column labels CFRAMETOP=

Specify distance between tiles INTERTILE=

Specify number of columns in comparative Q-Q plot NCOLS=

Specify number of rows in comparative Q-Q plot NROWS=

Arguments

variable(s)
identifies one or more variables that the procedure uses to create Q-Q plots.

Default: If you omit variable(s) in the QQPLOT statement, then the procedure
creates a Q-Q plot for each variable that you list in the VAR statement, or for each
numeric variable in the DATA= data set if you omit a VAR statement.



1500 QQPLOT Statement � Chapter 48

Requirement: If you specify a VAR statement, use the variable(s) that you list in
the VAR statement. Otherwise, variable(s) are any numeric variables in the
DATA= data set.

Options

ALPHA=value|EST
specifies the required shape parameter ��� � �� for quantile plots when you request
the BETA or GAMMA options. The QQPLOT statement creates a plot for each value
that you specify.
Requirement: Enclose this suboption in parentheses when it follows the BETA or

GAMMA options.
Tip: To compute a maximum likelihood estimate for �, specify ALPHA=EST.

ANNOKEY
specifies to apply the annotation that you requested with the ANNOTATE= option to
the key cell only. By default, PROC UNIVARIATE applies annotation to all of the
cells.
Requirement: This option is not available unless you specify the CLASS statement.
Tip: Use the KEYLEVEL= option in the CLASS statement to specify the key cell.
See also: the KEYLEVEL= option on page 1452

ANNOTATE=SAS-data-set
specifies an input data set that contains annotate variables as described in
SAS/GRAPH Reference.
Alias: ANNO=
Tip: The ANNOTATE = data set that you specify in the QQPLOT statement is

used by all plots that this statement creates. You can also specify an ANNOTATE=
data set in the PROC UNIVARIATE statement to enhance all the graphic displays
that the procedure creates.

See also: ANNOTATE= on page 1445 in the PROC UNIVARIATE statement

BETA(ALPHA=value|EST BETA=value|EST <beta-suboptions>)
displays a beta Q-Q plot for each combination of the required shape parameters �
and �.
Requirement: You must specify the shape parameters with the ALPHA= and

BETA= suboptions
Interaction: To create a plot that is based on maximum likelihood estimates for �

and �, specify ALPHA=EST and BETA=EST.
Tip: To obtain graphical estimates of � and �, specify lists of values in the ALPHA=

and BETA= suboptions. Then select the combination of � and � that most nearly
linearizes the point pattern.

To assess the point pattern, add a diagonal distribution reference line that
corresponds to the lower threshold parameter �� and the scale parameter �� with
the THETA= and SIGMA= suboptions. Alternatively, you can add a line that
corresponds to estimated values of lower threshold parameter �� and �� with
THETA=EST and SIGMA=EST.

Agreement between the reference line and the point pattern indicates that the
beta distribution with parameters �, �, ��, and �� is a good fit.

Main discussion: “Beta Distribution” on page 1536
See also: the ALPHA= suboption on page 1500, BETA= suboption on page 1501,

SIGMA= suboption on page 1506, and THETA= suboption on page 1507.



The UNIVARIATE Procedure � QQPLOT Statement 1501

BETA=value|EST
specifies the shape parameter � �� � �� for Q-Q plots when you request the BETA
distribution option. PROC UNIVARIATE creates a plot for each value that you
specify.
Alias: B=
Requirement: You must enclose this suboption in parentheses after the BETA

option.
Tip: To compute a maximum likelihood estimate for �, specify BETA=EST.

C=value|EST
specifies the shape parameter � �� � �� for Q-Q plots when you request the
WEIBULL option or WEIBULL2 option. C= is a required suboption in the WEIBULL
option.
Requirement: Enclose this suboption in parentheses after the WEIBULL option or

WEIBULL2 option.
Interaction: To request a distribution reference line in the WEIBULL2 option, you

must specify both the C= and SIGMA= suboptions.
Tip: To compute a maximum likelihood estimate for �, specify C=EST.

CAXIS=color
specifies the color for the axes.
Alias: CAXES=
Default: the first color in the device color list
Interaction: This option overrides any COLOR= specification.

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame.
Default: the area is not filled
Featured in: Example 8 on page 1566

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of the comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
Default: These areas are not filled.
Requirement: This option is not available unless you specify the CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of the comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
Default: These areas are not filled.
Requirement: This option is not available unless you specify the CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the plot.
Default: the first color in the device color list
Interaction: This option automatically invokes the GRID= option.

CHREF=color
specifies the color for horizontal axis reference lines when you specify the HREF=
option.
Alias: CH=



1502 QQPLOT Statement � Chapter 48

Default: the first color in the device color list

COLOR=color
specifies the color for a distribution reference line.
Default: the fourth color in the device color list
Requirement: You must enclose this suboption in parentheses after a distribution

option keyword.

CTEXT=color
specifies the color for tick mark values and axis labels.
Default: the color that you specify for the CTEXT= option in the GOPTIONS

statement. If you omit the GOPTIONS statement, the default is the first color in
the device color list.

CVREF=color
specifies the color for the reference lines that you request with the VREF= option.
Alias: CV=
Default: the first color in the device color list.

DESCRIPTION=’string’
specifies a description, up to 40 characters long, that appears in the PROC
GREPLAY master menu.
Alias: DES=
Default: the variable name

EXPONENTIAL<(exponential-suboptions)>
displays an exponential Q-Q plot.
Alias: EXP
Tip: To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the THETA= and SIGMA= suboptions.
Alternatively, you can add a line that corresponds to estimated values of the
threshold parameter �� and the scale parameter �� with the THETA=EST and
SIGMA=EST suboptions.

Agreement between the reference line and the point pattern indicates that the
exponential distribution with parameters �� and �� is a good fit.

Main discussion: “Exponential Distribution” on page 1537
See also: the SIGMA suboption on page 1506 and THETA suboption on page 1507

FONT=font
specifies a software font for the reference lines and the axis labels.
Default: hardware characters
Interaction: FONT=font takes precedence over FTEXT=font that you specify in the

GOPTIONS statement.

GAMMA(ALPHA=value|EST <gamma-suboptions>)
displays a gamma Q-Q plot for each value of the required shape parameter �.
Requirement: You must specify the shape parameter with the ALPHA= suboption.
Interaction: To create a plot that is based on a maximum likelihood estimate for �,

specify ALPHA=EST.
Tip: To obtain a graphical estimate of �, specify a list of values in the ALPHA=

suboption. Then select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the THETA= and SIGMA= suboptions. Alternatively,
you can add a line that corresponds to estimated values of the threshold
parameter �� and the scale parameter �� with THETA=EST and SIGMA=EST.



The UNIVARIATE Procedure � QQPLOT Statement 1503

Agreement between the reference line and the point pattern indicates that the
exponential distribution with parameters �, ��, and �� is a good fit.

Main discussion: “Gamma Distribution” on page 1537
See also: the ALPHA= suboption on page 1500, SIGMA= suboption on page 1506,

and THETA= suboption on page 1507

GRID
specifies to display a grid on the plot. Grid lines are horizontal lines that are
positioned at major tick marks on the vertical axis.
See also: the CGRID= option

HEIGHT=value
specifies the height in percentage screen units of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.

HMINOR=n
specifies the number of minor tick marks between each major tick mark on the
horizontal axis. PROC UNIVARIATE does not label minor tick marks.
Alias: HM=

Default: 0

HREF=value(s)
draws reference lines that are perpendicular to the horizontal axis at the values you
specify.
Restriction: When you use the PCTLAXIS option, then HREF=values must be in

quantile units.
See also: CHREF= option on page 1501

HREFLABELS=’label1’ … ’labeln’
specifies labels for the reference lines that you request with the HREF= option.

Alias: HREFLABEL= and HREFLAB=
Restriction: The number of labels must equal the number of reference lines. Labels

can have up to 16 characters.

HREFLABPOS=n
specifies the vertical position of HREFLABELS= labels, where n is

1 positions the labels along the top of the plot

2 staggers the labels from top to bottom

3 positions the labels along the bottom.
Default: 1

INFONT=font
specifies a software font to use for text inside the framed areas of the plot. The
INFONT= option takes precedence over the FTEXT= option in the GOPTIONS
statement.
See also: For a list of fonts, see SAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units of text, to use inside the framed areas
of the plot.
Default: the height that you specify with the HEIGHT= option. If you do not

specify the HEIGHT= option, the default height is the height that you specify with
the HTEXT= option in the GOPTIONS statement.



1504 QQPLOT Statement � Chapter 48

INTERTILE=value
specifies the distance in horizontal percentage screen units between the framed
areas, which are called tiles.
Default: .75 in percentage screen units.
Requirement: This option is not available unless you specify the CLASS statement.

L=linetype
specifies the line type for a diagonal distribution reference line.
Default: 1, which produces a solid line
Requirement: You must enclose this suboption in parentheses after a distribution

option keyword.

LGRID=linetype
specifies the line type for the grid when a grid displays on the plot.
Default: 1, which produces a solid line
Interaction: This option automatically invokes the GRID= option.

LHREF=linetype
specifies the line type for the reference lines that you request with the HREF= option.
Alias: LH=
Default: 2, which produces a dashed line

LOGNORMAL(SIGMA=value|EST <lognormal-suboptions>)
displays a lognormal Q-Q plot for each value of the required shape parameter �.
Alias: LNORM
Requirement: You must specify the shape parameter with the SIGMA= suboption.
Tip: To obtain a graphical estimate of �, specify a list of values for the SIGMA=

suboption, and select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that

corresponds to the threshold parameter �� and the scale parameter �� with the
THETA= and ZETA= suboptions. Alternatively, you can add a line that
corresponds to estimated values of �� and �� with THETA=EST and ZETA=EST.
This line has intercept ��, and slope exp(��).

Agreement between the reference line and the point pattern indicates that the
lognormal distribution with parameters �, �� and �� is a good fit.

Main discussion: “Lognormal Distribution” on page 1537
See also: the SIGMA= suboption on page 1506, SLOPE= suboption on page 1507,

THETA= suboption on page 1507, and ZETA= suboption on page 1509

LVREF=linetype
specifies the line type for the reference lines that you request with the VREF= option.
Alias: LV=
Default: 2, which produces a dashed line

MU=value|EST
specifies the mean � for a normal Q-Q plot requested with the NORMAL option.
Default: the sample mean
Requirement: You must enclose this suboption in parentheses after the NORMAL

option.
Tip: Specify the MU= and SIGMA= suboptions together to request a distribution

reference line. Specify MU=EST to request a distribution reference line with ��
equal to the sample mean.

Featured in: Example 8 on page 1566



The UNIVARIATE Procedure � QQPLOT Statement 1505

NADJ=value
specifies the adjustment value that is added to the sample size in the calculation of
theoretical quantiles. For additional information, see Chambers et al. (1983).

Default: �

�
as recommended by Blom (1958)

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu.
Default: UNIVAR

NCOLS=n
specifies the number of columns in the comparative Q-Q plot.
Alias: NCOL=
Default: NCOLS=1, if you specify only one class variable, and NCOLS=2, if you

specify two class variables.
Requirement: This option is not available unless you specify the CLASS statement.
Interaction: If you specify two class variables, you can use the NCOLS= option

with the NROWS= option.

NOFRAME
suppresses the frame around the area that is bounded by the axes.
Restriction: If you use the PCTLAXIS option, then you cannot use the NOFRAME

option.

NOHLABEL
suppresses the label for the horizontal axis.
Tip: Use this option to reduce clutter.

NORMAL<(normal-suboptions)>
displays a normal Q-Q plot. This is the default if you omit a distribution option.
Tip: To assess the point pattern, add a diagonal distribution reference line that

corresponds to �� and �� with the MU= and SIGMA= suboptions. Alternatively,
you can add a line that corresponds to estimated values of �� and �� with the
THETA=EST and SIGMA=EST; the estimates of the mean �� and the standard
deviation �� are the sample mean and sample standard deviation.

Agreement between the reference line and the point pattern indicates that the
normal distribution with parameters �� and �� is a good fit.

Main discussion: “Normal Distribution” on page 1538
See also: the MU= suboption on page 1504 and SIGMA= suboption on page 1506
Featured in: Example 8 on page 1566

NOVLABEL
suppresses the label for the vertical axis.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis.
Interaction: This option automatically invokes the NOVLABEL option.

NROWS=n
specifies the number of rows in the comparative Q-Q plot.
Alias: NROW=
Default: 2
Requirement: This option is not available unless you specify the CLASS statement.
Interaction: If you specify two class variables, you can use the NCOLS= option

with the NROWS= option.



1506 QQPLOT Statement � Chapter 48

PCTLAXIS<(axis-options) >
adds a nonlinear percentile axis along the frame of the Q-Q plot opposite the
theoretical quantile axis. The added axis is identical to the axis for probability plots
produced with the PROBPLOT statement. You can specify the following axis options:

GRID
draws vertical grid lines at major percentiles.

GRIDCHAR=’character’
specifies grid line plotting character on line printer.

LABEL=’string’
specifies label for percentile axis.

LGRID=’linetype’
specifies label for percentile axis.

Restriction: When you use the PCTLAXIS option, then you must specify
HREF=values in quantile units, and you cannot use the NOFRAME option.

Featured in: Example 8 on page 1566

PCTLMINOR
requests minor tick marks for the percentile axis when you specify PCTLAXIS.

Interaction: The HMINOR option overrides the minor tick marks that
PCTLMINOR determines.

PCTLSCALE
requests scale labels for the theoretical quantile axis in percentile units, resulting in
a nonlinear axis scale.

Tip: Tick marks are drawn uniformly across the axis based on the quantile scale. In
all other respects, the plot remains the same, and you must specify HREF= values
in quantile units. For a true nonlinear axis, use the PROBPLOT statement.

RANKADJ=value
specifies the adjustment value that PROC UNIVARIATE adds to the ranks in the
calculation of theoretical quantiles. For additional information, see Chambers et al.
(1983).

Default: ��

�
as recommended by Blom (1958)

SCALE=value
is an alias for the SIGMA= option when you request Q-Q plots with the BETA,
EXPONENTIAL, GAMMA, WEIBULL, and WEIBULL2 options and for the ZETA=
option when you request the LOGNORMAL option.

See also: the SIGMA= suboption on page 1506 and the ZETA= suboption on page
1509

SHAPE=value|EST
is an alias for the ALPHA=option when you request gamma plots with the GAMMA
option, for the SIGMA= option when you request lognormal plots with the
LOGNORMAL option, and for the C= option when you request Weibull plots with the
WEIBULL, and WEIBULL2 options.

See also: the ALPHA= suboption on page 1500, the SIGMA= suboption on page
1506, and the C= suboption on page 1501

SIGMA=value|EST
specifies the distribution parameter �, where � � � for the quantile plot. The
interpretation and use of the SIGMA= option depend on which distribution you
specify, as shown in Table 48.5 on page 1507.



The UNIVARIATE Procedure � QQPLOT Statement 1507

Table 48.5 Uses of the SIGMA Suboption

Distribution Option Uses of the SIGMA= Option

BETA, EXPONENTIAL

GAMMA, WEIBULL

THETA=�� and SIGMA=�� request a distribution reference
line with intercept �� and slope ��.

LOGNORMAL SIGMA=������� requests � Q-Q plots with shape parameters
�������. The SIGMA= option is required.

NORMAL MU=�� and SIGMA=�� request a distribution reference line
with intercept �� and slope ��. SIGMA=EST requests a slope
�� equal to the sample standard deviation.

WEIBULL2 SIGMA=�� and C=�� request a distribution reference line with
intercept ��� ���� and slope �

��

.

Requirement: Enclose this suboption in parentheses after the distribution option.
Tip: To compute a maximum likelihood estimate for ��, specify SIGMA=EST .
Featured in: Example 8 on page 1566

SLOPE=value|EST
specifies the slope for a distribution reference when you request the LOGNORMAL
option or WEIBULL2 option.
Requirement: Enclose this suboption in parentheses after the distribution option.
Tip: When you use the LOGNORMAL option and SLOPE= to request the line, you

must also specify a threshold parameter value �� with the THETA= suboption.
SLOPE= is an alternative to the ZETA= suboption for specifying ��, because the
slope is equal to ��� ����.
When you use the WEIBULL2 option and SLOPE= option to request the line, you
must also specify a scale parameter value �� with the SIGMA= suboption.
SLOPE= is an alternative to the C= suboption for specifying ��, because the slope
is equal to �

��

.
For example, the first and second QQPLOT statements produce the same

quantile-quantile plots as the third and fourth QQPLOT statements:

proc univariate data=measures;
qqplot width /lognormal(sigma=2 theta=0 zeta=0);
qqplot width /lognormal(sigma=2 theta=0 slope=1);
qqplot width /weibull2(sigma=2 theta=0 c=.25);
qqplot width /weibull2(sigma=2 theta=0 slope=4);

Main Discussion: “Shape Parameters” on page 1539

SQUARE
displays the Q-Q plot in a square frame.
Default: rectangular frame

THETA=value|EST
specifies the lower threshold parameter � for Q-Q plots when you request BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, WEIBULL, or WEIBULL2 option.
Default: 0
Requirement: You must enclose this suboption in parentheses after the distribution

option.
Interaction: When you use the WEIBULL2 option, the THETA= suboption specifies

the known lower threshold ��, which by default is 0.



1508 QQPLOT Statement � Chapter 48

When you use the THETA= suboption with another distribution option,
THETA= specifies �� for a distribution reference line. To compute a maximum
likelihood estimate for ��, specify THETA=EST. To request the line, you must also
specify a scale parameter.

THRESHOLD= value|EST
is an alias for the THETA= option. See the THETA= suboption on page 1507.

VAXISLABEL=’label’
specifies a label for the vertical axis.

Requirement: Labels can have up to 40 characters.

Featured in:

VMINOR=n
specifies the number of minor tick marks between each major tick mark on the
vertical axis. QQPLOT does not label minor tick marks.

Alias: VM=

Default: 0

VREF=value(s)
draws reference lines that are perpendicular to the vertical axis at the value(s) you
specify.

See also: CVREF= option on page 1502 and LVREF= option on page 1504

VREFLABELS=’ label1’… ’labeln’
specifies labels for the reference lines that you request with the VREF= option.

Alias: VREFLABEL= and VREFLAB=

Restriction: The number of labels must equal the number of reference lines. Labels
can have up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of VREFLABELS= labels, where n is

1 positions the labels at the left of the plot.

2 positions the labels at the right of the plot.

Default: 1

W=n
specifies the width in pixels for a distribution reference line.

Default: 1

Requirement: You must enclose this suboption in parentheses after the distribution
option.

WAXIS=n
specifies the line thickness (in pixels) for the axes and frame.

Default: 1

WEIBULL(C=value|EST <Weibull-suboptions>)
creates a three-parameter Weibull Q-Q plot for each value of the required shape
parameter �.

Alias: WEIB

Requirement: You must specify the shape parameter with the C= suboption.

Interaction: To create a plot that is based on a maximum likelihood estimate for �,
specify C=EST.

To specify the threshold value ��, use the THETA= suboption.



The UNIVARIATE Procedure � QQPLOT Statement 1509

Tip: To obtain a graphical estimate of �, specify a list of values in the C= suboption.
Then select the value that most nearly linearizes the point pattern.

To assess the point pattern, add a diagonal distribution reference line with
intercept �� and slope �� with the THETA= and SIGMA= suboptions.
Alternatively, you can add a line that corresponds to estimated values of �� and ��
with THETA=EST and SIGMA=EST.

Agreement between the reference line and the point pattern indicates that the
Weibull distribution with parameters �, ��, and �� is a good fit.

Main discussion: “Three-Parameter Weibull Distribution” on page 1538
See also: the C= suboption on page 1501, SIGMA= suboption on page 1506, and

THETA= suboption on page 1507

WEIBULL2<(Weibull-suboptions)>
creates a two-parameter Weibull Q-Q plot. Use this distribution when your data have
a known lower threshold ��, which by default is 0. To specify the threshold value ��,
use the THETA= suboption.

Note: The C= shape parameter option is not required with the Weibull2 option. �
Alias: W2
Default: 0
Interaction: To specify the threshold value ��, use the THETA= suboption.
Tip: An advantage of the two-parameter Weibull plot over the three-parameter

Weibull plot is that the parameters � and � can be estimated from the slope and
intercept of the point pattern. A disadvantage is that the two-parameter Weibull
distribution applies only in situations where the threshold parameter is known.

Tip: To obtain a graphical estimate of ��, specify a list of values for the THETA=
suboption. Then select the value that most nearly linearizes the point pattern.

To assess the point pattern, add a diagonal distribution reference line that
corresponds to �� and �� with the SIGMA= and C= suboptions. Alternatively, you
can add a distribution reference line that corresponds to estimated values of ��
and �� with SIGMA=EST and C=EST.

Agreement between the reference line and the point pattern indicates that the
Weibull2 distribution with parameters ��, ��, and �� is a good fit.

Main discussion: “Two-Parameter Weibull Distribution” on page 1538
See also: the C= suboption on page 1501, SIGMA= suboption on page 1506,

SLOPE= suboption on page 1507, and THETA= suboption on page 1507

ZETA= value|EST
specifies a value for the scale parameter � for the lognormal Q-Q plots when you
request the LOGNORMAL option.
Requirement: You must enclose this suboption in parentheses after the

LOGNORMAL option.
Interaction: To request a distribution reference line with intercept �� and slope

��� ����, specify THETA= �� and ZETA= ��.

Theoretical Percentiles of Quantile-Quantile Plots
To estimate percentiles from a Q-Q plot
� Specify the PCTLAXIS option, which adds a percentile axis opposite the theoretical

quantile axis. The scale for the percentile axis ranges between 0 and 100 with tick
marks at percentile values such as 1, 5, 10, 25, 50, 75, 90, 95, and 99.

� Specify the PCTLSCALE option, which relabels the horizontal axis tick marks
with their percentile equivalents but does not alter their spacing. For example, on



1510 VAR Statement � Chapter 48

a normal Q-Q plot, the tick mark labeled � is relabeled as �� because the ��
��

percentile corresponds to the zero quantile.

You can also use the PROBPLOT statement to estimate percentiles.

VAR Statement

Specifies the analysis variables and their order in the results.

Default: If you omit the VAR statement, PROC UNIVARIATE analyzes all numeric
variables that are not listed in the other statements.
Featured in: Example 1 on page 1543 and Example 6 on page 1560

VAR variable(s);

Required Arguments

variable(s)
identifies one or more analysis variables.

Using the Output Statement with the VAR Statement
Use a VAR statement when you use an OUTPUT statement. To store the same

statistic for several analysis variables in the OUT= data set, you specify a list of names
in the OUTPUT statement. PROC UNIVARIATE makes a one-to-one correspondence
between the order of the analysis variables in the VAR statement and the list of names
that follow a statistic keyword.

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information about how to calculate weighted statistics and for an example
that uses the WEIGHT statement, see “Calculating Weighted Statistics” on page 60

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is



The UNIVARIATE Procedure � Rounding 1511

Weight value… PROC UNIVARIATE…

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

The weight variable does not change how the procedure determines the range,
mode, extreme values, extreme observations, or number of missing values. The
Student’s t test is the only test of location that PROC UNIVARIATE computes when
you weight the analysis variables.
Restriction: The CIPCTLDF, CIPCTLNORMAL, LOCCOUNT, NORMAL,

ROBUSTSCALE, TRIMMED=, and WINSORIZED= options are not available with
the WEIGHT statement.

Restriction: To compute weighted skewness or kurtosis, use VARDEF=DF or
VARDEF=N in the PROC statement.

Restriction: You can not specify the HISTOGRAM, PROBPLOT, or QQPLOT
statements with the WEIGHT statement.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See VARDEF= on page 1449 and the calculation of weighted
statistics in “Keywords and Formulas” on page 1578 for more information.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. �

Concepts: UNIVARIATE Procedure

Rounding
When you specify ROUND=u, PROC UNIVARIATE rounds a variable by using the

rounding unit to divide the number line into intervals with midpoints u*i, where u is
the nonnegative rounding unit and i equals the integers (…, -4, -3, -2, -1, 0, 1, 2, 3,
4,…). The interval width is u. Any variable value that falls in an interval rounds to the
midpoint of that interval. A variable value that is midway between two midpoints, and
is therefore on the boundary of two intervals, rounds to the even midpoint. Even
midpoints occur when i is an even integer (0,±2,±4,…).

When ROUND=1 and the analysis variable values are between -2.5 and 2.5, the
intervals are as follows:

i Interval Midpoint
Left endpt rounds

to
Right endpt rounds

to

-2 [-2.5,-1.5] -2 -2 -2

-1 [-1.5,-0.5] -1 -2 0

0 [-0.5,0.5] 0 0 0



1512 Generating Line Printer Plots � Chapter 48

i Interval Midpoint
Left endpt rounds

to
Right endpt rounds

to

1 [0.5,1.5] 1 0 2

2 [1.5,2.5] 2 2 2

When ROUND=.5 and the analysis variable values are between -1.25 and 1.25, the
intervals are as follows:

i Interval Midpoint
Left endpt
rounds to Right endpt rounds to

-2 [-1.25,-0.75] -1.0 -1 -1

-1 [-0.75,-0.25] -0.5 -1 0

0 [-0.25,0.25] 0.0 0 0

1 [0.25,0.75] 0.5 0 1

2 [0.75,1.25] 1.0 1 1

As the rounding unit increases, the interval width also increases. This reduces the
number of unique values and decreases the amount of memory that PROC
UNIVARIATE needs.

Generating Line Printer Plots
The PLOTS option in the PROC UNIVARIATE statement provides up to four

diagnostic line printer plots to examine the data distribution. These plots are the
stem-and-leaf plot or horizontal bar chart, the box plot, the normal probability plot, and
the side-by-side box plots. If you specify the WEIGHT statement, PROC UNIVARIATE
provides a weighted histogram, a weighted box plot based on the weighted quantiles,
and a weighted normal probability plot.

Stem-and-Leaf Plot
The first plot in the output is either a stem-and-leaf plot (Tukey 1977) or a horizontal

bar chart. If any single interval contains more than 49 observations, the horizontal bar
chart appears. Otherwise, the stem-and-leaf plot appears. The stem-and-leaf plot is like
a horizontal bar chart in that both plots provide a method to visualize the overall
distribution of the data. The stem-and-leaf plot provides more detail because each point
in the plot represents an individual data value.

To change the number of stems that the plot displays, use PLOTSIZE= to increase or
decrease the number of rows. Instructions that appear below the plot explain how to
determine the values of the variable. If no instructions appear, you multiply Stem.Leaf
by 1 to determine the values of the variable. For example, if the stem value is 10 and
the leaf value is 1, then the variable value is approximately 10.1.

For the stem-and-leaf plot, the procedure rounds a variable value to the nearest leaf.
If the variable value is exactly halfway between two leaves, the value rounds to the
nearest leaf with an even integer value. For example, a variable value of 3.15 has a
stem value of 3 and a leaf value of 2.



The UNIVARIATE Procedure � Generating Line Printer Plots 1513

Box Plot
The box plot, also known as a schematic plot, appears beside the stem-and-leaf plot.

Both plots use the same vertical scale. The box plot provides a visual summary of the
data and identifies outliers. The bottom and top edges of the box correspond to the
sample 25th (Q1) and 75th (Q3) percentiles. The box length is one interquartile range
(Q3 - Q1). The center horizontal line with asterisk endpoints corresponds to the sample
median. The central plus sign (+) corresponds to the sample mean. If the mean and
median are equal, the plus sign falls on the line inside the box. The vertical lines that
project out from the box, called whiskers, extend as far as the data extend, up to a
distance of 1.5 interquartile ranges. Values farther away are potential outliers. The
procedure identifies the extreme values with a zero or an asterisk (*). If zero appears,
the value is between 1.5 and 3 interquartile ranges from the top or bottom edge of the
box. If an asterisk appears, the value is more extreme.

To generate box plot using high-resolution graphics, use the BOXPLOT procedure in
SAS/STAT software.

Normal Probability Plot
The normal probability plot is a quantile-quantile plot of the data. The procedure

plots the empirical quantiles against the quantiles of a standard normal distribution.
Asterisks (*) indicate the data values. The plus signs (+) provide a straight reference
line that is drawn by using the sample mean and standard deviation. If the data are
from a normal distribution, the asterisks tend to fall along the reference line. The
vertical coordinate is the data value, and the horizontal coordinate is ��� ���� where

��� ���� � ���� � �� � �����

and where

�� is
�
�� �

�
�

�
�
�
� � �

�

�
.

�−1 is the inverse of the standard normal distribution function.

�� is the rank of the ���data value when ordered from smallest to largest.

� is the number of nonmissing data values.

For weighted normal probability plot, the ith ordered observation is plotted against
the normal quantile ��� ����, where ��� is the inverse standard cumulative normal
distribution and

�� �

��

���
����

�
�� �

��

�

�
�
� � �

��

�

where ���� is weight that is associated with ���� for the ��� ordered observation and

��
��

���

�� is the sum of the individual weights.



1514 Generating High-Resolution Graphics � Chapter 48

When each observation has an identical weight, ���� � �, the formula for �� reduces
to the expression for �� in the unweighted normal probability plot

�� �
�� �

�

� � �
�

When the value of VARDEF= is WDF or WEIGHT, PROC UNIVARIATE draws a
reference line with intercept �� and slope �� and when the value of VARDEF= is DF or
N, the slope is ���

�
� where � � ��� is the average weight.

When each observation has an identical weight and the value of VARDEF= is DF, N,
or WEIGHT, the reference line reduces to the usual reference line with intercept �� and
slope �� in the unweighted normal probability plot.

If the data are normally distributed with mean �, standard deviation �, and each
observation has an identical weight �, then, as in the unweighted normal probability
plot, the points on the plot should lie approximately on a straight line. The intercept is
� and slope is � when VARDEF= is WDF or WEIGHT, and the slope is ��

�
� when

VARDEF= is DF or N.

Side-by-Side Box Plots
When you use a BY statement with the PLOT option, PROC UNIVARIATE produces

full-page side-by-side box plots, one for each BY group. The box plots (also known as
schematic plots) use a common scale that allows you to compare the data distribution
across BY groups. This plot appears after the univariate analyses of all BY groups. Use
the NOBYPLOT option to suppress this plot.

For more information on how to interpret these plots see SAS System for Elementary
Statistical Analysis and SAS System for Statistical Graphics.

Generating High-Resolution Graphics
If your site licenses SAS/GRAPH software, you can use the HISTOGRAM statement,

PROBPLOT statement, and QQPLOT statement to create high-resolution graphs.
The HISTOGRAM statement generates histograms and comparative histograms that

allow you to examine the data distribution. You can optionally fit families of density
curves and superimpose kernel density estimates on the histograms. For additional
information about the fitted distributions and kernel density estimates, see “Formulas
for Fitted Continuous Distributions” on page 1530.

The PROBPLOT statement generates a probability plot, which compares ordered
values of a variable with percentiles of a specified theoretical distribution. The
QQPLOT statement generates a quantile-quantile plot, which compares ordered values
of a variable with quantiles of a specified theoretical distribution. Thus, you can use
these plots to determine how well a theoretical distribution models a set of measures.

Quantile-Quantile and Probability Plots
The following figure illustrates how to construct a Q-Q plot for a specified theoretical

distribution � �	� with the QQPLOT statement.



The UNIVARIATE Procedure � Generating High-Resolution Graphics 1515

Figure 48.6 Construction of a Q-Q Plot

y

x(i )

x
F 

–1
(         )i – 0.375

n + 0.25

First, the � nonmissing values of the variable are ordered from smallest to largest:
���� � ���� � � � � � ����. Then, the ��� ordered value ���� is represented on the plot by

a point whose �-coordinate is ���� and whose �-coordinate is ���
�
�������
������

�
, where � ���

is the theoretical distribution with a zero location parameter and a unit scale parameter.
For additional information about the theoretical distributions that you can request, see
“Theoretical Distributions for Quantile-Quantile and Probability Plots” on page 1536.

You can modify the adjustment constants -0.375 and 0.25 with the RANKADJ= and
NADJ= options. The default combination is recommended by Blom (1958). For
additional information, see Chambers et al. (1983). Since ���� is a quantile of the
empirical cumulative distribution function (ecdf), a Q-Q plot compares quantiles of the
ecdf with quantiles of a theoretical distribution. Probability plots are constructed the
same way, except that the �-axis is scaled nonlinearly in percentiles.

Interpreting Quantile-Quantile and Probability Plots
If the data distribution matches the theoretical distribution, the points on the plot

form a linear pattern. Thus, you can use a Q-Q plot or a probability plot to determine
how well a theoretical distribution models a set of measurements. The following
properties of these plots make them useful diagnostics to test how well a specified
theoretical distribution fits a set of measurements:

� If the quantiles of the theoretical and data distributions agree, the plotted points
fall on or near the line � � �.

� If the theoretical and data distributions differ only in their location or scale, the
points on the plot fall on or near the line � � ��� �. The slope � and intercept �
are visual estimates of the scale and location parameters of the theoretical
distribution.

Q-Q plots are more convenient than probability plots for graphical estimation of the
location and scale parameters because the �-axis of a Q-Q plot is scaled linearly. On the
other hand, probability plots are more convenient for estimating percentiles or
probabilities. There are many reasons why the point pattern in a Q-Q plot may not be
linear. Chambers et al. (1983) and Fowlkes (1987) discuss the interpretations of



1516 Determining Computer Resources � Chapter 48

commonly encountered departures from linearity, and these are summarized in the
following table.

Table 48.6 Quantile-Quantile Plot Diagnostics

Description of Point Pattern Possible Interpretation

All but a few points fall on a line Outliers in the data

Left end of pattern is below the line; right end of
pattern is above the line

Long tails at both ends of the data distribution

Left end of pattern is above the line; right end of
pattern is below the line

Short tails at both ends of the distribution

Curved pattern with slope increasing from left
to right

Data distribution is skewed to the right

Curved pattern with slope decreasing from left
to right

Data distribution is skewed to the left

Staircase pattern (plateaus and gaps) Data have been rounded or are discrete

In some applications, a nonlinear pattern may be more revealing than a linear
pattern. However as noted by Chambers et al. (1983), departures from linearity can
also be due to chance variation.

Determining Computer Resources
Because PROC UNIVARIATE computes quantile statistics, it requires additional

memory to store a copy of the data in memory. By default, the report procedures PROC
MEANS, PROC SUMMARY, and PROC TABULATE require less memory because they
do not automatically compute quantiles. These procedures also provide an option to use
a new fixed-memory quantiles estimation method that is usually less memory intense.
For more information, see “Quantiles” on page 680.

The only factor that limits the number of variables that you can analyze is the
computer resources that are available. The amount of temporary storage and CPU time
that PROC UNIVARIATE requires depends on the statements and the options that you
specify. To calculate the computer resources the procedure needs, let

� be the number of observations in the data set

� be the number of variables in the VAR statement

��
be the number of unique values for the ith variable.

Then the minimum memory requirement in bytes to process all variables is

� � ��

�
��

If � bytes are not available, PROC UNIVARIATE must process the data multiple
times to compute all the statistics. This reduces the minimum memory requirement to



The UNIVARIATE Procedure � Confidence Limits for Parameters of the Normal Distribution 1517

� � ����� ����

ROUND= reduces the number of unique values (��), thereby reducing memory
requirements. ROBUSTSCALE requires ���� bytes of temporary storage.

Several factors affect the CPU time requirement:
� The time to create � tree structures to internally store the observations is

proportional to �� �	
 ���.

� The time to compute moments and quantiles for the ith variable is proportional to
��.

� The time to compute the NORMAL option test statistics is proportional to � .

� The time to compute the ROBUSTSCALE option test statistics is proportional to
�� �	
 ����.

� The time to compute the exact significance level of the sign rank statistic may
increase when the number of nonzero values is less than or equal to 20.

Each of these factors has a different constant of proportionality. For additional
information on how to optimize CPU performance and memory usage, see the SAS
documentation for your operating environment.

Statistical Computations: UNIVARIATE Procedure
PROC UNIVARIATE uses standard algorithms to compute the moment statistics

(such as the mean, variance, skewness, and kurtosis). See Appendix 1, “SAS Elementary
Statistics Procedures,” on page 1577 for the statistical formulas. The computational
details for confidence limits, hypothesis test statistics, and quantile statistics follow.

Confidence Limits for Parameters of the Normal Distribution
The two-sided ��� ��� �� percent confidence interval for the mean has upper and

lower limits

�� ������������
��
�

where � is
�

�
���

�
��� � ��� and ������������ is the (�� �	�) percentile of the t

distribution with �� � degrees of freedom.
The one-sided ��� �� � �� percent confidence limit is computed as

�� ����������
��
�

�upper�

�� ����������
��
�

�lower�

The two-sided ��� �� � �� percent confidence interval for the standard deviation has
lower and upper limits



1518 Tests for Location � Chapter 48

�

�
�� �

��

�����������

� �

�
�� �

��
���������

where ��
����������� and ��

��������� are the ��� ���� and ��� percentiles of the

chi-square distribution with �� � degrees of freedom. A one-sided ��� ��� �� percent
confidence limit is computed by replacing ��� with �.

A ��� �� � �� percent confidence interval for the variance has upper and lower
limits equal to the squares of the corresponding upper and lower limits for the standard
deviation.

When you use the WEIGHT statement and specify VARDEF=DF in the PROC
statement, the ��� ��� �� percent confidence interval for the weighted mean is

�� � ��������
���
��
���

��

where �� is the weighted mean, �� is the weighted standard deviation, �� is the
weight for 	�
 observation, and �������� is the �� � ���� critical percentage for the t
distribution with � � � degrees of freedom.

Tests for Location
PROC UNIVARIATE computes tests for location that include Student’s t test, the

sign test, and the Wilcoxon signed rank test. All three tests produce a test statistic for
the null hypothesis that the mean or median is equal to a given value �� against the
two-sided alternative that the mean or median is not equal to ��. By default, PROC
UNIVARIATE sets the value of �� to zero. Use the MU0= option in the PROC
UNIVARIATE statement to test that the mean or median is equal to another value.

The Student’s t test is appropriate when the data are from an approximately normal
population; otherwise, use nonparametric tests such as the sign test or the signed rank
test. For large sample situations, the t test is asymptotically equivalent to a z test.

If you use the WEIGHT statement, PROC UNIVARIATE computes only one weighted
test for location, the t test. You must use the default value for the VARDEF= option in
the PROC statement.

You can also compare means or medians of paired data. Data are said to be paired
when subjects or units are matched in pairs according to one or more variables, such as
pairs of subjects with the same age and gender. Paired data also occur when each
subject or unit is measured at two times or under two conditions. To compare the
means or medians of the two times, create an analysis variable that is the difference
between the two measures. The test that the mean or the median difference of the
variables equals zero is equivalent to the test that the means or medians of the two
original variables are equal. See Example 4 on page 1552.

Student’s t Test
PROC UNIVARIATE calculates the t statistic as

� �
�� ��
��
�
�



The UNIVARIATE Procedure � Tests for Location 1519

where � is the sample mean, � is the number of nonmissing values for a variable, and �
is the sample standard deviation. Under the null hypothesis, the population mean
equals ��. When the data values are approximately normally distributed, the
probability under the null hypothesis of a t statistic that is as extreme, or more extreme,
than the observed value (the p-value) is obtained from the t distribution with �� �

degrees of freedom. For large �, the t statistic is asymptotically equivalent to a z test.
When you use the WEIGHT statement and the default value of VARDEF=, which is

DF, the t statistic is calculated as

�
�
�

�
�
� ��

���

�
��
���

��

where �� is the weighted mean, �� is the weighted standard deviation, and �� is the
weight for ��� observation. The �� statistic is treated as having a Student’s t
distribution with �� � degrees of freedom. If you specify the EXCLNPWGT option in
the PROC statement, � is the number of nonmissing observations when the value of the
WEIGHT variable is positive. By default, � is the number of nonmissing observations
for the WEIGHT variable.

Sign Test
PROC UNIVARIATE calculates the sign test statistic as

� �
�
�� � ��

�
��

where �� is the number of values that is greater than 	� and �� is the number of
values that is less than 	�. Values equal to 	� are discarded.

Under the null hypothesis that the population median is equal to 	�, the p-value for
the observed statistic M is

���� ���� � �
 �� � ���������
�����������

���

�
��

�

�

where �� � �� � �� is the number of �� values not equal to ��.

Wilcoxon Signed Rank Test
PROC UNIVARIATE calculates the Wilcoxon signed rank test statistic as

� �
�

��� � �� ��� � �� ��

where ��� is the rank of ��� � ��� after discarding values of �� equal to ��, �� is the
number of �� values not equal to ��, and the sum is calculated for values of �� � ��
greater than 0. Average ranks are used for tied values.



1520 Goodness-of-Fit Tests � Chapter 48

The p-value is the probability of obtaining a signed rank statistic greater in absolute
value than the absolute value of the observed statistic S. If �� � ��, the significance
level of � is computed from the exact distribution of �, which can be enumerated under
the null hypothesis that the distribution is symmetric about ��. When �� � ��, the
significance of level � is computed by treating

�
�
�� � �

�
��� � ��

as a Student’s t variate with �� � � degrees of freedom. � is computed as

��
�

��
�� ��� � �� ���� � ��� ���

�
�� ��� � �� ��� � ��

where the sum is calculated over groups that are tied in absolute value, and �� is the
number of tied values in the �th group (Iman 1974; Conover 1998).

The Wilcoxon signed rank test assumes that the distribution is symmetric. If the
assumption is not valid, you can use the sign test to test that the median is ��. See
Lehman (1998) for more details.

Goodness-of-Fit Tests
When you specify the NORMAL option in the PROC UNIVARIATE statement or you

request a fitted parametric distribution in the HISTOGRAM statement, the procedure
computes test statistics for the null hypothesis that the values of the analysis variable
are a random sample from the specified theoretical distribution. When you specify the
normal distribution, the test statistics depend on the sample size. If the sample size is
less than or equal to 2000, PROC UNIVARIATE calculates the Shapiro-Wilk W statistic.
For a specified distribution, the procedure attempts to calculate three goodness-of-fit
tests that are based on the empirical distribution function (EDF): the
Kolmogorov-Smirnov D statistic, the Anderson-Darling statistic, and the Cramer-von
Mises statistic. However, some of the EDF tests are currently not supported when the
parameters of a specified distribution are estimated. See Table 48.7 on page 1524 for
more information.

You determine whether to reject the null hypothesis by examining the probability
that is associated with a test statistic. When the p-value is less than the predetermined
critical value (alpha value), you reject the null hypothesis and conclude that the data
did not come from the theoretical distribution.

If you want to test the normality assumptions that underlie analysis of variance
methods, beware of using a statistical test for normality alone. A test’s ability to reject
the null hypothesis (known as the power of the test) increases with the sample size. As
the sample size becomes larger, increasingly smaller departures from normality can be
detected. Since small deviations from normality do not severely affect the validity of
analysis of variance tests, it is important to examine other statistics and plots to make
a final assessment of normality. The skewness and kurtosis measures and the plots
that are provided by the PLOTS option, the HISTOGRAM statement, PROBPLOT
statement, and QQPLOT statement can be very helpful. For small sample sizes, power
is low for detecting larger departures from normality that may be important. To
increase the test’s ability to detect such deviations, you may want to declare
significance at higher levels, such as 0.15 or 0.20, rather than the often-used 0.05 level.



The UNIVARIATE Procedure � Goodness-of-Fit Tests 1521

Again, consulting plots and additional statistics will help you assess the severity of the
deviations from normality.

Shapiro-Wilk Statistic
If the sample size is less than or equal to 2000 and you specify the NORMAL option,

PROC UNIVARIATE computes the Shapiro-Wilk statistic, W. The W statistic is the
ratio of the best estimator of the variance (based on the square of a linear combination
of the order statistics) to the usual corrected sum of squares estimator of the variance
(Shapiro, 1965). W must be greater than zero and less than or equal to one. Small
values of W lead to the rejection of the null hypothesis of normality. The distribution of
W is highly skewed. Seemingly large values of W (such as 0.90) may be considered
small and lead you to reject the null hypothesis. When the sample size is greater than
three, the coefficients to compute the linear combination of the order statistics are
approximated by the method of Royston (1992).

�� � �� ��� �� � ��� �������� �� ��

when � � � � �� and

�
�
� ���� �� ��

�
�� �� ��

when �� � � � �			, where �� �� and � are functions of �, obtained from simulation
results, and �� is a standard normal variate. Large values of �� indicate departure
from normality.

EDF Goodness-of-Fit Tests
When you fit a parametric distribution, PROC UNIVARIATE provides a series of

goodness-of-fit tests that are based on the empirical distribution function (EDF). The
empirical distribution function is defined for a set of � independent observations
��� 
 
 
 ���

with a common distribution function 	 �
�. The observations that are
ordered from smallest to largest as ����� 
 
 
 �����. The empirical distribution function,
	
�
�
�, is defined as

	
�
�
� � 	� 
 � ����

	
�
�
� �

�

�
� ���� � 
 � ������ � � �� 
 
 
 � �� �

	� �
� � �� ���� � 


Note that 	� �
� is a step function that takes a step of height �
�

at each observation.
This function estimates the distribution function 	 �
�. At any value 
� 	� �
� is the
proportion of observations that is less than or equal to 
 while 	 �
� is the theoretical
probability of an observation that is less than or equal to 
. EDF statistics measure the
discrepancy between 	� �
� and 	 �
�.

The computational formulas for the EDF statistics use the probability integral
transformation  � 	 ���. If 	 ��� is the distribution function of � , the random
variable  is uniformly distributed between 0 and 1.



1522 Goodness-of-Fit Tests � Chapter 48

Given � observations ����� � � � �����, PROC UNIVARIATE computes the values
���� � �

�
����

�
by applying the transformation, as follows.

When you specify the NORMAL option in the PROC UNIVARIATE statement or use
the HISTOGRAM statement to fit a parametric distribution, PROC UNIVARIATE
provides a series of goodness-of-fit tests that are based on the empirical distribution
function (EDF):

� Kolmogorov-Smirnov

� Anderson-Darling

� Cramer-von Mises

These tests are based on various measures of the discrepancy between the empirical
distribution function �� ��� and the proposed cumulative distribution function � ���.

Once the EDF test statistics are computed, the associated p-values are calculated.
PROC UNIVARIATE uses internal tables of probability levels that are similar to those
given by D’Agostino and Stephens (1986). If the value lies between two probability
levels, then linear interpolation is used to estimate the probability value.

Note: PROC UNIVARIATE does not support some of the EDF tests when you use
the HISTOGRAM statement and you estimate the parameters of the specified
distribution. See Table 48.7 on page 1524 for more information. �

Kolmogorov D Statistic
The Kolmogorov-Smirnov statistic (D) is defined as

� � ����

���� ���� ����

��

The Kolmogorov-Smirnov statistic belongs to the supremum class of EDF statistics. This
class of statistics is based on the largest vertical difference between � ��� and �� ���.

The Kolmogorov-Smirnov statistic is computed as the maximum of �� and ��. ��

is the largest vertical distance between the EDF and the distribution function when the
EDF is greater than the distribution function. �� is the largest vertical distance when
the EDF is less than the distribution function.

�� � ��	 �

�
�

�
� ����

�

�� � ��	 �

�
���� �

�� 


�

�

� � ��	
�
�����

�

PROC UNIVARIATE uses a modified Kolmogorov D statistic to test the data against
a normal distribution with mean and variance equal to the sample mean and variance.

Anderson-Darling Statistic
The Anderson-Darling statistic and the Cramer-von Mises statistic belong to the

quadratic class of EDF statistics. This class of statistics is based on the squared
difference ��� ���� � �����. Quadratic statistics have the following general form:



The UNIVARIATE Procedure � Goodness-of-Fit Tests 1523

� � �

���
��

��� ���� � ����� � ��� �� ���

The function � ��� weights the squared difference ��� ���� � �����.
The Anderson-Darling statistic (��) is defined as

�� � �

���
��

��� ���� � ����� �� ��� ��� � �����
��
�� ���

where the weight function is � ��� � �� ��� ��� � �������.
The Anderson-Darling statistic is computed as

��� ���
�

�

��
���

�
������

�
��	 ����
 ��	

�
����������

���

Cramer-von Mises Statistic
The Cramer-von Mises statistic (	 �) is defined as

	 � � �

���
��

��� ���� � ����� �� ���

where the weight function is � ��� � �.
The Cramer-von Mises statistic is computed as

	 � �
��

���

�
���� �

��� �

��

��



�

���

Probability Values of EDF Tests
Once the EDF test statistics are computed, PROC UNIVARIATE computes the

associated probability values.
The probability value depends upon the parameters that are known and the

parameters that PROC UNIVARIATE estimates for the fitted distribution. Table 48.7
on page 1524 summarizes different combinations of estimated parameters for which
EDF tests are available.

Note: PROC UNIVARIATE assumes that the threshold (THETA=) parameter for the
beta, exponential, gamma, lognormal, and Weibull distributions is known. If you omit
its value, PROC UNIVARIATE assumes that it is zero and that it is known. Likewise,
PROC UNIVARIATE assumes that the SIGMA= parameter, which determines the



1524 Goodness-of-Fit Tests � Chapter 48

upper threshold (SIGMA) for the beta distribution, is known. If you omit its value,
PROC UNIVARIATE assumes that the value is one. These parameters are not listed in
Table 48.7 on page 1524 because they are assumed to be known in all cases, and they
do not affect which EDF statistics PROC UNIVARIATE computes. �

Table 48.7 Availability of EDF Tests

Distribution Parameters Tests Available

Threshold Scale Shape

Beta � known

� known

� known

� known

�� � known

�� � � � unknown

all

all

Exponential � known

� known

� unknown

� unknown

� known

� unknown

� known

� unknown

all

all

all

all

Gamma � known

� known

� known

� known

� unknown

� unknown

� unknown

� unknown

� known

� unknown

� known

� unknown

� known

� unknown

� known

� unknown

� known

� known

� unknown

� unknown

� � � known

� � � known

� � � unknown

� � � unknown

all

all

all

all

all

all

all

all

Lognormal � known

� known

� known

� known

� unknown

� unknown

� unknown

� unknown

� known

� known

� unknown

� unknown

� known

� known

� unknown

� unknown

� known

� unknown

� known

� unknown

� � � known

� � � unknown

� � � known

� � � unknown

all

�� and 	 �

�� and 	 �

all

all

all

all

all



The UNIVARIATE Procedure � Robust Estimators 1525

Distribution Parameters Tests Available

Threshold Scale Shape

Normal � known

� known

� unknown

� unknown

� known

� unknown

� known

� unknown

all

�� and � �

�� and � �

all

Weibull � known

� known

� known

� known

� unknown

� unknown

� unknown

� unknown

� known

� unknown

� known

� unknown

� known

� unknown

� known

� unknown

� known

� known

� unknown

� unknown

� � � known

� � � known

� � � unknown

� � � unknown

all

�� and � �

�
� and � �

�� and � �

all

all

all

all

Robust Estimators
A statistical method is robust if the method is insensitive to slight departures from

the assumptions that justify the method. PROC UNIVARIATE provides several
methods for robust estimation of location and scale.

Winsorized Means
When outliers are present in the data, the Winsorized mean is a robust estimator of

the location that is relatively insensitive to the outlying values. The k-times Winsorized
mean is calculated as

�
�� �

�

�

�
�� � �������� �

������
�����

���� � �� � ��������

�

The Winsorized mean is computed after the � smallest observations are replaced by the
(� � �) smallest observation, and the � largest observations are replaced by the (� � �)
largest observation.

For a symmetric distribution, the symmetrically Winsorized mean is an unbiased
estimate of the population mean. But the Winsorized mean does not have a normal
distribution even if the data are from a normal population.

The Winsorized sum of squared deviations is defined as

	
�
��

��� � ��
�
������ � ���

��
�

������
�����

�
���� � ���

��
� �� � ��

�
������ � ���

��
A Winsorized t test is given by



1526 Robust Estimators � Chapter 48

�
�� �

���� � ���

������ �����

where the standard error of the Winsorized mean is

������ ����� �
�� �

� � �	 � �


���
� �� � ��

When the data are from a symmetric distribution, the distribution of the Winsorized
t statistic ��� is approximated by a Student’s t distribution with �� �	 � � degrees of
freedom (Tukey and McLaughlin 1963, Dixon and Tukey 1968).

A ��� �� � �� percent confidence interval for the Winsorized mean has upper and
lower limits

��� � �������������� �����

and the (�� ���) critical value of the Student’s t statistics has �� �	 � � degrees of
freedom.

Trimmed Means
When outliers are present in the data, the trimmed mean is a robust estimator of the

location that is relatively insensitive to the outlying values. The 	-times trimmed mean
is calculated as

��� �
�

�� �	

����

�����

����

The trimmed mean is computed after the 	 smallest and 	 largest observations are
deleted from the sample. In other words, the observations are trimmed at each end.

For a symmetric distribution, the symmetrically trimmed mean is an unbiased
estimate of the population mean. But the trimmed mean does not have a normal
distribution even if the data are from a normal population.

A robust estimate of the variance of the trimmed mean ��� can be based on the
Winsorized sum of squared deviations (Tukey and McLaughlin 1963). The resulting
trimmed t test is given by

��� �
���� � ���

������ �����

where the standard error of the trimmed mean is

������ ����� �

���

�� � �	� ��� �	 � ��



The UNIVARIATE Procedure � Robust Estimators 1527

and �
�� is the square root of the Winsorized sum of squared deviations

When the data are from a symmetric distribution, the distribution of the trimmed t
statistic ��� is approximated by a Student’s t distribution with �� �� � � degrees of
freedom (Tukey and McLaughlin 1963, Dixon and Tukey 1968).

A ��� �� � �� percent confidence interval for the trimmed mean has upper and
lower limits

��� � �����������	

 �����

and the (� � ���) critical value of the Student’s t statistics has �� �� � � degrees of
freedom.

Robust Measures of Scale
The sample standard deviation is a commonly used estimator of the population scale.

However, it is sensitive to outliers and may not remain bounded when a single data
point is replaced by an arbitrary number. With robust scale estimators, the estimates
remain bounded even when a portion of the data points are replaced by arbitrary
numbers.

PROC UNIVARIATE computes robust measures of scale that include statistics of
interquartile range, Gini’s mean difference G, MAD, ��, and ��, with their
corresponding estimates of .

The interquartile range is a simple robust scale estimator, which is the difference
between the upper and lower quartiles. For a normal population, the standard
deviation  can be estimated by dividing the interquartile range by 1.34898.

Gini’s mean difference is also a robust estimator of the standard deviation . For a
normal population, Gini’s mean difference has expected value ��

�
�. Thus,

multiplying Gini’s mean difference by
�
��� yields a robust estimator of the standard

deviation when the data are from a normal sample. The constructed estimator has high
efficiency for the normal distribution relative to the usual sample standard deviation. It
is also less sensitive to the presence of outliers than the sample standard deviation.

Gini’s mean difference is computed as

� �
���
�

�
�

���

��� � ���

If the observations are from a normal distribution, then
�
� ��� is an unbiased

estimator of the standard deviation .
A very robust scale estimator is the MAD, the median absolute deviation about the

median (Hampel, 1974.)

��� � ���� ���� ����� ������

where the inner median, ��������, is the median of the � observations and the outer
median, ����, is the median of the � absolute values of the deviations about the
median.

For a normal distribution, 1.4826�MAD can be used to estimate the standard
deviation .



1528 Calculating Percentiles � Chapter 48

The MAD statistic has low efficiency for normal distributions, and it may not be
appropriate for symmetric distributions. Rousseeuw and Croux (1993) proposed two
new statistics as alternatives to the MAD statistic.

The first statistic is

�� � ������ ������������� � �����

where the outer median, ����, is the median of the � medians of
���� � ���� 	 � 
 �� �� � � � � �.

To reduce the small-sample bias, ����� is used to estimate the standard deviation �,
where ��� is a the correction factor (Croux and Rousseeuw, 1992.)

The second statistic is

�� 
 ����� ���� � ��� 	 	 
 �����

where � 


�
�

�

�
� � 
 ��� � �, and ��� is the integer part of ��. That is, �� is

2.2219 times the �th order statistic of the

�
�

�

�
distances between data points.

The bias-corrected statistic, ��� ��, is used to estimate the standard deviation �,
where ��� is a correction factor.

Calculating Percentiles
The UNIVARIATE procedure automatically computes the minimum, 1st, 5th, 10th,

25th, 50th, 75th, 90th, 95th, 99th, and maximum percentiles. You use the PCTLDEF=
option in the PROC UNIVARIATE statement to specify one of five methods to compute
quantile statistics. See “Percentile and Related Statistics” on page 1583 for more
information.

To compute the quantile that each observation falls in, use PROC RANK with the
GROUP= option. To calculate percentiles other than the default percentiles, use
PCTLPTS= and PCTLPRE= in the OUTPUT statement.

Confidence Limits for Quantiles
The CIPCTLDF option and CIPCTLNORMAL option compute confidence limits for

quantiles using methods described in Hahn and Meeker (1991).
When ��� 
 � 
 ���, the two-sided ��� ��� �� percent confidence interval for

quantiles that are based on normal data has lower and upper limits

�� ��

��������	���� �� ������������	���

where � is the percentile ��� � �.
When ��� � � 
 ���, the lower and upper limits are

�� ��������	���� �� ����������	���



The UNIVARIATE Procedure � Calculating Percentiles 1529

A one-sided ��� ��� �� percent confidence limit is computed by replacing ��� with �.
The factor ��

������� is described in Owen and Hua (1977) and Odeh and Owen (1980).

The two-sided distribution-free ��� �� � ��% confidence interval for quantiles from
a sample of size � is

����� ����

where ���� is jth order statistic. The lower rank � and upper rank � are integers that
are symmetric or nearly symmetric around � � ��	� � �, where ��	� is the integral part
of �	.

The � and � are chosen so that the order statistics ���� and ����
� are approximately symmetric about ���������

� are as close to ��������� as possible

� satisfy the coverage probability requirement.


� ��� �	�� 	��
� ��� �	�� 	� � � � �

where 
� is the cumulative binomial probability, � � � � � � �, and � � 	 � �.

The coverage probability is sometimes less that � � �. This can occur in the tails of
the distribution when the sample size is small. To avoid this problem, you can specify
the option TYPE=ASYMMETRIC, which causes PROC UNIVARIATE to use asymmetric
values of � and �. However, PROC UNIVARIATE first attempts to compute confidence
limits that satisfy all three conditions. If the last condition is not satisfied, then the
first condition is relaxed. Thus, some of the confidence limits may be symmetric while
others, especially in the extremes, are not.

A one-sided distribution-free lower ��� ��� �� percent confidence limit is computed
as ���� when � is the largest integer that satisfies the inequality

� �
� �� � �	�� 	� � � � �

where � � � � �, and � � 	 � �. Likewise, a one-sided distribution-free upper
��� ��� ��% confidence limit is computed as ���� when � is the smallest integer that
satisfies the inequality


� ��� �	�� 	� � �� �

where � � � � �, and � � 	 � �.

Weighted Quantiles

When you use the WEIGHT statement the percentiles are computed as follows. Let
�� be the �th ordered nonmissing value, �� � �� � 
 
 
 � ��. Then, for a given value
of 	 between 0 and 1, the 	th weighted quantile (or 100 	th weighted percentile), �, is
computed from the empirical distribution function with averaging



1530 Calculating the Mode � Chapter 48

� �

�����
����

�

� ��� � ����� if
��

���
�� � ��

���� if
��

���
�� � �� �

����
���

��

where �� is the weight associated with ��, � �
��

���
�� is the sum of the weights and

�� is the weight for �th observation.
When the observations have identical weights, the weighted percentiles are the same

as the unweighted percentiles with PCTLDEF=5.

Calculating the Mode
The mode is the value that occurs most often in the data. PROC UNIVARIATE

counts repetitions of the actual values or, if you specify the ROUND= option, the
rounded values. If a tie occurs for the most frequent value, the procedure reports the
lowest value. To list all possible modes, use the MODES option in the PROC
UNIVARIATE statement. When no repetitions occur in the data (as with truly
continuous data), the procedure does not report the mode.

The WEIGHT statement has no effect on the mode.

Formulas for Fitted Continuous Distributions
The following sections provide information about the families of parametric

distributions that you can fit with the HISTOGRAM statement. Properties of the
parametric curves are discussed by Johnson, et al. (1994).

Beta Distribution
The fitted density function is

� ��� �

�
������������������

�������������� �� ���� for � � � � � � �

� for � � � �� � � � � �

where ���� �� �
��������
������

and

� � 	�
�� �����	� ��������� �	�
�� �������� ����������

� � ���	� ��������� �� � � �

� � ���� ��������� �� � � �

� � ���� ��������� �� � � �
� � 
��� �� �������� �������	

This notation is consistent with that of other distributions that you can fit with the
HISTOGRAM statement. However, many texts, including Johnson, et al. (1994), write
the beta density function as:



The UNIVARIATE Procedure � Formulas for Fitted Continuous Distributions 1531

� ��� �

�
����������������

����������������
for � � � � �

� for � � � �� � � �

The two notations are related as follows:

� � �� �

� � �

� � �

� � 	

The range of the beta distribution is bounded below by a threshold parameter � � �
and above by � � � � �. If you specify a fitted beta curve using the BETA option, �
must be less than the minimum data value, and � � � must be greater than the
maximum data value. You can specify � and � with the THETA= and SIGMA= value in
parentheses after the keyword BETA. By default, � � � and � � �. If you specify
THETA=EST and SIGMA=EST, maximum likelihood estimates are computed for � and
�.

Note: However, three- and four-parameter maximum likelihood estimation may not
always converge. �

In addition, you can specify � and � with the ALPHA= and BETA= beta-options,
respectively. By default, the procedure calculates maximum likelihood estimates for �
and �. For example, to fit a beta density curve to a set of data bounded below by 32 and
above by 212 with maximum likelihood estimates for � and �, use the following
statement:

histogram length / beta(theta=32 sigma=180);

The beta distributions are also referred to as Pearson Type I or II distributions.
These include the power-function distribution (� � �), the arc-sine distribution
(� � � � �

�
), and the generalized arc-sine distributions (�� � � �� � �� �

�
). You can

use the DATA step function BETAINV to compute beta quantiles and the DATA step
function PROBBETA to compute beta probabilities.

Exponential Distribution
The fitted density function is

� ��� �

�
������

�
���

�
�
�
���

�

��
for� � �

� for � � �

where

� � 	
���
�� ������	��

� � ����� ������	�� �� � � �
	 � ���	
 � 
��	���� ��	�����



1532 Formulas for Fitted Continuous Distributions � Chapter 48

The threshold parameter � must be less than or equal to the minimum data value.
You can specify � with the THRESHOLD= exponential-option. By default, � � �. If you
specify THETA=EST, a maximum likelihood estimate is computed for �. In addition,
you can specify � with the SCALE= exponential-option. By default, the procedure
calculates a maximum likelihood estimate for �. Note that some authors define the
scale parameter as �

�
.

The exponential distribution is a special case of both the gamma distribution (with
� � � and the Weibull distribution (with � � �). A related distribution is the extreme
value distribution. If � � ��� ���� has an exponential distribution, then � has an
extreme value distribution.

Gamma Distribution
The fitted density function is

� ��� �

�
������
�����

�
���

�

����
���

�
�

�
���

�

��
for� � �

� for � � �

where

� � �	
��	�� ��
�����


� � ���� ��
�����
 �� � � �

� � �	��� ��
�����
 �� � ��

	 � ����	 �� 	�����
�� ����
��

The threshold parameter � must be less than the minimum data value. You can
specify � with the THRESHOLD= gamma-option. By default, � � �. If you specify
THETA=EST, a maximum likelihood estimate is computed for �. In addition, you can
specify � and � with the SCALE= and ALPHA= gamma-options. By default, the
procedure calculates maximum likelihood estimates for � and �.

The gamma distributions are also referred to as Pearson Type III distributions, and
they include the chi-square, exponential, and Erlang distributions. The probability
density function for the chi-square distribution is

� ��� �

�
�

��� �

�
�

�
�
�

� �

�
��

���
�
�

�
�

�
for� � �

� for � � �

Notice that this is a gamma distribution with � � �
� , and � � �. The exponential

distribution is a gamma distribution with � � �, and the Erlang distribution is a
gamma distribution with � being a positive integer. A related distribution is the
Rayleigh distribution. If � �

��������������
��	�����������

where the ��’s are independent ��
�

variables, then ��	� is distributed with a �� distribution having a probability density
function of

� 
�� �

��
�

�

�
���

�
�
�

��
��
���� ���

�
�

��

�

�
for� � �

� for � � �



The UNIVARIATE Procedure � Formulas for Fitted Continuous Distributions 1533

If � � �, the preceding distribution is referred to as the Rayleigh distribution. You
can use the DATA step function GAMINV to compute gamma quantiles and the DATA
step function PROBGAM to compute gamma probabilities.

Lognormal Distribution
The fitted density function is

� ��� �

�
������

�
�
������� ���

�
�

�������������
���

�
for � � �

� for � � �

where

� � �	
��	�� ��
�����


� � ���� ��
�����
 ��� � � ���

� � �	��� ��
�����
 �� � � �
� � ����	 �� 	�����
�� ����
��

The threshold parameter � must be less than the minimum data value. You can
specify � with the THRESHOLD= lognormal-option. By default, � � �. If you specify
THETA=EST, a maximum likelihood estimate is computed for �. You can specify � and
� with the SCALE= and SHAPE= lognormal-options, respectively. By default, the
procedure calculates maximum likelihood estimates for these parameters.

Note: � denotes the shape parameter of the lognormal distribution, whereas �
denotes the scale parameter of the beta, exponential, gamma, normal, and Weibull
distributions. The use of � to denote the lognormal shape parameter is based on the
fact that �

�
���� �� � ��� �� has a standard normal distribution if � is lognormally

distributed. �

Normal Distribution
The fitted density function is

� ��� �
�� ����

�
�
	�


��

�
��

	

�
�� �

�

��
�

for �� 	 � 	�

where

� � 
��

� � �������� �
������� �� 
 � �
� � ����� �� �������� ���
����



1534 Formulas for Fitted Continuous Distributions � Chapter 48

You can specify � and � with the MU= and SIGMA= normal-options, respectively. By
default, the procedure estimates � with the sample mean and � with the sample
standard deviation. You can use the DATA step function PROBIT to compute normal
quantiles and the DATA step function PROBNORM to compute probabilities.

Weibull Distribution
The fitted density function is

� ��� �

�
�������

�

�
���

�

����
���

�
�

�
���

�

���
for� � �

� for � � �

where

� � ��	�
��� ��	�����	

� � 
���� ��	�����	 �� � � �

� � 
���� ��	�����	 �� � ��
� � ���� �� ��
���	�� ����	���

The threshold parameter � must be less than the minimum data value. You can
specify � with the THRESHOLD= Weibull-option. By default, � � �. If you specify
THETA=EST, a maximum likelihood estimate is computed for �. You can specify � and
� with the SCALE= and SHAPE= Weibull-options, respectively. By default, the
procedure calculates maximum likelihood estimates for � and �.

The exponential distribution is a special case of the Weibull distribution where � � �.

Kernel Density Estimates
You can use the KERNEL option to superimpose kernel density estimates on

histograms. Smoothing the data distribution with a kernel density estimate can be
more effective than using a histogram to visualize features that might be obscured by
the choice of histogram bins or sampling variation. For example, a kernel density
estimate can also be more effective when the data distribution is multimodal. The
general form of the kernel density estimator is

�	� ��� �
�


�

��
���

��

�
�� ��

�

�

where �� ��� is a kernel function, � is the bandwidth, � is the sample size, and �� is
the ��� observation.

The KERNEL option provides three kernel functions ����: normal, quadratic, and
triangular. You can specify the function with the K=kernel-function in parentheses after
the KERNEL option. Values for the K= option are NORMAL, QUADRATIC, and
TRIANGULAR (with aliases of N, Q, and T, respectively). By default, a normal kernel
is used. The formulas for the kernel functions are

Normal �� ��� �
��
��

���
�
�

�

�
��
�

for �� � � ��

Quadratic �� ��� �
�

�

�
� � �

�
�

for ��� � �



The UNIVARIATE Procedure � Formulas for Fitted Continuous Distributions 1535

Triangular �� ��� � �� ��� for ��� � �

The value of �, referred to as the bandwidth parameter, determines the degree of
smoothness in the estimated density function. You specify � indirectly by specifying a
standardized bandwidth � with the C=kernel-option. If � is the interquartile range, and
� is the sample size, then � is related to � by the formula

� � ����
�

�

For a specific kernel function, the discrepancy between the density estimator ��� ���
and the true density � ��� is measured by the mean integrated square error (MISE):

���� ��� �

�
�

�
�
�
��� �� �

�
� � �� �

��

�� 	

�
�

���
�
��� �� �

�
��

The MISE is the sum of the integrated squared bias and the variance. An
approximate mean integrated square error (AMISE) is


���� ��� �
�

�
��

�
�
�
�

��� �	� �	

�
�

� �
�

	
� �� �� �


�
��	

�

�

�
�

� ���
�
��

A bandwidth that minimizes AMISE can be derived by treating � ��� as the normal
density having parameters � and � estimated by the sample mean and standard
deviation. If you do not specify a bandwidth parameter or if you specify C=MISE, the
bandwidth that minimizes AMISE is used. The value of AMISE can be used to compare
different density estimates. For each estimate, the bandwidth parameter �, the kernel
function type, and the value of AMISE are reported in the SAS log.

The general kernel density estimates assume that the domain of the density to
estimate can take on all values on a real line. However, sometimes the domain of a
density is an interval that is bounded on one or both sides. For example, if a variable Y
is a measurement of only positive values, then kernel density curve should be bounded
so that it is zero for negative Y values.

PROC UNIVARIATE uses a reflection technique to create the bounded kernel density
curve, as described in Silverman (1986, pp. 30-31). It adds the reflections of kernel
density that are outside the boundary to the bounded kernel estimates. The general

form of the bounded kernel density estimator is computed by replacing ��

�
������

�

�
in

the original equation with

�
��

�
�� ��

�

�
���

�
��� ��� � ��� � ���

�

�
���

�
��� � �� � ��� � ���

�

��

where �� is the lower bound and �� is the upper bound.

Without a lower bound, �� �� and ��

�
��������������

�

�
equals zero. Similarly,

without an upper bound, �� �� and ��

�
��������������

�

�
equals zero.



1536 Theoretical Distributions for Quantile-Quantile and Probability Plots � Chapter 48

When c=MISE is used with a bounded kernel density, PROC UNIVARIATE usesa
bandwidth that minimizes the AMISE for its corresponding unbounded kernel.

Theoretical Distributions for Quantile-Quantile and Probability Plots
You can use the PROBPLOT and QQPLOT statements to request probability and

Q-Q plots that are based on the theoretical distributions that are summarized in the
following table:

Table 48.8 Distributions and Parameters

Parameters

Distribution Density Function � ��� Range Location Scale Shape

Beta ������������������

��������������
� � � � � � � � � �� �

Exponential �
�
���

�
�

���
�

�
� � � � �

Gamma �

�����

�
���
�

����
���

�
����

�

� � � � � � �

Lognormal
(3-parameter)

�
�
�
�������

���
�
�

�������������

���

�
� � � � � �

Normal �
�
�
��

���
�
�

������

���

�
��� � � �

Weibull
(3-parameter)

�
�

�
���
�

����
���

�
�
�
���
�

��� � � � � � 	

Weibull2
(2-parameter)

�
�

�
����
�

����
���

�
�
�
����
�

��� � � �� ��
(known)

� 	

You can request these distributions with the BETA, EXPONENTIAL, GAMMA,
LOGNORMAL, NORMAL, WEIBULL, and WEIBULL2 options, respectively. If you
omit a distribution option, the PROBPLOT statement creates a normal probability plot
and the QQPLOT statement creates a normal Q-Q plot.

The following sections provide the details for constructing Q-Q plots that are based
on these distributions. Probability plots are constructed similarly except that the
horizontal axis is scaled in percentile units.

Beta Distribution

To create a plot that is based on the beta distribution, PROC UNIVARIATE orders
the observations from smallest to largest, and plots the 
�	ordered observation against
the quantile ���

�


�
����	
�
�����

�
where ���

�

��� is the inverse normalized incomplete beta

function, � is the number of nonmissing observations, and � and  are the shape
parameters of the beta distribution.

The point pattern on the plot for ALPHA=� and BETA= tends to be linear with
intercept � and slope � if the data are beta distributed with the specific density function

� ��� �

�
������������������

���
��������� for � � � � � � �

� for � � � 	
 � � � � �



The UNIVARIATE Procedure � Theoretical Distributions for Quantile-Quantile and Probability Plots 1537

where ���� �� �
��������
������ and � is the lower threshold parameter, � is the scale

parameter �� � ��, � the first shape parameter �� � �� and � is the second shape
parameter �� � ��.

Exponential Distribution
To create a plot that is based on the exponential distribution, PROC UNIVARIATE

orders the observations from smallest to largest, and plots the ��� ordered observation
against the quantile � ���

�
� � �������

������

�
where � is the number of nonmissing

observations.
The point pattern on the plot tends to be linear with intercept � and slope � if the

data are exponentially distributed with the specific density function

� �	� �

�
	
�
	
�

�
�

��	
�

�
for	 � �

� for 	 
 �

where � is a threshold parameter and � is a positive scale parameter.

Gamma Distribution
To create a plot that is based on the gamma distribution, PROC UNIVARIATE orders

the observations from smallest to largest, and plots the ��� ordered observation against
the quantile ��	�

�
�������
������

�
where ��	� is the inverse normalized incomplete gamma

function, � is the number of nonmissing observations, and � is the shape parameter of
the gamma distribution.

The point pattern on the plot tends to be linear with intercept � and slope � if the
data are gamma distributed with the specific density function

� �	� �

�
	

�����

�
��	
�

���	
	
�

�
�

��	
�

�
for	 � �

� for 	 � �

where � is the threshold parameter, � is the scale parameter �� � ��, and � is the
shape parameter �� � ��.

Lognormal Distribution
To create a plot that is based on the lognormal distribution, PROC UNIVARIATE

orders the observations from smallest to largest, and plots the ��� ordered observation
against the quantile 	
�

�
���	

�
�������
������

��
where ��	 ��� is the inverse standard

cumulative normal distribution, � is the number of nonmissing observations, and � is
the shape parameter of the lognormal distribution.

The point pattern on the plot for SIGMA=� tends to be linear with intercept � and
slope 	
� �� if the data are lognormally distributed with the specific density function

� �	� �

�
	

�
�
�
���	�

	
�
�
�

�
�����	�����

���

�
for	 � �

� for 	 � �

where � is the threshold parameter,  is the scale parameter, and � is the shape
parameter �� � ��.



1538 Theoretical Distributions for Quantile-Quantile and Probability Plots � Chapter 48

Normal Distribution
To create a plot that is based on the normal distribution, PROC UNIVARIATE orders

the observations from smallest to largest, and plots the ��� ordered observation against
the quantile ���

�
�������
������

�
where ��� ��� is the inverse cumulative standard normal

distribution and � is the number of nonmissing observations.
The point pattern on the plot tends to be linear with intercept � and slope � if the

data are normally distributed with the specific density function

� ��� �
�

�
�
��

���

�
���� ���

���

�
	
� � �

where � is the mean and � is the standard deviation (� � �) .

Three-Parameter Weibull Distribution
To create a plot that is based on a three-parameter Weibull distribution, PROC

UNIVARIATE orders the observations from smallest to largest, and plots the ��� ordered

observation against the quantile
�� 
�

�
� � �������

������

���

� where � is the number of
nonmissing observations, and 	 and 
 are the Weibull distribution shape parameters.

The point pattern on the plot for C=
 tends to be linear with intercept � and slope �
if the data are Weibull distributed with the specific density function

� ��� �

�
�

�

�
���

�

����
���

�
� ����

�

���
for� � �

� for � � �

where � is the threshold parameter, � is the scale parameter �� � ��, and 
 is the
shape parameter �
 � ��.

Two-Parameter Weibull Distribution
To create a plot that is based on a two-parameter Weibull distribution, PROC

UNIVARIATE orders the observations from smallest to largest, and plots the log of the
shifted ��� ordered observation ����, denoted by 
�

�
���� � ��

�
, against the quantile�� 
�

�
� � �������

������

��
where � is the number of nonmissing observations.

Unlike the three-parameter Weibull quantile, the preceding expression is free of
distribution parameters. This is why the C= shape parameter is not required in the
WEIBULL2 option.

The point pattern on the plot for THETA=�� tends to be linear with intercept 
� ���
and slope �

�
if the data are Weibull distributed with the specific density function

� ��� �

�
�

�

�
����
�

����
���

�
� �����

�

���
for� � ��

� for � � ��

where �� is the known lower threshold, � is the scale parameter �� � ��, and 
 is the
shape parameter �
 � ��.



The UNIVARIATE Procedure � Theoretical Distributions for Quantile-Quantile and Probability Plots 1539

Shape Parameters

Some distribution options in the PROBPLOT and QQPLOT statements require that
you specify one or two shape parameters in parentheses after the distribution keyword.
These are summarized in the following table:

Table 48.9 Shape Parameter Options

Distribution Keyword Required Shape Parameter Option Range

BETA ALPHA=�, BETA=� � � �� � � �

EXPONENTIAL None

GAMMA ALPHA=� � � �

LOGNORMAL SIGMA=� � � �

NORMAL None

WEIBULL C=� � � �

WEIBULL2 None

You can visually estimate the value of a shape parameter by specifying a list of values
for the shape parameter option. PROC UNIVARIATE produces a separate plot for each
value. Then you can use the value of the shape parameter that produces the most
nearly linear point pattern. Alternatively, you can request that PROC UNIVARIATE
use an estimated shape parameter to create the plot.

Note: For Q-Q plots that are requested with the WEIBULL2 option, you can
estimate the shape parameter � from a linear pattern by using the fact that the slope of
the pattern is �

�
. �

Location and Scale Parameters

When you use the PROBPLOT statement to specify or estimate the location and
scale parameters for a distribution, a diagonal distribution reference line appears on
the probability plot. (An exception is the two-parameter Weibull distribution, where the
line appears when you specify or estimate the scale and shape parameters.) Agreement
between this line and the point pattern indicates that the distribution with these
parameters is a good fit.

Note: Close visual agreement may not necessarily mean that the distribution is a
good fit based on the criteria that are used by formal goodness-of-fit tests. �

When the point pattern on a Q-Q plot is linear, its intercept and slope provide
estimates of the location and scale parameters. (An exception to this rule is the
two-parameter Weibull distribution, for which the intercept and slope are related to the
scale and shape parameters.) When you use the QQPLOT statement to specify or
estimate the slope and intercept of the line, a diagonal distribution reference line
appears on the Q-Q plot. This line allows you to check the linearity of the point pattern.

The following table shows which parameters to specify to determine the intercept
and slope of the line:



1540 Results: UNIVARIATE Procedure � Chapter 48

Table 48.10 Intercept and Slope of Distribution Reference Line

Parameters Linear Pattern

Distribution Location Scale Shape Intercept Slope

BETA � � �� � � �

EXPONENTIAL � � � �

GAMMA � � � � �

LOGNORMAL � � � � ��� ���

NORMAL � � � �

WEIBULL (3-parameter) � � � � �

WEIBULL2 (2-parameter) ��
(known)

� � ��� ��� �

�

For the LOGNORMAL and WEIBULL2 options, you can specify the slope directly with
the SLOPE= option. That is, for the LOGNORMAL option, when you specify
THETA=�� and SLOPE=��� ����, PROC UNIVARIATE displays the same line as that
which is specified by THETA=�� and ZETA=��. For the WEIBULL2 option, when you
specify SIGMA=�� and SLOPE= �

��

, PROC UNIVARIATE displays the same line when
you specify SIGMA=�� and C=��. Alternatively, you can request to use the estimated
values of the parameters to determine the reference line.

Results: UNIVARIATE Procedure

By default, PROC UNIVARIATE produces tables of moments, basic statistical
measures, tests for location, quantiles, and extreme observations. You must specify
options in the PROC UNIVARIATE statement to produce other statistics and tables.

The CIBASIC option produces the table of the basic confidence measures that
includes the confidence limits for the mean, standard deviation, and variance. The
CIPCTLDF option and CIPCTLNORMAL option produce tables of confidence limits for
the quantiles. The LOCCOUNT option produces the table that shows the number of
values greater than, not equal to, and less than the value of MU0=. The FREQ option
produces the table of frequencies counts. The NEXTRVAL= option produces the table
with the frequencies of the extreme values. The NORMAL option produces the table
with the tests for normality. The TRIMMED=, WINSORIZED=, and ROBUSTCALE
options produce tables with robust estimators.

The table of trimmed or Winsorized means includes the percentage and the number
of observations that are trimmed or Winsorized at each end, the mean and standard
error, confidence limits, and the Student’s t test. The table with robust measures of
scale includes interquartile range, Gini’s mean difference G, MAD, �

�
, and 	

�
, with

their corresponding estimates of �.

Missing Values
PROC UNIVARIATE excludes missing values for the analysis variable before

calculating statistics. Each analysis variable is treated individually; a missing value for



The UNIVARIATE Procedure � ODS Table Names 1541

an observation in one variable does not affect the calculations for other variables. The
statements handle missing values as follows:

� If a BY or an ID variable value is missing, PROC UNIVARIATE treats it like any
other BY or ID variable value. The missing values form a separate BY group.

� If the FREQ variable value is missing or nonpositive, PROC UNIVARIATE
excludes the observation from the analysis.

� If the WEIGHT variable value is missing, PROC UNIVARIATE excludes the
observation from the analysis.

PROC UNIVARIATE tabulates the number of the missing values and reports this
information in the procedure output. Before the number of missing values is tabulated,
PROC UNIVARIATE excludes observations when

� you use the FREQ statement and the frequencies are nonpositive
� you use the WEIGHT statement and the weights are missing or nonpositive (you

must specify the EXCLNPWGT option).

Histograms
If you request a fitted parametric distribution with a HISTOGRAM statement, PROC

UNIVARIATE creates a report that summarizes the fit in addition to the graphical
display. The report includes information about

� parameters for the fitted curve, estimated mean, and estimated standard deviation
� EDF goodness-of-fit tests
� histogram intervals
� quantiles.

Histogram Intervals
If you specify the MIDPERCENTS suboption in parentheses after a density estimate

option, PROC UNIVARIATE includes a table that lists the interval midpoints along
with the observed and estimated percentages of the observations that lie in the interval.
The estimated percentages are based on the fitted distribution. You can also specify the
MIDPERCENTS suboption to request a table of interval midpoints with the observed
percentage of observations that lie in the interval.

Quantiles
By default, PROC UNIVARIATE displays a table that lists observed and estimated

quantiles for the 1, 5, 10, 25, 50, 75, 90, 95, and 99 percent of a fitted parametric
distribution. You can use the PERCENTS= suboption to request that the quantiles for
specific percentiles appear in the table.

ODS Table Names
PROC UNIVARIATE assigns a name to each table that it creates. You can use these

names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. For more information, see SAS Output Delivery
System User’s Guide.



1542 Output Data Set � Chapter 48

Table 48.11 ODS Tables Produced with the PROC UNIVARIATE Statement

Table Name Description Option

BasicIntervals confidence intervals for mean, standard
deviation, variance

CIBASIC

BasicMeasures measures of location and variability default

ExtremeObs extreme observations default

ExtremeValues extreme values NEXTRVAL=

Frequencies frequencies FREQ

LocationCounts counts used for sign test and signed rank test LOCCOUNT

MissingValues missing values default

Modes modes MODES

Moments sample moments default

Plots line printer plots PLOTS

Quantiles quantiles default

RobustScale robust measures of scale ROBUSTSCALE

SSPlots line printer side-by-side box plot PLOTS

(with BY statement)

TestsForLocation tests for location default

TestsForNormality tests for normality NORMALTEST

TrimmedMeans trimmed means TRIMMED=

WinsorizedMeans Winsorized means WINSORIZED=

Table 48.12 ODS Tables Produced with the HISTOGRAM Statement

Table Name Description Option

Bins histogram bins MIDPERCENTS
suboption

FitQuantiles quantiles of fitted distribution any distribution option

GoodnessOfFit goodness-of-fit tests for fitted distribution any distribution option

ParameterEstimates parameter estimates for fitted distribution any distribution option

Output Data Set
PROC UNIVARIATE can create one or more output SAS data sets. When you specify

an OUTPUT statement and no BY statement, PROC UNIVARIATE creates an output
data set that contains one observation. If you use a BY statement, the corresponding
output data set contains an observation with statistics for each BY group. The
procedure does not print the output data set. Use PROC PRINT, PROC REPORT, or
another SAS reporting tool to print the output data set.

The output data set includes



The UNIVARIATE Procedure � Example 1: Univariate Analysis for Multiple Variables 1543

� BY statement variables

� variables that contain statistics

� variables that contain percentiles.

The BY variables indicate which BY group each observation summarizes. When you
omit a BY statement, the procedure computes statistics and percentiles by using all the
observations in the input data set. When you use a BY statement, the procedure
computes statistics and percentiles by using the observations within each BY group.

OUTHISTOGRAM= Data Set
You can create a OUTHISTOGRAM= data in the HISTOGRAM statement that

contains information about histogram intervals. Because you can specify multiple
HISTOGRAM statements with the UNIVARIATE procedure, you can create multiple
OUTHISTOGRAM= data sets.

The data set contains a group of observations for each variable that the HISTOGRAM
statement plots. The group contains an observation for each interval of the histogram,
beginning with the leftmost interval that contains a value of the variable and ending
with the rightmost interval that contains a value of the variable. These intervals will
not necessarily coincide with the intervals displayed in the histogram since the
histogram may be padded with empty intervals at either end. If you superimpose one or
more fitted curves on the histogram, the OUTHISTOGRAM= data set contains multiple
groups of observations for each variable (one group for each curve). If you use a BY
statement, the OUTHISTOGRAM= data set contains groups of observations for each BY
group. ID variables are not saved in the OUTHISTOGRAM= data set.

The variables in OUTHISTOGRAM= data set are

_CURVE_ name of fitted distribution (if requested in HISTOGRAM statement)

_EXPPCT_ estimated percent of population in histogram interval determined
from optional fitted distribution

_MIDPT_ midpoint of fitted distribution

_OBSPCT_ percent of variable values in histogram interval

_VAR_ variable name

Examples: UNIVARIATE Procedure

Example 1: Univariate Analysis for Multiple Variables

Procedure features:
VAR statement

Other features:
ODS SELECT statement



1544 Program � Chapter 48

This example computes the univariate statistics for two variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=72;

Create the STATEPOP data set. This data set contains information from the 1990 and 2000
U.S. Census estimates of the population in metropolitan and nonmetropolitan areas. The 50
states and the District of Columbia are divided into four geographic regions. The data are
organized by state within each region. The metropolitan and nonmetropolitan population counts
are stored in one observation for each year. A DATA step“STATEPOP” on page 1670 creates the
data set.

data statepop;
input State $ CityPop_1990 CityPop_2000 NonCityPop_1990 NonCityPop_2000 Region @@;
label citypop_1990= ’1990 metropolitan pop in millions’

noncitypop_1990=’1990 nonmetropolitan pop in millions’
citypop_2000= ’2000 metropolitan pop in millions’
noncitypop_2000=’2000 nonmetropolitan pop in million’
region=’Geographic region’;

datalines;
ME .443 .467 .785 .808 1 NH .659 .740 .450 .496 1
VT .152 .169 .411 .439 1 MA 5.788 6.088 .229 .261 1
RI .938 .986 .065 .062 1 CT 3.148 3.257 .140 .149 1

...more lines of data...
WA 4.036 4.899 .830 .995 4 OR 2.056 2.502 .787 .919 4
CA 28.797 32.750 .961 1.121 4 AK .226 .260 .324 .367 4
HI .836 .876 .272 .335 4
;

Select output objects by name. The ODS SELECT statement specifies two output objects to
send to all open destinations: a table of moments and a table of quantiles.

ods select Moments Quantiles;

Generate the statistical tables for the analysis variables. The PROC UNIVARIATE
statement calculates univariate statistics for numeric variables in the STATEPOP data set. The
VAR statement specifies the analysis variables and their order in the output.

proc univariate data=statepop;
var citypop_1990 citypop_2000;



The UNIVARIATE Procedure � Output 1545

Specify the title.

title ’United States Census of Population and Housing’;
run;

Output

Univariate statistics for both analysis variables appear on separate pages. Because each
population value is unique, the mode is missing.

United States Census of Population and Housing 1

The UNIVARIATE Procedure
Variable: CityPop_1990 (1990 metropolitan pop in millions)

Moments

N 51 Sum Weights 51
Mean 3.89037255 Sum Observations 198.409
Std Deviation 5.15898276 Variance 26.6151031
Skewness 2.87381702 Kurtosis 10.5609336
Uncorrected SS 2102.64008 Corrected SS 1330.75516
Coeff Variation 132.608965 Std Error Mean 0.72240208

Quantiles (Definition 5)

Quantile Estimate

100% Max 28.797
99% 28.797
95% 14.166
90% 9.574
75% Q3 4.380
50% Median 2.422
25% Q1 0.787
10% 0.270
5% 0.221
1% 0.134
0% Min 0.134



1546 Example 2: Identifying Extreme Values and Creating a Histogram � Chapter 48

United States Census of Population and Housing 2

The UNIVARIATE Procedure
Variable: CityPop_2000 (2000 metropolitan pop in millions)

Moments

N 51 Sum Weights 51
Mean 4.43072549 Sum Observations 225.967
Std Deviation 5.8469492 Variance 34.186815
Skewness 2.90620484 Kurtosis 10.7563067
Uncorrected SS 2710.5385 Corrected SS 1709.34075
Coeff Variation 131.963698 Std Error Mean 0.81873665

Quantiles (Definition 5)

Quantile Estimate

100% Max 32.750
99% 32.750
95% 17.473
90% 10.392
75% Q3 5.437
50% Median 2.807
25% Q1 0.876
10% 0.306
5% 0.260
1% 0.148
0% Min 0.148

Example 2: Identifying Extreme Values and Creating a Histogram
Procedure features:

PROC UNIVARIATE statement options:
NEXTROBS=
NEXTRVAL=

HISTOGRAM statement
CFILL=
MIDPOINTS=
PFILL=

ID statement
Other features:

GOPTIONS statement
ODS SELECT statement

Data set: STATEPOP on page 1544

This example
� identifies extreme observations
� creates a histogram of the data distribution.

Program



The UNIVARIATE Procedure � Program 1547

Set the graphics environment. The GOPTIONS statement sets the graphics environment to
control the appearance of graphic elements. HTITLE= and HTEXT= specify the text height in
GUNIT= units. FTEXT= and FTITLE= specify the font.*

goptions htitle=4 htext=3 gunit=pct ftext=swiss ftitle=swiss;

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=68;

Select output objects by name. The ODS SELECT statement specifies four output objects to
send to all open destinations: a table of basic measures, a table of extreme observations, a table
of extreme values, and a histogram plot.

ods select BasicMeasures ExtremeObs ExtremeValues Univar;

Generate the default statistics and the extreme values. The PROC UNIVARIATE
statement calculates univariate statistics and two tables that list four extreme observations and
extreme values.

proc univariate data=statepop nextrobs=2 nextrval=4;

Specify the analysis variable. The VAR statement specifies that CityPop_2000 is the analysis
variable.

var citypop_2000;

Request the variables that have their extreme values listed. The ID statement identifies
these variables.

id region state;

Create a histogram. The HISTOGRAM statement creates a histogram for all the analysis
variables. The MIDPOINTS= option specifies a list of values to use as bin midpoints. The
PFILL= option specifies a crosshatched fill pattern for the bars and the CFILL= option specifies
blue as the fill color.

histogram / midpoints=0 to 35 by 5 pfill=x cfill=blue;

Specify the title.

* For additional information about the GOPTIONS statement, see SAS/GRAPH Reference.



1548 Output � Chapter 48

title ’United States Census of Population and Housing’;
run;

Output

Because each value of population is unique, the mode is missing.

The Extreme Observations table lists values of the ID variables, Region and State. Regions 4
and 1 report the lowest metropolitan populations, while regions 2 and 4 report the highest
populations. The states with the four most extreme observations are WY, VT, TX, and CA. The
Extreme Values table lists the four lowest unique values and the four highest unique values.

United States Census of Population and Housing 1

The UNIVARIATE Procedure
Variable: CityPop_2000 (2000 metropolitan pop in millions)

Basic Statistical Measures

Location Variability

Mean 4.430725 Std Deviation 5.84695
Median 2.807000 Variance 34.18682
Mode . Range 32.60200

Interquartile Range 4.56100

Extreme Observations

---------------Lowest-------------- ---------------Highest--------------

Value Region State Obs Value Region State Obs

0.148 4 WY 41 17.692 2 TX 26
0.169 1 VT 3 32.750 4 CA 49

Extreme Values

-----Lowest---- -----Highest----

Order Value Order Value

1 0.148 48 14.837
2 0.169 49 17.473
3 0.260 50 17.692
4 0.261 51 32.750



The UNIVARIATE Procedure � Program 1549

Example 3: Computing Robust Estimators

Procedure features:
PROC UNIVARIATE statement options:

TRIMMED=
WINSORIZED=

Other features:
ODS EXCLUDE statement

Data set: STATEPOP on page 1544

This example

� computes two trimmed means

� computes a Winsorized mean.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.



1550 Program � Chapter 48

options nodate pageno=1 linesize=80 pagesize=72;

Exclude output objects by name. The ODS EXCLUDE statement specifies three output
objects to exclude from the open destinations: a table of measures of location and variability, a
table of extreme observations, and a table of quantiles.

ods exclude TestsForLocation ExtremeObs Quantiles;

Generate the default statistics and the robust statistics. The PROC UNIVARIATE
statement calculates basic statistical measures. TRIMMED= computes two trimmed means
after removing 6 observations and 25 percent of the observations. WINSORIZED= computes a
Winsorized mean that replaces 10 percent of the observations.

proc univariate data=statepop trimmed=6 .25 winsorized=.1;

Specify the analysis variable. The VAR statement specifies that CityPop_2000 is the analysis
variable.

var citypop_2000;

Specify the title.

title ’United States 2000 Estimate of Population and Housing’;
run;



The UNIVARIATE Procedure � Output 1551

Output

Because each value of population is unique, the mode is missing.
Both the trimmed and Winsorized means are smaller than the arithmetic mean. This may be
due to the positive skewness of the data. PROC UNIVARIATE trims 6 observations or 11.76
percent of the data from the tails. When you request to trim 25 percent of the data, PROC
UNIVARIATE trims 13 observations or 25.49 percent of the data from the tails. This is because
the number of observations trimmed is the smallest integer greater than or equal to 12.75
(.25�51). Likewise, when you compute a Winsorized mean for 10 percent of the data
(.1�51=5.1), PROC UNIVARIATE uses 6 observations or 11.76 percent of the data from the tails.

United States 2000 Estimate of Population and Housing 1

The UNIVARIATE Procedure
Variable: CityPop_2000 (2000 metropolitan pop in millions)

Moments

N 51 Sum Weights 51
Mean 4.43072549 Sum Observations 225.967
Std Deviation 5.8469492 Variance 34.186815
Skewness 2.90620484 Kurtosis 10.7563067
Uncorrected SS 2710.5385 Corrected SS 1709.34075
Coeff Variation 131.963698 Std Error Mean 0.81873665

Basic Statistical Measures

Location Variability

Mean 4.430725 Std Deviation 5.84695
Median 2.807000 Variance 34.18682
Mode . Range 32.60200

Interquartile Range 4.56100

Trimmed Means

Percent Number Std Error
Trimmed Trimmed Trimmed Trimmed 95% Confidence
in Tail in Tail Mean Mean Limits DF

11.76 6 3.098795 0.558886 1.967390 4.230200 38
25.49 13 2.711200 0.494141 1.691342 3.731058 24

Trimmed Means

Percent
Trimmed t for H0:
in Tail Mu0=0.00 Pr > |t|

11.76 5.544595 <.0001
25.49 5.486689 <.0001

Winsorized Means

Percent Number Std Error
Winsorized Winsorized Winsorized Winsorized 95% Confidence

in Tail in Tail Mean Mean Limits DF

11.76 6 3.508608 0.560613 2.373706 4.643510 38

Winsorized Means

Percent
Winsorized t for H0:

in Tail Mu0=0.00 Pr > |t|

11.76 6.258517 <.0001



1552 Example 4: Performing a Sign Test Using Paired Data � Chapter 48

Example 4: Performing a Sign Test Using Paired Data

Procedure features:
PROC UNIVARIATE statement option:

CIBASIC
LOCCOUNT
MODES

Other features:
LABEL statement
ODS EXCLUDE statement

This example

� computes difference scores for paired data

� lists all values of the mode

� examines the tests for location to determine if the median difference between
scores is zero

� lists the number of observations less than, greater than, and equal to zero

� specifies the confidence levels for the confidence limits

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SCORE data set. This data set contains test scores for college students who took
two tests and a final exam. ScoreChange contains the difference in the scores between the first
test and the second test.

data score;
input Student $ Test1 Test2 Final @@;
ScoreChange=test2-test1;
datalines;

Capalleti 94 91 87 Dubose 51 65 91
Engles 95 97 97 Grant 63 75 80
Krupski 80 75 71 Lundsford 92 55 86
Mcbane 75 78 72 Mullen 89 82 93
Nguyen 79 76 80 Patel 71 77 83
Si 75 70 73 Tanaka 87 73 76
;



The UNIVARIATE Procedure � Program 1553

Exclude output objects by name. The ODS EXCLUDE statement specifies three output
objects to exclude from the open destinations: a table of moments, a table of extreme
observations, and a table of quantiles.

ods exclude Moments ExtremeObs Quantiles;

Generate the default statistics, the location counts, and the modes. Compute
confidence limits. The PROC UNIVARIATE statement calculates basic statistical measures,
tests for location, quantiles, and extreme observations. LOCCOUNT produces a Location
Counts table. MODES produces a Modes table. CIBASIC(ALPHA=.05) specifies a 95 percent
confidence limit for the basic measures.

proc univariate data=score loccount modes cibasic(alpha=.05);

Specify the analysis variable. The VAR statement specifies that ScoreChange is the analysis
variable.

var scorechange;

Specify a label for the report. The LABEL statement associates a label with the analysis
variable for the duration of the PROC step. The TITLE statement specifies a title.

label scorechange=’Change in Test Scores’;
title ’Test Scores for a College Course’;

run;



1554 Output � Chapter 48

Output

PROC UNIVARIATE includes the variable label in the report. The report also provides a
message to indicate that the lowest mode is shown in the Basic Statistical Measures table. The
Modes table reports all the mode values.
The mean of -3.08 indicates an average decrease in test scores from Test1 to Test2. The 95
percent confidence limits (-11.56, 5.39), which include 0, and the tests for location indicate that
the decrease is not statistically significant.
The Tests for Location table includes three hypothesis tests. The Student’s t statistic assumes
that the data are approximately normally distributed. The sign test and signed rank test are
nonparametric tests. The signed rank test requires a symmetric distribution. If the distribution
is symmetric, then you expect a skewness value that is close to zero. Because the value -1.42
indicates some distribution skewness, examine the sign test to determine if the difference in test
scores is zero. The large p-value (.7744) provides insufficient evidence of a difference in test
score medians.

Test Scores for a College Course 1

The UNIVARIATE Procedure
Variable: ScoreChange (Change in Test Scores)

Basic Statistical Measures

Location Variability

Mean -3.08333 Std Deviation 13.33797
Median -3.00000 Variance 177.90152
Mode -5.00000 Range 51.00000

Interquartile Range 10.50000

NOTE: The mode displayed is the smallest of 2 modes with a count of 2.

Modes

Mode Count

-5 2
-3 2

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits

Mean -3.08333 -11.55788 5.39121
Std Deviation 13.33797 9.44856 22.64625
Variance 177.90152 89.27519 512.85267

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t -0.80079 Pr > |t| 0.4402
Sign M -1 Pr >= |M| 0.7744
Signed Rank S -8.5 Pr >= |S| 0.5278

Location Counts: Mu0=0.00

Count Value

Num Obs > Mu0 5
Num Obs ^= Mu0 12
Num Obs < Mu0 7



The UNIVARIATE Procedure � Program 1555

Example 5: Examining the Data Distribution and Saving Percentiles

Procedure features:
PROC UNIVARIATE statement options:

ALPHA=
CIBASIC
MU0=
NORMAL
PLOTS

OUTPUT statement
PROBPLOT statement options:

PCTLMINOR
SQUARE

Other features:
GOPTIONS statement
ODS EXCLUDE statement
PRINT procedure
SYMBOL statement

Data set: SCORE on page 1552

This example

� specifies the confidence level for the confidence limits

� computes a lower confidence limit for the parameters

� specifies the null hypothesis mean for the tests for locations

� tests the hypothesis that the data are normally distributed

� produces a stem-and-leaf plot, box plot, and two normal probability plots

� requests graphical enhancements that change symbol type and text font for the
high-resolution normal probability plot

� displays minor tick marks between major tick marks on the percentile axis for the
high-resolution normal probability plot

� computes additional percentiles

� creates an output data set with percentiles

� prints the output data set.

Program

Set the graphics environment. The GOPTIONS statement sets the graphics environment to
control the appearance of graphic elements. HTITLE= and HTEXT= specify the text height in
GUNIT= units. FTEXT= and FTITLE= specify the font.*

* For additional information about the GOPTIONS statement, see SAS/GRAPH Reference.



1556 Program � Chapter 48

Specify the plot symbol character. The SYMBOL statement defines the characteristics of the
symbol that appears in the plot. VALUE= specifies a dot as the plot symbol. By default, the plot
symbol is the plus sign (+).

symbol value=dot;

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Exclude output objects by name. The ODS EXCLUDE statement specifies three output
objects to exclude from the open destinations: a table of measures of location and variability, a
table of extreme observations, and a table of quantiles.

ods exclude Moments ExtremeObs Quantiles;

Generate the default statistics and various confidence limits. Specify the mean for the
test of location. Create plots of the data distribution. The PROC UNIVARIATE statement
calculates basic statistical measures, and tests for location. MU0= requests a test that the
population mean equals 80. ALPHA= specifies a 90 percent confidence limit for all statistics.
CIBASIC computes lower confidence limits for the basic measures. NORMAL computes tests for
normality. PLOTS requests plots of the data distribution.

proc univariate data=score mu0=80 alpha=.1 cibasic(type=lower)
normal plots;

Specify the analysis variable. The VAR statement specifies that Final is the analysis variable.

var final;

Create a normal probability plot. The PROBPLOT statement creates a normal probability
plot for the analysis variables. SQUARE displays the probability plot in a square frame instead
of a rectangular frame. PCTLMINOR specifies that minor tick marks appear between the major
tick marks on the horizontal axis.

probplot /square pctlminor;

Create the output data set. The OUTPUT statement creates the PCTSCORE data set with
five variables. MEDIAN= saves the median. PCTLPTS= saves four percentiles. PCTLPRE=
specifies a prefix name. PCTLNAME= specifies suffix names for the variables that contain the
first three percentiles. The name of the variable that contains the 70th percentile uses the
default suffix.

output out=pctscore median=Median pctlpts=98 50 20 70
pctlpre=Pctl_ pctlname=Top Mid Low;



The UNIVARIATE Procedure � Output 1557

Specify the title.

title ’Examining the Distribution of Final Exam Scores’;
run;

Print the data set. PROC PRINT prints the PCTSCORE data set. The TITLE statement
specifies a title.

proc print data=pctscore noobs;
title1 ’Quantile Statistics for Final Exam Scores’;
title2 ’Output Data Set from PROC UNIVARIATE’;

run;

Output



1558 Output � Chapter 48

The estimate of the mean test score is 82.4, with a standard deviation of 8.6. The 90 percent
lower confidence limit for the mean is 79.

The Tests for Location table includes three hypothesis tests. To determine whether the Student’s
t statistic is appropriate, you must determine if the data are approximately normally distributed.

PROC UNIVARIATE calculates the Shapiro-Wilk W statistic because the sample size is below
2000. All p-values from the tests for normality are >0.15, which provides insufficient evidence
to reject the assumption of normality. The probability plot also supports the assumption that
the data are normal. Therefore, the t statistic appears appropriate. The p-value of .35 for this
test provides insufficient evidence to reject the null hypothesis that the mean test score is 80.

Examination of the box plot, which is nonsymmetric, and the small sample size, which causes
low power, make the sign test a more appropriate test of location. The p-value of .75 for this
test provides insufficient evidence to reject the null hypothesis that the mean test score is 80.

Examining the Distribution of Final Exam Scores 1

The UNIVARIATE Procedure
Variable: Final

Basic Statistical Measures

Location Variability

Mean 82.41667 Std Deviation 8.59660
Median 81.50000 Variance 73.90152
Mode 80.00000 Range 26.00000

Interquartile Range 14.50000

Basic Confidence Limits Assuming Normality

Parameter Estimate Lower 90% CL

Mean 82.41667 79.03314
Std Deviation 8.59660 6.85984
Variance 73.90152 47.05738

Tests for Location: Mu0=80

Test -Statistic- -----p Value------

Student’s t t 0.973825 Pr > |t| 0.3511
Sign M 1 Pr >= |M| 0.7539
Signed Rank S 8 Pr >= |S| 0.4434

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.952903 Pr < W 0.6797
Kolmogorov-Smirnov D 0.113328 Pr > D >0.1500
Cramer-von Mises W-Sq 0.028104 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.212693 Pr > A-Sq >0.2500

Stem Leaf # Boxplot
9 7 1 |
9 13 2 |
8 67 2 +-----+
8 003 3 *--+--*
7 6 1 | |
7 123 3 +-----+

----+----+----+----+
Multiply Stem.Leaf by 10**+1



The UNIVARIATE Procedure � Output 1559

Examining the Distribution of Final Exam Scores 2

The UNIVARIATE Procedure
Variable: Final

Normal Probability Plot
97.5+ +*++++

| *++*+++
| *+*+++
| *+*+*++
| +++*++

72.5+ * +++*++*
+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

The PCTSCORE data set contains one observation. The median value in Median is equivalent
to the 50th percentile in PCTL_MID.

Quantile Statistics for Final Exam Scores 4
Output Data Set from PROC UNIVARIATE

Median Pctl_Top Pctl_Mid Pctl_Low Pctl_70

81.5 97 81.5 73 87



1560 Example 6: Creating an Output Data Set with Multiple Analysis Variables � Chapter 48

Example 6: Creating an Output Data Set with Multiple Analysis Variables

Procedure features:
PROC UNIVARIATE statement option:

NOPRINT
OUTPUT statement
VAR statement

Other features:
PRINT procedure

Data set: SCORE on page 1552

This example
� suppresses the reporting of univariate statistics
� computes additional percentiles for two variables
� creates an output data set with descriptive statistics and percentiles
� prints the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Suppress the printing of the statistics tables. NOPRINT suppresses all the tables of
statistics that the PROC UNIVARIATE statement creates.

proc univariate data=score noprint;

Specify the analysis variables. The VAR statement specifies the analysis variables and their
order in the output.

var test1 test2;

Create the output data set. The OUTPUT statement creates the TESTSTAT data set with
nine variables. MEAN= saves the mean for Test1 and Test2. STD= saves the standard deviation
for Test1. PCTLPTS= calculates three percentiles and PCTLPRE= specifies prefix names for the
analysis variables. PCTLNAME= specifies a suffix name for the 33.3 percentile.

output out=teststat mean=MeanTest1 MeanTest2
std=StdDeviationTest1



The UNIVARIATE Procedure � Example 7: Fitting Density Curves 1561

pctlpts=33.3 66 99.9
pctlpre=Test1_
Test2_ pctlname=Low ;

run;

Print the data set. PROC PRINT prints the TESTSTAT data set. The TITLE statements
specify the two titles that are printed.

proc print data=teststat noobs;
title1 ’Univariate Statistics for Two College Tests’;
title2 ’Output Data Set from PROC UNIVARIATE’;

run;

Output

The TESTSTAT data set contains one observation with the mean for the two analysis variables
and the standard deviation for the first analysis variable. The remaining six variables contain
computed percentiles.

Univariate Statistics for Two College Tests 1
Output Data Set from PROC UNIVARIATE

Std
Mean Mean Deviation Test1_ Test1_ Test2_ Test2_

Test1 Test2 Test1 Low Test1_66 99_9 Low Test2_66 99_9

79.25 76.1667 13.3152 75 87 95 73 77 97

Example 7: Fitting Density Curves
Procedure features:

PROC UNIVARIATE statement options:
NOPRINT

HISTOGRAM statement options:
CBARLINE=
CFILL=
EXP
FILL
L=
MIDPOINTS=
NOPRINT
NORMAL

VAR statement
Other features:

GOPTIONS statement



1562 Program � Chapter 48

RANNOR function
RANEXP function

This example
� creates a sample of 100 observations from a normal distribution and an

exponential distribution
� suppresses the tables of descriptive statistics
� creates histograms with superimposed density curves for the normal and

exponential distributions
� requests goodness-of-fit tests for a fitted exponential distribution
� specifies the midpoints for histogram intervals
� requests graphical enhancements that change plot colors and line types.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines on a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Set the graphics environment. The GOPTIONS statement sets the graphics environment to
control the appearance of graphics elements. HTITLE= and HTEXT= specify the text height in
GUNIT= units. FTEXT= and FTITLE= specify the font.*

goptions htitle=4 htext=3 gunit=pct ftext=swissb ftitle=swissb;

Create the data set. The data set DISTRDATA contains two variables and 100 observations.
The RANNOR function creates a random variate from a normal distribution with a mean of 50
and a standard deviation of 10 that is stored in the Normal_x variable. The RANEXP function
creates a random variate from a exponential distribution that is stored in the Exponential_x
variable.

data distrdata;
drop n;
label Normal_x=’Normal Random Variable’

Exponential_x=’Exponential Random Variable’;
do n=1 to 100;

Normal_x=10*rannor(53124)+50;
Exponential_x=ranexp(18746363);
output;

end;
run;

Suppress the printing of the statistics tables for the analysis variable. NOPRINT
suppresses the tables of statistics that the PROC UNIVARIATE statement creates. The VAR
statement specifies that Normal_x is the analysis variable.

* For additional information about the GOPTIONS statement, see SAS/GRAPH Reference.



The UNIVARIATE Procedure � Program 1563

proc univariate data=distrdata noprint;
var Normal_x;

Create a histogram with a normal distribution but suppress the printing of the
statistics. The HISTOGRAM statement creates a histogram for the analysis variable
Normal_x. The NORMAL option superimposes the fitted density curve for a normal distribution.
NOPRINT suppresses the tables of statistics that summarize the fitted density curve. The
CBARLINE= option specifies the color to outline the histogram bars.

histogram Normal_x /normal(noprint) cbarline=grey ;

Specify the title.

title ’100 Obs Sampled from a Normal Distribution’;
run;

Suppress the printing of the statistics tables for the analysis variable. Another PROC
step will execute so that output displays a new customized title. The VAR statement specifies
that Exponential_x is the analysis variable.

proc univariate data=distrdata noprint;
var Exponential_x;

Create a histogram with an exponential distribution. The HISTOGRAM statement creates
a histogram for the analysis variable Exponential_x. The EXP option superimposes a fitted
density curve for an exponential distribution. The FILL option specifies to fill the area under
the exponential density curve with the CFILL= color. The L= option specifies a distinct line type
for the density curve. The MIDPOINTS= option specifies a list of values to use as bin midpoints.

histogram /exp(fill l=3) cfill=yellow midpoints=.05 to 5.55 by .25;

Specify the title.

title ’100 Obs Sampled from an Exponential Distribution’;
run;



1564 Output � Chapter 48

Output

Figure 48.7 A Histogram Superimposed with Normal Curve



The UNIVARIATE Procedure � Output 1565

The output includes parameters estimates for the exponential curve. The exponential parameter
threshold parameter � is 0 because the THETA= option was omitted. A maximum likelihood
estimate is computed for the scale parameter �.

PROC UNIVARIATE provides three goodness-of-fit tests for the exponential distribution that
are based on the empirical distribution function. The p-values for the exponential distribution
are larger than the usual cutoff values of 0.05 and 0.10, which indicates not to reject the null
hypothesis that the data are exponentially distributed.

100 Obs Sampled from an Exponential Distribution 1

The UNIVARIATE Procedure
Fitted Distribution for Exponential_x

Parameters for Exponential Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 0.919698
Mean 0.919698
Std Dev 0.919698

Goodness-of-Fit Tests for Exponential Distribution

Test ---Statistic---- -----p Value-----

Kolmogorov-Smirnov D 0.05860511 Pr > D >0.500
Cramer-von Mises W-Sq 0.05537161 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.33426909 Pr > A-Sq >0.500

Quantiles for Exponential Distribution

------Quantile------
Percent Observed Estimated

1.0 0.00560 0.00924
5.0 0.05600 0.04717

10.0 0.06979 0.09690
25.0 0.30030 0.26458
50.0 0.62936 0.63749
75.0 1.20484 1.27497
90.0 2.08322 2.11768
95.0 3.00117 2.75517
99.0 5.07829 4.23536



1566 Example 8: Displaying a Reference Line on a Normal Quantile-Quantile Plot � Chapter 48

Figure 48.8 A Histogram Superimposed with an Exponential Curve

Example 8: Displaying a Reference Line on a Normal Quantile-Quantile Plot

Procedure features:
PROC UNIVARIATE statement options:

NOPRINT
INSET statement options:

CFILL=
FORMAT=
HEADER=
POSITION=
REFPOINT=
statistical-keyword

QQPLOT statement options:
CFRAME=
MU=
NORMAL
PCTLAXIS
SIGMA=

VAR statement
Other features:

GOPTIONS statement
SYMBOL statement

Data Set: DISTRDATA on page 1562



The UNIVARIATE Procedure � Program 1567

This example
� suppresses the tables of descriptive statistics
� creates a normal quantile-quantile plot
� requests a diagonal reference line that corresponds to the normal distribution with

estimated parameters � and �
� enhances the plot by insetting a table of summary statistics
� specifies background colors for the plot and the table of statistics
� adds a nonlinear percentile axis that is opposite the theoretical quantile axis
� requests graphical enhancements that change symbol type and text font.

Program

Set the graphics environment. The GOPTIONS statement sets the graphics environment to
control the appearance of graphics elements. HTITLE= and HTEXT= specify the text height in
GUNIT= units. FTEXT= and FTITLE= specify the font.*

goptions htitle=4 htext=3 gunit=pct ftext=swissb ftitle=swissb;

Specify the plot symbol character. The SYMBOL statement defines the characteristics of the
symbol that appears in the plot. VALUE= specifies a star as the plot symbol. By default, the plot
symbol is the plus sign (+).

symbol value=star;

Suppress the printing of the statistics tables for the analysis variable. NOPRINT
suppresses the tables of statistics that the PROC UNIVARIATE statement creates. The VAR
statement specifies that Normal_x is the analysis variable.

proc univariate data=distrdata noprint;
var Normal_x;

Create a normal quantile–quantile plot. The QQPLOT statement creates a normal Q-Q plot
for the analysis variable Normal_x. The NORMAL option superimposes a reference line that
corresponds to the normal distribution by using estimated parameters for MU= and SIGMA=.
CFRAME= specifies light gray as the background color inside the frame of the plot. PCTLAXIS
adds a nonlinear percentile axis along the top of the Q-Q plot frame. GRID draws vertical grid
lines by using the LGRID= linetype at the major percentiles. LABEL= specifies the label for the
percentile axis.

qqplot normal_x /normal(mu=est sigma=est) cframe=ligr
pctlaxis(grid lgrid=35 label=’Normal Percentiles’);

Add a table with statistical values on the plot. The INSET statement insets a table on the
plot. The keywords MEAN and STD request that the mean and standard deviation be displayed.
CFILL= specifies the background color for the table. FORMAT= specifies to use a format of field
width 3. HEADER= displays a heading at the top of the inset. POSITION= specifies to use axis
percentage coordinates to position the inset. REFPOINT= specifies to place the bottom-right
corner of the inset 95% of the way across the horizontal axis and 10% of the way up the vertical
axis.

* For additional information about the GOPTIONS statement, see SAS/GRAPH Reference.



1568 Output � Chapter 48

inset mean std / cfill=white format=3.0 header=’Normal Parameters’
position=(95,10) refpoint=br;

Specify the title.

title1 ’Normal Quantile-Quantile Plot’;
run;

Output

Figure 48.9 Normal Quantile-Quantile Plot with a Normal Reference Line and a
Customized Inset

Example 9: Creating a Two-Way Comparative Histogram
Procedure features:

PROC UNIVARIATE statement options:
NOPRINT

CLASS statement options:
ORDER=

HISTOGRAM statement options:
CFILL=
INTERTILE=
MIDPOINTS=
NCOLS=



The UNIVARIATE Procedure � Program 1569

NROWS=
VAXIS=
VAXISLABEL=
VSCALE=

INSET statement options:
FONT=
HEIGHT=
NOFRAME
POSITION=
statistical-keyword

VAR statement
Other features:

FORMAT statement
FORMAT procedure
GOPTIONS statement
SORT procedure

Data set: STATEPOP on page 1544

� creates a data set with observations that are separated by census year
� sorts the data set by geographic region and census year

� suppresses the tables of descriptive statistics
� specifies two classification variables

� specifies the order of the component histograms
� creates a two-way comparative histogram with a specified number of rows and

columns

�

� specifies the distance between the component histogram tiles

� specifies the scale, values, and labels of the vertical axis
� specifies the midpoints for histogram intervals

� enhances the component histograms by insetting a table of summary statistics
� requests graphical enhancements that change fill color and font types.

Program

Set the graphics environment. The GOPTIONS statement sets the graphics environment to
control the appearance of graphic elements. HTITLE= and HTEXT= specify the text height in
GUNIT= units. FTEXT= and FTITLE= specify the font.*

goptions htitle=4 htext=3 gunit=pct ftext=swiss ftitle=swiss;

* For additional information about the GOPTIONS statement, see SAS/GRAPH Reference.



1570 Program � Chapter 48

Assign a character string format to a numeric value. PROC FORMAT creates a format to
identify regions with a character value.

proc format;
value Regnfmt 1=’Northeast’

2=’South’
3=’Midwest’
4=’West’;

run;

Create the METROPOP data set. This data set contains one variable, Populationcount, with
the metropolitan and nonmetropolitan population counts. YEAR indicates the year for the
observation. The OUTPUT statements create two observations for each state and year
combination.

data metropop;
set statepop;
keep Region Year Populationcount;
label PopulationCount=’US Population (millions)’

Year=’Count year’;
year=1990;
populationcount=sum(citypop_1990,noncitypop_1990);
output;
year=2000;
populationcount=sum(citypop_2000,noncitypop_2000);
output;

Sort the data set. PROC SORT sorts observations in the METROPOP data set by Region and
Year.

proc sort data=metropop;
by region year;

run;

Suppress the printing of the statistics tables for the analysis variable. NOPRINT
suppresses the tables of statistics that the PROC UNIVARIATE statement creates. The VAR
statement specifies that PopulationCount is the analysis variable.

proc univariate data=metropop noprint;
var populationcount;

Specify the variables to categorize the data. The CLASS statement specifies Region and
Year as the classification variables. PROC UNIVARIATE produces a component histogram for
each level (distinct combination of values) of these variables. ORDER= orders the classification
levels by the frequency of Year so that the year with the greatest population count is displayed
first.

class region year(order=freq);



The UNIVARIATE Procedure � Program 1571

Create a two-way comparative histogram. The HISTOGRAM statement creates a two-way
comparative histogram for the analysis variable PopulationCount. NROWS= and NCOLS=
specify a 4�2 arrangement for the tiles. INTERTILE= inserts a space of one percentage screen
unit between the tiles. CFILL= specifies a fill color for the histogram bars. VSCALE= requests
the vertical axis scale in units of the number of observations per data unit. VAXIS= specifies the
tick mark labels and VAXISLABEL= specifies a label for the vertical axis. MIDPOINTS=
specifies a list of values to use as bin midpoints. FONT= requests a software font for the text.

histogram /nrows=4 ncols=2 intertile=1 cfill=cyan vscale=count
vaxis=0 4 8 12 vaxislabel=’No. of States’
midpoints=0 to 35 by 5;

Add a table with statistical values on the histogram. The INSET statement insets a table
directly on each component histogram with the sum of PopulationCount. SUM= requests a
customized label and a field width of five and two decimal places for the sum statistic.
NOFRAME suppresses the frame around the inset table. POSITION= specifies to use a compass
point to position the inset. HEIGHT= specifies the height of the text. FONT= requests a
software font for the text.

inset sum=’Total Population:’ (4.1) / noframe position=ne
height=2 font=swissxb;

Assign a format to a variable and a title to graph. The FORMAT statement assigns a
format to Region. The TITLE statement specifies a title.

format region regnfmt.;
title ’US Census of Population and Housing’;

run;



1572 Output � Chapter 48

Output

Figure 48.10 Two-way Comparative Histogram

References

Blom, G. (1958), Statistical Estimates and Transformed Beta Variables, New York:
John Wiley & Sons, Inc.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983), Graphical
Methods for Data Analysis, Pacific Grove:, Wadsworth International Group.

Conover, W.J. (1998), Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Croux, C. and Rousseeuw, P.J. (1992), “Time-Efficient Algorithms for Two Highly
Robust Estimators of Scale,” Computational Statistics, Volume 1, 411-428.

D’Agostino, R.B. and Stephens, M.A. (1986), Goodness-of-Fit Techniques, New York:
Marcel Dekker, Inc.

David, H.A. (1981), Order Statistics, Second Edition, New York: John Wiley & Sons,
Inc.

Dixon, W.J. and Tukey, J.W. (1968), "Approximate Behavior of the Distribution of
Winsorized t (Trimming/Winsorization 2)," Technometrics, 10, 83-98.

Frigge, M., Hoaglin, D.C., and Iglewicz, B. (1989), “Some Implementations of the
Boxplot,” The American Statistician, 43:1, 50–54.

Friendly, M. (1991) SAS System for Statistical Graphics, First Edition, Cary, NC:
SAS Institute Inc.



The UNIVARIATE Procedure � References 1573

Hahn, G.J. and Meeker, W. Q. (1991) Statistical Intervals: A Guide for Practitioners,
New York: John Wiley & Sons, Inc.

Hampel, F.R. (1974), “The Influence Curve and Its Role in Robust Estimation,”
Journal of the American Statistical Association, 69, 383-393.

Iman, R.L. (1974), “Use of a t-statistic as an Approximation to the Exact Distribution
of the Wilcoxon Signed Ranks Test Statistic,” Communications in Statistics, 3,
795–806.

Johnson, N.L., Kotz, S., and Balakrishnan, N. (1994), Continuous Univariate
Distributions, Volume 1, New York: John Wiley & Sons, Inc.

Johnson, N.L., Kotz, S., and Balakrishnan, N. (1995), Continuous Univariate
Distributions, Volume 2, New York: John Wiley & Sons, Inc.

Lehman, E.L. (1998), Nonparametrics: Statistical Methods Based on Ranks, New
Jersey: Prentice Hall .

Mood, A.M., Graybill, F.A., and Boes, D.C. (1974), Introduction to the Theory of
Statistics, Third Edition, New York: McGraw-Hill.

Odeh, R.E. and Owen, D.B. (1980), Tables for Normal Tolerance Limits, Sampling
Plans, and Screening, New York: Marcel Dekker, Inc.

Owen, D.B. and Hua, T.A. (1977), “Tables of Confidence Limits on the Tail Area of
the Normal Distribution,” Communication and Statistics, Part B — Simulation
and Computation, 6, 285–311.

Parzen, E. (1979), “Nonparametric Statistical Data Modeling,” Journal of the
American Statistical Association, 74, 105-121.

Rousseeuw, P.J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,“ Journal of the American Statistical Association. 88, 1273-1283.

Royston, J.P. (1992), “Approximating the Shapiro-Wilk’s W-Test for Non-normality,”
Statistics and Computing, 2, 117–119.

Royston, J.P. (1982), “An Extension of Shapiro and Wilk’s W Test for Normality to
Large Samples,” Applied Statistics, 31, 115–124.

Shapiro, S.S. and Wilk, M.B. (1965), “An Analysis of Variance Test for Normality
(complete samples),” Biometrika, 52, 591–611.

Schlotzhauer, S.D. and Littell, R.C. (1997) SAS System for Elementary Statistical
Analysis, Second Edition, Cary, NC: SAS Institute Inc.

Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, New
York: Chapman and Hall.

Sprent, P. (2000), Applied Nonparametric Statistical Methods, Third Edition, New
York: Chapman and Hall.

Stephens, M.A. (1974), “EDF Statistics for Goodness of Fit and Some Comparisons,”
Journal of the American Statistical Association, 69, 730–737.

Terrell, G.R. and Scott, D.W. (1985), “Oversmoothed Nonparametric Density
Estimates,” Journal of the American Statistical Association, 80, 209–214.

Tukey, J.W. (1977), Exploratory Data Analysis, Reading, Massachusetts:
Addison-Wesley.

Tukey, J.W. and McLaughlin, D.H. (1963), “Less Vulnerable Confidence and
Significance Procedures for Location Based on a Single Sample: Trimming/
Winsorization 1,” Sankhya A, 25, 331-352.

U.S. Bureau of the Census (2000), Statistical Abstract of the United States: 2000,
Washington, D.C.: U.S. Government Printing Office.

.



1574



1575

P A R T3

Appendices

Appendix 1. . . . . . . . .SAS Elementary Statistics Procedures 1577

Appendix 2. . . . . . . . .Operating Environment-Specific Procedures 1613

Appendix 3. . . . . . . . .Raw Data and DATA Steps 1615

Appendix 4. . . . . . . . .Recommended Reading 1673



1576



1577

A P P E N D I X

1
SAS Elementary Statistics
Procedures

Overview 1577
Keywords and Formulas 1578

Descriptive Statistics 1580

Percentile and Related Statistics 1583

Hypothesis Testing Statistics 1585

Confidence Limits for the Mean 1585
Using Weights 1586

Data Requirements for Summarization Procedures 1586

Statistical Background 1586

Populations and Parameters 1586

Samples and Statistics 1587

Measures of Location 1588
The Mean 1588

The Median 1588

The Mode 1588

Percentiles 1588

Measures of Variability 1592
The Range 1592

The Interquartile Range 1593

The Variance 1593

The Standard Deviation 1593

Coefficient of Variation 1593
Measures of Shape 1593

Skewness 1593

Kurtosis 1594

The Normal Distribution 1594

Sampling Distribution of the Mean 1597

Testing Hypotheses 1607
Significance and Power 1608

Student’s t Distribution 1609

Probability Values 1610

References 1611

Overview
This appendix provides a brief description of some of the statistical concepts

necessary for you to interpret the output of base SAS procedures for elementary
statistics. In addition, this appendix lists statistical notation, formulas, and standard
keywords used for common statistics in base SAS procedures. Brief examples illustrate
the statistical concepts.



1578 Keywords and Formulas � Appendix 1

Table A1.1 on page 1579 lists the most common statistics and the procedures that
compute them.

Keywords and Formulas
The base SAS procedures use a standardized set of keywords to refer to statistics.

You specify these keywords in SAS statements to request the statistics to be displayed
or stored in an output data set.

In the following notation, summation is over observations that contain nonmissing
values of the analyzed variable and, except where shown, over nonmissing weights and
frequencies of one or more:

��

is the nonmissing value of the analyzed variable for observation i.

��

is the frequency that is associated with �� if you use a FREQ statement. If you
omit the FREQ statement, then �� � � for all i.

��

is the weight that is associated with �� if you use a WEIGHT statement. The base
procedures automatically exclude the values of �� with missing weights from the
analysis.

By default, the base procedures treat a negative weight as if it is equal to zero.
However, if you use the EXCLNPWGT option in the PROC statement, then the
procedure also excludes those values of �� with nonpositive weights. Note that
most SAS/STAT procedures, such as PROC TTEST and PROC GLM, exclude
values with nonpositive weights by default.

If you omit the WEIGHT statement, then �� � � for all i.

�
is the number of nonmissing values of ��,

�
��. If you use the EXCLNPWGT

option and the WEIGHT statement, then � is the number of nonmissing values
with positive weights.

��
is the mean

�
�����
�

��

��

is the variance

�

�

�
�� ��� � ���

�



SAS Elementary Statistics Procedures � Keywords and Formulas 1579

where � is the variance divisor (the VARDEF= option) that you specify in the
PROC statement. Valid values are as follows:

When VARDEF= � equals . . .

N �

DF �� �

WEIGHT
�

��

WDF
�

�� � �

The default is DF.

��

is the standardized variable

��� � ��� ��

The standard keywords and formulas for each statistic follow. Some formulas use
keywords to designate the corresponding statistic.

Table A1.1 The Most Common Simple Statistics

Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Number of missing values X X X X X

Number of nonmissing
values X X X X X X

Number of observations X X X

Sum of weights X X X X X X

Mean X X X X X X

Sum X X X X X X

Extreme values X X

Minimum X X X X X X

Maximum X X X X X X

Range X X X X X

Uncorrected sum of
squares X X X X X X

Corrected sum of squares X X X X X X

Variance X X X X X X

Covariance X

Standard deviation X X X X X X



1580 Descriptive Statistics � Appendix 1

Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Standard error of the
mean X X X X X

Coefficient of variation X X X X X

Skewness X X X

Kurtosis X X X

Confidence Limits

of the mean X X X

of the variance X

of quantiles X

Median X X X X X

Mode X

Percentiles/Deciles/
Quartiles X X X X

t test

for mean=0 X X X X X

for mean=�� X

Nonparametric tests for
location X

Tests for normality X

Correlation coefficients X

Cronbach’s alpha X

Descriptive Statistics
The keywords for descriptive statistics are

CSS
is the sum of squares corrected for the mean, computed as

�
�� ��� � ���

�

CV
is the percent coefficient of variation, computed as

������ ���

KURTOSIS | KURT
is the kurtosis, which measures heaviness of tails. When VARDEF=DF, the
kurtosis is computed as



SAS Elementary Statistics Procedures � Descriptive Statistics 1581

���
�

��� �
� ��� ���

��� �� ��� ��

where ��� is ������
���������������

. The weighted kurtosis is computed as

� ���
�

���� � �� � ����
�
�

� �� � ���

��� �� ��� ��

� ��
�

�
��
� ���� � �� ����� �

� ��� ���

��� �� �� � ��

When VARDEF=N, the kurtosis is computed as

�
�

�

�
��� � �

and the weighted kurtosis is computed as

�
�

�

�
���� � �� � ����

�
� �

�
�

�

�
��
� ���� � �� ����� � �

where ��
�

is �����. The formula is invariant under the transformation
��

�
� ���� � � �. When you use VARDEF=WDF or VARDEF=WEIGHT, the

kurtosisis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
kurtosis. �

MAX
is the maximum value of ��.

MEAN
is the arithmetic mean �.

MIN
is the minimum value of ��.

MODE
is the most frequent value of ��.

N
is the number of �� values that are not missing. Observations with 	� less than
one and �� equal to missing or �� � � (when you use the EXCLNPWGT option)
are excluded from the analysis and are not included in the calculation of N.

NMISS
is the number of �� values that are missing. Observations with 	� less than one
and �� equal to missing or �� � � (when you use the EXCLNPWGT option) are
excluded from the analysis and are not included in the calculation of NMISS.



1582 Descriptive Statistics � Appendix 1

NOBS
is the total number of observations and is calculated as the sum of N and NMISS.
However, if you use the WEIGHT statement, then NOBS is calculated as the sum
of N, NMISS, and the number of observations excluded because of missing or
nonpositive weights.

RANGE
is the range and is calculated as the difference between maximum value and
minimum value.

SKEWNESS | SKEW
is skewness, which measures the tendency of the deviations to be larger in one
direction than in the other. When VARDEF=DF, the skewness is computed as

���
�

��
�

where ��
�

is �
����������

. The weighted skewness is computed as

� ���
�

���� � �� � ����
�

� ���
�

�
���
� ���� � �� �����

When VARDEF=N, the skewness is computed as

�
�

�

�
���

and the weighted skewness is computed as

�
�

�

�
���� � �� � ����

�

�
�

�

�
�

���
� ���� � �� �����

The formula is invariant under the transformation ��

� � ���� � � �. When you
use VARDEF=WDF or VARDEF=WEIGHT, the skewnessis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
skewness. �

STDDEV|STD
is the standard deviation s and is computed as the square root of the variance, 	�.

STDERR | STDMEAN
is the standard error of the mean, computed as

	�
��

��

when VARDEF=DF, which is the default. Otherwise, STDERR is set to missing.



SAS Elementary Statistics Procedures � Percentile and Related Statistics 1583

SUM
is the sum, computed as

�
����

SUMWGT
is the sum of the weights, � , computed as

�
��

USS
is the uncorrected sum of squares, computed as

�
���

�

�

VAR
is the variance ��.

Percentile and Related Statistics
The keywords for percentiles and related statistics are

MEDIAN
is the middle value.

P1
is the 1st percentile.

P5
is the 5th percentile.

P10
is the 10th percentile.

P90
is the 90th percentile.

P95
is the 95th percentile.

P99
is the 99th percentile.

Q1
is the lower quartile (25th percentile).

Q3
is the upper quartile (75th percentile).

QRANGE
is interquartile range and is calculated as

�� ���



1584 Percentile and Related Statistics � Appendix 1

You use the PCTLDEF= option to specify the method that the procedure uses to
compute percentiles. Let � be the number of nonmissing values for a variable, and let
��� ��� � � � � �� represent the ordered values of the variable such that �� is the smallest
value, �� is next smallest value, and �� is the largest value. For the tth percentile
between 0 and 1, let � � �����. Then define � as the integer part of �� and � as the
fractional part of �� or ��� �� �, so that

�� � � � � ��	
 ������ � �� �� �� �� �

�� � �� � � � � � ��	
 ������ � �

Here, PCTLDEF= specifies the method that the procedure uses to compute the tth
percentile, as shown in the table that follows.

When you use the WEIGHT statement, the tth percentile is computed as

� �

�����
����

�

�
��� � ����� if

��
���

	� � �


���� if
��

���

	� � �
 �
����
���

	�

where 	� is the weight associated with �� and 
 �
��

���

	� is the sum of the weights.

When the observations have identical weights, the weighted percentiles where the same
as the unweighted percentiles with PCTLDEF=5.

Table A1.2 Methods for Computing Percentile Statistics

PCTLDEF= Description Formula

1 weighted average at ��� � � �� � ���� � �����

where �� is taken to be ��

2 observation numbered closest to �� � � �� if � �� �
�

� � �� if � � �
� and � is

even

� � ���� if � � �
� and � is

odd

where i is the integer part of ��� �
�

3 empirical distribution function � � �� if � � �

� � ���� if � � �

4 weighted average aimed at ������� � � �� � ���� � �����

where ���� is taken to be ��



SAS Elementary Statistics Procedures � Confidence Limits for the Mean 1585

PCTLDEF= Description Formula

5 empirical distribution function with
averaging

� �
�

� ��� � ����� if � � �

� � ���� if � � �

Hypothesis Testing Statistics
The keywords for hypothesis testing statistics are

T
is the Student’s t statistic to test the null hypothesis that the population mean is
equal to �� and is calculated as

�� ��

��
��

��

By default, �� is equal to zero. You can use the MU0= option in the PROC
UNIVARIATE statement to specify ��. You must use VARDEF=DF, which is the
default variance divisor, otherwise T is set to missing.

By default, when you use a WEIGHT statement, the procedure counts the ��
values with nonpositive weights in the degrees of freedom. Use the EXCLNPWGT
option in the PROC statement to exclude values with nonpositive weights. Most
SAS/STAT procedures, such as PROC TTEST and PROC GLM automatically
exclude values with nonpositive weights.

PROBT
is the two-tailed p-value for Student’s t statistic, T, with � � � degrees of freedom.
This is the probability under the null hypothesis of obtaining a more extreme
value of T than is observed in this sample.

Confidence Limits for the Mean
The keywords for confidence limits are

CLM
is the two-sided confidence limit for the mean. A two-sided ��� �� � 	�percent
confidence interval for the mean has upper and lower limits

�� 
�����������
���
��

where � is
�

�
���

�
��� � ���, 
����������� is the (�� 	��) critical value of the

Student’s t statistics with �� � degrees of freedom, and 	 is the value of the
ALPHA= option which by default is 0.05. Unless you use VARDEF=DF, which is
the default variance divisor, CLM is set to missing.

LCLM
is the one-sided confidence limit below the mean. The one-sided
��� �� � 	�percent confidence interval for the mean has the lower limit



1586 Using Weights � Appendix 1

�� ����������
�

��
��

Unless you use VARDEF=DF, which is the default variance divisor, LCLM is set to
missing.

UCLM
is the one-sided confidence limit above the mean. The one-sided
��� �� � ��percent confidence interval for the mean has the upper limit

�� ����������
�

��
��

Unless you use VARDEF=DF, which is the default variance divisor, UCLM is set to
missing.

Using Weights
For more information on using weights and an example, see “WEIGHT” on page 59.

Data Requirements for Summarization Procedures
The following are the minimal data requirements to compute unweighted statistics

and do not describe recommended sample sizes. Statistics are reported as missing if
VARDEF=DF (the default) and these requirements are not met:

� N and NMISS are computed regardless of the number of missing or nonmissing
observations.

� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

� VAR, STD, STDERR, CV, T, and PRT require at least two nonmissing observations.
� SKEWNESS requires at least three nonmissing observations.
� KURTOSIS requires at least four nonmissing observations.
� SKEWNESS, KURTOSIS, T, and PROBT require that STD is greater than zero.
� CV requires that MEAN is not equal to zero.
� CLM, LCLM, UCLM, STDERR, T, and PROBT require that VARDEF=DF.

Statistical Background
The rest of this appendix provides text descriptions and SAS code examples that

explain some of the statistical concepts and terminology that you may encounter when
you interpret the output of SAS procedures for elementary statistics. For a more
thorough discussion, consult an introductory statistics textbook such as Mendenhall
and Beaver (1998); Ott and Mendenhall (1994); or Snedecor and Cochran (1989).

Populations and Parameters
Usually, there is a clearly defined set of elements in which you are interested. This

set of elements is called the universe, and a set of values associated with these elements



SAS Elementary Statistics Procedures � Samples and Statistics 1587

is called a population of values. The statistical term population has nothing to do with
people per se. A statistical population is a collection of values, not a collection of people.
For example, a universe is all the students at a particular school, and there could be
two populations of interest: one of height values and one of weight values. Or, a
universe is the set of all widgets manufactured by a particular company, while the
population of values could be the length of time each widget is used before it fails.

A population of values can be described in terms of its cumulative distribution
function, which gives the proportion of the population less than or equal to each
possible value. A discrete population can also be described by a probability function,
which gives the proportion of the population equal to each possible value. A continuous
population can often be described by a density function, which is the derivative of the
cumulative distribution function. A density function can be approximated by a
histogram that gives the proportion of the population lying within each of a series of
intervals of values. A probability density function is like a histogram with an infinite
number of infinitely small intervals.

In technical literature, when the term distribution is used without qualification, it
generally refers to the cumulative distribution function. In informal writing,
distribution sometimes means the density function instead. Often the word distribution
is used simply to refer to an abstract population of values rather than some concrete
population. Thus, the statistical literature refers to many types of abstract distributions,
such as normal distributions, exponential distributions, Cauchy distributions, and so
on. When a phrase such as normal distribution is used, it frequently does not matter
whether the cumulative distribution function or the density function is intended.

It may be expedient to describe a population in terms of a few measures that
summarize interesting features of the distribution. One such measure, computed from
the population values, is called a parameter. Many different parameters can be defined
to measure different aspects of a distribution.

The most commonly used parameter is the (arithmetic) mean. If the population
contains a finite number of values, then the population mean is computed as the sum of
all the values in the population divided by the number of elements in the population.
For an infinite population, the concept of the mean is similar but requires more
complicated mathematics.

E(x) denotes the mean of a population of values symbolized by x, such as height,
where E stands for expected value. You can also consider expected values of derived
functions of the original values. For example, if x represents height, then �

�
�
�
�

is the
expected value of height squared, that is, the mean value of the population obtained by
squaring every value in the population of heights.

Samples and Statistics
It is often impossible to measure all of the values in a population. A collection of

measured values is called a sample. A mathematical function of a sample of values is
called a statistic. A statistic is to a sample as a parameter is to a population. It is
customary to denote statistics by Roman letters and parameters by Greek letters. For
example, the population mean is often written as �, whereas the sample mean is
written as ��. The field of statistics is largely concerned with the study of the behavior of
sample statistics.

Samples can be selected in a variety of ways. Most SAS procedures assume that the
data constitute a simple random sample, which means that the sample was selected in
such a way that all possible samples were equally likely to be selected.

Statistics from a sample can be used to make inferences, or reasonable guesses,
about the parameters of a population. For example, if you take a random sample of 30
students from the high school, then the mean height for those 30 students is a
reasonable guess, or estimate, of the mean height of all the students in the high school.



1588 Measures of Location � Appendix 1

Other statistics, such as the standard error, can provide information about how good an
estimate is likely to be.

For any population parameter, several statistics can estimate it. Often, however,
there is one particular statistic that is customarily used to estimate a given parameter.
For example, the sample mean is the usual estimator of the population mean. In the
case of the mean, the formulas for the parameter and the statistic are the same. In
other cases, the formula for a parameter may be different from that of the most
commonly used estimator. The most commonly used estimator is not necessarily the
best estimator in all applications.

Measures of Location
Measures of location include the mean, the median, and the mode. These measures

describe the center of a distribution. In the definitions that follow, notice that if the
entire sample changes by adding a fixed amount to each observation, then these
measures of location are shifted by the same fixed amount.

The Mean
The population mean � � � �� � is usually estimated by the sample mean ��.

The Median
The population median is the central value, lying above and below half of the

population values. The sample median is the middle value when the data are arranged
in ascending or descending order. For an even number of observations, the midpoint
between the two middle values is usually reported as the median.

The Mode
The mode is the value at which the density of the population is at a maximum. Some

densities have more than one local maximum (peak) and are said to be multimodal.
The sample mode is the value that occurs most often in the sample. By default, PROC
UNIVARIATE reports the lowest such value if there is a tie for the most-often-occurring
sample value. PROC UNIVARIATE lists all possible modes when you specify the
MODES option in the PROC statement. If the population is continuous, then all sample
values occur once, and the sample mode has little use.

Percentiles
Percentiles, including quantiles, quartiles, and the median, are useful for a detailed

study of a distribution. For a set of measurements arranged in order of magnitude, the
pth percentile is the value that has p percent of the measurements below it and (100−p)
percent above it. The median is the 50th percentile. Because it may not be possible to
divide your data so that you get exactly the desired percentile, the UNIVARIATE
procedure uses a more precise definition.

The upper quartile of a distribution is the value below which 75 percent of the
measurements fall (the 75th percentile). Twenty-five percent of the measurements fall
below the lower quartile value.

In the following example, SAS artificially generates the data with a pseudorandom
number function. The UNIVARIATE procedure computes a variety of quantiles and
measures of location, and outputs the values to a SAS data set. A DATA step then uses
the SYMPUT routine to assign the values of the statistics to macro variables. The



SAS Elementary Statistics Procedures � Percentiles 1589

macro %FORMGEN uses these macro variables to produce value labels for the
FORMAT procedure. PROC CHART uses the resulting format to display the values of
the statistics on a histogram.

options nodate pageno=1 linesize=80 pagesize=52;

title ’Example of Quantiles and Measures of Location’;

data random;
drop n;
do n=1 to 1000;

X=floor(exp(rannor(314159)*.8+1.8));
output;

end;
run;

proc univariate data=random nextrobs=0;
var x;
output out=location

mean=Mean mode=Mode median=Median
q1=Q1 q3=Q3 p5=P5 p10=P10 p90=P90 p95=P95
max=Max;

run;

proc print data=location noobs;
run;

data _null_;
set location;
call symput(’MEAN’,round(mean,1));
call symput(’MODE’,mode);
call symput(’MEDIAN’,round(median,1));
call symput(’Q1’,round(q1,1));
call symput(’Q3’,round(q3,1));
call symput(’P5’,round(p5,1));
call symput(’P10’,round(p10,1));
call symput(’P90’,round(p90,1));
call symput(’P95’,round(p95,1));
call symput(’MAX’,min(50,max));

run;

%macro formgen;
%do i=1 %to &max;

%let value=&i;
%if &i=&p5 %then %let value=&value P5;
%if &i=&p10 %then %let value=&value P10;
%if &i=&q1 %then %let value=&value Q1;
%if &i=&mode %then %let value=&value Mode;
%if &i=&median %then %let value=&value Median;
%if &i=&mean %then %let value=&value Mean;
%if &i=&q3 %then %let value=&value Q3;
%if &i=&p90 %then %let value=&value P90;
%if &i=&p95 %then %let value=&value P95;



1590 Percentiles � Appendix 1

%if &i=&max %then %let value=>=&value;
&i="&value"

%end;
%mend;

proc format print;
value stat %formgen;

run;
options pagesize=42 linesize=80;

proc chart data=random;
vbar x / midpoints=1 to &max by 1;
format x stat.;
footnote ’P5 = 5TH PERCENTILE’;
footnote2 ’P10 = 10TH PERCENTILE’;
footnote3 ’P90 = 90TH PERCENTILE’;
footnote4 ’P95 = 95TH PERCENTILE’;
footnote5 ’Q1 = 1ST QUARTILE ’;
footnote6 ’Q3 = 3RD QUARTILE ’;



SAS Elementary Statistics Procedures � Percentiles 1591

run;

Example of Quantiles and Measures of Location 1

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 7.605 Sum Observations 7605
Std Deviation 7.38169794 Variance 54.4894645
Skewness 2.73038523 Kurtosis 11.1870588
Uncorrected SS 112271 Corrected SS 54434.975
Coeff Variation 97.0637467 Std Error Mean 0.23342978

Basic Statistical Measures

Location Variability

Mean 7.605000 Std Deviation 7.38170
Median 5.000000 Variance 54.48946
Mode 3.000000 Range 62.00000

Interquartile Range 6.00000

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 32.57939 Pr > |t| <.0001
Sign M 494.5 Pr >= |M| <.0001
Signed Rank S 244777.5 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 62.0
99% 37.5
95% 21.5
90% 16.0
75% Q3 9.0
50% Median 5.0
25% Q1 3.0
10% 2.0
5% 1.0
1% 0.0
0% Min 0.0

Example of Quantiles and Measures of Location 2

Mean Max P95 P90 Q3 Median Q1 P10 P5 Mode

7.605 62 21.5 16 9 5 3 2 1 3



1592 Measures of Variability � Appendix 1

Example of Quantiles and Measures of Location 3

Frequency

120 + *
| *
| **
| ***

90 +*****
|*****
|*******
|*******

60 +*******
|*********
|*********
|*********

30 +************
|************ *
|**************** *
|*********************** * *
---------------------------------------------------

1234567891111111111222222222233333333334444444444>
0123456789012345678901234567890123456789=

5
PPQ M MQ 0
511 e e3 P P

0 d a 9 9
i n 0 5

M a
o n
d
e

X Midpoint

P5 = 5TH PERCENTILE
P10 = 10TH PERCENTILE
P90 = 90TH PERCENTILE
P95 = 95TH PERCENTILE
Q1 = 1ST QUARTILE
Q3 = 3RD QUARTILE

Measures of Variability
Another group of statistics is important in studying the distribution of a population.

These statistics measure the variability, also called the spread, of values. In the
definitions given in the sections that follow, notice that if the entire sample is changed
by the addition of a fixed amount to each observation, then the values of these statistics
are unchanged. If each observation in the sample is multiplied by a constant, however,
then the values of these statistics are appropriately rescaled.

The Range
The sample range is the difference between the largest and smallest values in the

sample. For many populations, at least in statistical theory, the range is infinite, so the
sample range may not tell you much about the population. The sample range tends to
increase as the sample size increases. If all sample values are multiplied by a constant,
then the sample range is multiplied by the same constant.



SAS Elementary Statistics Procedures � Measures of Shape 1593

The Interquartile Range
The interquartile range is the difference between the upper and lower quartiles. If

all sample values are multiplied by a constant, then the sample interquartile range is
multiplied by the same constant.

The Variance
The population variance, usually denoted by ��, is the expected value of the squared

difference of the values from the population mean:

�
�
� � �� � ���

The sample variance is denoted by ��. The difference between a value and the mean
is called a deviation from the mean. Thus, the variance approximates the mean of the
squared deviations.

When all the values lie close to the mean, the variance is small but never less than
zero. When values are more scattered, the variance is larger. If all sample values are
multiplied by a constant, then the sample variance is multiplied by the square of the
constant.

Sometimes values other than �� � are used in the denominator. The VARDEF=
option controls what divisor the procedure uses.

The Standard Deviation
The standard deviation is the square root of the variance, or root-mean-square

deviation from the mean, in either a population or a sample. The usual symbols are �

for the population and s for a sample. The standard deviation is expressed in the same
units as the observations, rather than in squared units. If all sample values are
multiplied by a constant, then the sample standard deviation is multiplied by the same
constant.

Coefficient of Variation
The coefficient of variation is a unitless measure of relative variability. It is defined

as the ratio of the standard deviation to the mean expressed as a percentage. The
coefficient of variation is meaningful only if the variable is measured on a ratio scale. If
all sample values are multiplied by a constant, then the sample coefficient of variation
remains unchanged.

Measures of Shape

Skewness
The variance is a measure of the overall size of the deviations from the mean. Since

the formula for the variance squares the deviations, both positive and negative
deviations contribute to the variance in the same way. In many distributions, positive
deviations may tend to be larger in magnitude than negative deviations, or vice versa.
Skewness is a measure of the tendency of the deviations to be larger in one direction
than in the other. For example, the data in the last example are skewed to the right.



1594 The Normal Distribution � Appendix 1

Population skewness is defined as

� �� � ��� ���

Because the deviations are cubed rather than squared, the signs of the deviations are
maintained. Cubing the deviations also emphasizes the effects of large deviations. The
formula includes a divisor of �� to remove the effect of scale, so multiplying all values
by a constant does not change the skewness. Skewness can thus be interpreted as a
tendency for one tail of the population to be heavier than the other. Skewness can be
positive or negative and is unbounded.

Kurtosis
The heaviness of the tails of a distribution affects the behavior of many statistics.

Hence it is useful to have a measure of tail heaviness. One such measure is kurtosis.
The population kurtosis is usually defined as

� �� � ���

��
� �

Note: Some statisticians omit the subtraction of 3. �

Because the deviations are raised to the fourth power, positive and negative
deviations make the same contribution, while large deviations are strongly emphasized.
Because of the divisor ��, multiplying each value by a constant has no effect on kurtosis.

Population kurtosis must lie between �� and ��, inclusive. If �� represents
population skewness and �� represents population kurtosis, then

�� � ����
�
� �

Statistical literature sometimes reports that kurtosis measures the peakedness of a
density. However, heavy tails have much more influence on kurtosis than does the shape
of the distribution near the mean (Kaplansky 1945; Ali 1974; Johnson, et al. 1980).

Sample skewness and kurtosis are rather unreliable estimators of the corresponding
parameters in small samples. They are better estimators when your sample is very
large. However, large values of skewness or kurtosis may merit attention even in small
samples because such values indicate that statistical methods that are based on
normality assumptions may be inappropriate.

The Normal Distribution
One especially important family of theoretical distributions is the normal or Gaussian

distribution. A normal distribution is a smooth symmetric function often referred to as
"bell-shaped." Its skewness and kurtosis are both zero. A normal distribution can be
completely specified by only two parameters: the mean and the standard deviation.
Approximately 68 percent of the values in a normal population are within one standard
deviation of the population mean; approximately 95 percent of the values are within



SAS Elementary Statistics Procedures � The Normal Distribution 1595

two standard deviations of the mean; and about 99.7 percent are within three standard
deviations. Use of the term normal to describe this particular kind of distribution does
not imply that other kinds of distributions are necessarily abnormal or pathological.

Many statistical methods are designed under the assumption that the population
being sampled is normally distributed. Nevertheless, most real-life populations do not
have normal distributions. Before using any statistical method based on normality
assumptions, you should consult the statistical literature to find out how sensitive the
method is to nonnormality and, if necessary, check your sample for evidence of
nonnormality.

In the following example, SAS generates a sample from a normal distribution with a
mean of 50 and a standard deviation of 10. The UNIVARIATE procedure performs tests
for location and normality. Because the data are from a normal distribution, all p-values
from the tests for normality are greater than 0.15. The CHART procedure displays a
histogram of the observations. The shape of the histogram is a belllike, normal density.

options nodate pageno=1 linesize=80 pagesize=52;

title ’10000 Obs Sample from a Normal Distribution’;
title2 ’with Mean=50 and Standard Deviation=10’;

data normaldat;
drop n;
do n=1 to 10000;

X=10*rannor(53124)+50;
output;

end;
run;

proc univariate data=normaldat nextrobs=0 normal
mu0=50 loccount;

var x;
run;

proc format;
picture msd

20=’20 3*Std’ (noedit)
30=’30 2*Std’ (noedit)
40=’40 1*Std’ (noedit)
50=’50 Mean ’ (noedit)
60=’60 1*Std’ (noedit)
70=’70 2*Std’ (noedit)
80=’80 3*Std’ (noedit)

other=’ ’;
run;
options linesize=80 pagesize=42;

proc chart;
vbar x / midpoints=20 to 80 by 2;
format x msd.;

run;



1596 The Normal Distribution � Appendix 1

10000 Obs Sample from a Normal Distribution 1
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Moments

N 10000 Sum Weights 10000
Mean 50.0323744 Sum Observations 500323.744
Std Deviation 9.92013874 Variance 98.4091525
Skewness -0.019929 Kurtosis -0.0163755
Uncorrected SS 26016378 Corrected SS 983993.116
Coeff Variation 19.8274395 Std Error Mean 0.09920139

Basic Statistical Measures

Location Variability

Mean 50.03237 Std Deviation 9.92014
Median 50.06492 Variance 98.40915
Mode . Range 76.51343

Interquartile Range 13.28179

Tests for Location: Mu0=50

Test -Statistic- -----p Value------

Student’s t t 0.32635 Pr > |t| 0.7442
Sign M 26 Pr >= |M| 0.6101
Signed Rank S 174063 Pr >= |S| 0.5466

Location Counts: Mu0=50.00

Count Value

Num Obs > Mu0 5026
Num Obs ^= Mu0 10000
Num Obs < Mu0 4974

Tests for Normality

Test --Statistic--- -----p Value------

Kolmogorov-Smirnov D 0.006595 Pr > D >0.1500
Cramer-von Mises W-Sq 0.049963 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.371151 Pr > A-Sq >0.2500



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1597

10000 Obs Sample from a Normal Distribution 2
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Quantiles (Definition 5)

Quantile Estimate

100% Max 90.2105
99% 72.6780
95% 66.2221
90% 62.6678
75% Q3 56.7280
50% Median 50.0649
25% Q1 43.4462
10% 37.1139
5% 33.5454
1% 26.9189
0% Min 13.6971

10000 Obs Sample from a Normal Distribution 3
with Mean=50 and Standard Deviation=10

Frequency

| *
800 + ***

| ****
| ******
| *******

600 + *******
| **********
| ***********
| ***********

400 + ************
| *************
| ***************
| *****************

200 + ******************
| *******************
| **********************
| ***************************
--------------------------------

2 3 4 5 6 7 8
0 0 0 0 0 0 0

3 2 1 M 1 2 3
* * * e * * *
S S S a S S S
t t t n t t t
d d d d d d

X Midpoint

Sampling Distribution of the Mean
If you repeatedly draw samples of size n from a population and compute the mean of

each sample, then the sample means themselves have a distribution. Consider a new
population consisting of the means of all the samples that could possibly be drawn from
the original population. The distribution of this new population is called a sampling
distribution.



1598 Sampling Distribution of the Mean � Appendix 1

It can be proven mathematically that if the original population has mean � and
standard deviation �, then the sampling distribution of the mean also has mean �, but
its standard deviation is ��

�
�. The standard deviation of the sampling distribution of

the mean is called the standard error of the mean. The standard error of the mean
provides an indication of the accuracy of a sample mean as an estimator of the
population mean.

If the original population has a normal distribution, then the sampling distribution of
the mean is also normal. If the original distribution is not normal but does not have
excessively long tails, then the sampling distribution of the mean can be approximated
by a normal distribution for large sample sizes.

The following example consists of three separate programs that show how the
sampling distribution of the mean can be approximated by a normal distribution as the
sample size increases. The first DATA step uses the RANEXP function to create a
sample of 1000 observations from an exponential distribution.The theoretical
population mean is 1.00, while the sample mean is 1.01, to two decimal places. The
population standard deviation is 1.00; the sample standard deviation is 1.04.

This is an example of a nonnormal distribution. The population skewness is 2.00,
which is close to the sample skewness of 1.97. The population kurtosis is 6.00, but the
sample kurtosis is only 4.80.

options nodate pageno=1 linesize=80 pagesize=42;

title ’1000 Observation Sample’;
title2 ’from an Exponential Distribution’;

data expodat;
drop n;
do n=1 to 1000;

X=ranexp(18746363);
output;

end;
run;
proc format;

value axisfmt
.05=’0.05’
.55=’0.55’

1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
3.05=’3.05’
3.55=’3.55’
4.05=’4.05’
4.55=’4.55’
5.05=’5.05’
5.55=’5.55’
other=’ ’;

run;

proc chart data=expodat ;
vbar x / axis=300

midpoints=0.05 to 5.55 by .1;
format x axisfmt.;

run;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1599

options pagesize=64;

proc univariate data=expodat noextrobs=0 normal
mu0=1;

var x;



1600 Sampling Distribution of the Mean � Appendix 1

run;

1000 Observation Sample 1
from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
|
|
|
|

100 +*
|*
|*** *
|*****
|***** *

50 +********
|***********
|************ *
|*************** ** *
|************************* *** *** * * *
---------------------------------------------------------

0 0 1 1 2 2 3 3 4 4 5 5
. . . . . . . . . . . .
0 5 0 5 0 5 0 5 0 5 0 5
5 5 5 5 5 5 5 5 5 5 5 5

X Midpoint

1000 Observation Sample 2
from an Exponential Distribution

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 1.01176214 Sum Observations 1011.76214
Std Deviation 1.04371187 Variance 1.08933447
Skewness 1.96963112 Kurtosis 4.80150594
Uncorrected SS 2111.90777 Corrected SS 1088.24514
Coeff Variation 103.15783 Std Error Mean 0.03300507

Basic Statistical Measures

Location Variability

Mean 1.011762 Std Deviation 1.04371
Median 0.689502 Variance 1.08933
Mode . Range 6.63851

Interquartile Range 1.06252



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1601

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t 0.356374 Pr > |t| 0.7216
Sign M -140 Pr >= |M| <.0001
Signed Rank S -50781 Pr >= |S| <.0001

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.801498 Pr < W <0.0001
Kolmogorov-Smirnov D 0.166308 Pr > D <0.0100
Cramer-von Mises W-Sq 9.507975 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 54.5478 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 6.63906758
99% 5.04491651
95% 3.13482318
90% 2.37803632
75% Q3 1.35733401
50% Median 0.68950221
25% Q1 0.29481436
10% 0.10219011
5% 0.05192799
1% 0.01195590
0% Min 0.00055441

The next DATA step generates 1000 different samples from the same exponential
distribution. Each sample contains ten observations. The MEANS procedure computes
the mean of each sample. In the data set that is created by PROC MEANS, each
observation represents the mean of a sample of ten observations from an exponential
distribution. Thus, the data set is a sample from the sampling distribution of the mean
for an exponential population.

PROC UNIVARIATE displays statistics for this sample of means. Notice that the
mean of the sample of means is .99, almost the same as the mean of the original
population. Theoretically, the standard deviation of the sampling distribution is
��
�
� � �����

�
�� � ���, whereas the standard deviation of this sample from

thesampling distribution is .30. The skewness (.55) and kurtosis (-.006) are closer to
zero in the sample from the sampling distribution than in the original sample from the
exponential distribution. This is so because the sampling distribution is closer to a
normal distribution than is the original exponential distribution. The CHART
procedure displays a histogram of the 1000-sample means. The shape of the histogram
is much closer to a belllike, normal density, but it is still distinctly lopsided.

options nodate pageno=1 linesize=80 pagesize=48;

title ’1000 Sample Means with 10 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp10;
drop n;
do Sample=1 to 1000;

do n=1 to 10;



1602 Sampling Distribution of the Mean � Appendix 1

X=ranexp(433879);
output;

end;
end;

proc means data=samp10 noprint;
output out=mean10 mean=Mean;
var x;
by sample;

run;

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
other=’ ’;

run;

proc chart data=mean10;
vbar mean/axis=300

midpoints=0.05 to 2.05 by .1;
format mean axisfmt.;

run;

options pagesize=64;
proc univariate data=mean10 noextrobs=0 normal

mu0=1;
var mean;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1603

run;

1000 Sample Means with 10 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
| *
| * * *
| * * * *
| * * * *

100 + * * * *
| * * * * *
| * * * * * *
| * * * * * *
| * * * * * * * *

50 + * * * * * * * * * *
| * * * * * * * * * *
| * * * * * * * * * * *
| * * * * * * * * * * * *
| * * * * * * * * * * * * * * * *
--------------------------------------------

0 0 1 1 2
. . . . .
0 5 0 5 0
5 5 5 5 5

Mean Midpoint

1000 Sample Means with 10 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.9906857 Sum Observations 990.685697
Std Deviation 0.30732649 Variance 0.09444957
Skewness 0.54575615 Kurtosis -0.0060892
Uncorrected SS 1075.81327 Corrected SS 94.3551193
Coeff Variation 31.0215931 Std Error Mean 0.00971852

Basic Statistical Measures

Location Variability

Mean 0.990686 Std Deviation 0.30733
Median 0.956152 Variance 0.09445
Mode . Range 1.79783

Interquartile Range 0.41703



1604 Sampling Distribution of the Mean � Appendix 1

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.95841 Pr > |t| 0.3381
Sign M -53 Pr >= |M| 0.0009
Signed Rank S -22687 Pr >= |S| 0.0129

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.9779 Pr < W <0.0001
Kolmogorov-Smirnov D 0.055498 Pr > D <0.0100
Cramer-von Mises W-Sq 0.953926 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 5.945023 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 2.053899
99% 1.827503
95% 1.557175
90% 1.416611
75% Q3 1.181006
50% Median 0.956152
25% Q1 0.763973
10% 0.621787
5% 0.553568
1% 0.433820
0% Min 0.256069

In the following DATA step, the size of each sample from the exponential distribution
is increased to 50. The standard deviation of the sampling distribution is smaller than
in the previous example because the size of each sample is larger. Also, the sampling
distribution is even closer to a normal distribution, as can be seen from the histogram
and the skewness.

options nodate pageno=1 linesize=80 pagesize=48;

title ’1000 Sample Means with 50 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp50;
drop n;
do sample=1 to 1000;

do n=1 to 50;
X=ranexp(72437213);
output;

end;
end;

proc means data=samp50 noprint;
output out=mean50 mean=Mean;
var x;
by sample;

run;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1605

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
other=’ ’;

run;

proc chart data=mean50;
vbar mean / axis=300

midpoints=0.05 to 2.55 by .1;
format mean axisfmt.;

run;

options pagesize=64;

proc univariate data=mean50 nextrobs=0 normal
mu0=1;

var mean;



1606 Sampling Distribution of the Mean � Appendix 1

run;

1000 Sample Means with 50 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
| *
| * *

250 + * *
| * *
| * *
| * *
| * *

200 + * *
| * *
| * * *
| * * *
| * * *

150 + * * * *
| * * * *
| * * * *
| * * * *
| * * * *

100 + * * * *
| * * * *
| * * * *
| * * * * *
| * * * * * *

50 + * * * * * *
| * * * * * *
| * * * * * *
| * * * * * * *
| * * * * * * * *
------------------------------------------------------

0 0 1 1 2 2
. . . . . .
0 5 0 5 0 5
5 5 5 5 5 5

Mean Midpoint

1000 Sample Means with 50 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.99679697 Sum Observations 996.796973
Std Deviation 0.13815404 Variance 0.01908654
Skewness 0.19062633 Kurtosis -0.1438604
Uncorrected SS 1012.67166 Corrected SS 19.067451
Coeff Variation 13.8597969 Std Error Mean 0.00436881

Basic Statistical Measures

Location Variability

Mean 0.996797 Std Deviation 0.13815
Median 0.996023 Variance 0.01909
Mode . Range 0.87040

Interquartile Range 0.18956



SAS Elementary Statistics Procedures � Testing Hypotheses 1607

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.73316 Pr > |t| 0.4636
Sign M -13 Pr >= |M| 0.4292
Signed Rank S -10767 Pr >= |S| 0.2388

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.996493 Pr < W 0.0247
Kolmogorov-Smirnov D 0.023687 Pr > D >0.1500
Cramer-von Mises W-Sq 0.084468 Pr > W-Sq 0.1882
Anderson-Darling A-Sq 0.66039 Pr > A-Sq 0.0877

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.454957
99% 1.337016
95% 1.231508
90% 1.179223
75% Q3 1.086515
50% Median 0.996023
25% Q1 0.896953
10% 0.814906
5% 0.780783
1% 0.706588
0% Min 0.584558

Testing Hypotheses

The purpose of the statistical methods that have been discussed so far is to estimate
a population parameter by means of a sample statistic. Another class of statistical
methods is used for testing hypotheses about population parameters or for measuring
the amount of evidence against a hypothesis.

Consider the universe of students in a college. Let the variable X be the number of
pounds by which a student’s weight deviates from the ideal weight for a person of the
same sex, height, and build. You want to find out whether the population of students is,
on the average, underweight or overweight. To this end, you have taken a random
sample of X values from nine students, with results as given in the following DATA step:

title ’Deviations from Normal Weight’;

data x;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

You can define several hypotheses of interest. One hypothesis is that, on the average,
the students are of exactly ideal weight. If � represents the population mean of the X
values, then you can write this hypothesis, called the null hypothesis, as �� � � � �.
The other two hypotheses, called alternative hypotheses, are that the students are
underweight on the average, �� � � � �, and that the students are overweight on the
average, �� � � � �.



1608 Testing Hypotheses � Appendix 1

The null hypothesis is so called because in many situations it corresponds to the
assumption of “no effect” or “no difference.” However, this interpretation is not
appropriate for all testing problems. The null hypothesis is like a straw man that can
be toppled by statistical evidence. You decide between the alternative hypotheses
according to which way the straw man falls.

A naive way to approach this problem would be to look at the sample mean �� and
decide among the three hypotheses according to the following rule:

� If �� � �, then decide on �� � � � �.

� If �� � �, then decide on �� � � � �.

� If �� � �, then decide on �� � � � �.

The trouble with this approach is that there may be a high probability of making an
incorrect decision. If H0 is true, then you are nearly certain to make a wrong decision
because the chances of �� being exactly zero are almost nil. If � is slightly less than
zero, so that H1 is true, then there may be nearly a 50 percent chance that �� will be
greater than zero in repeated sampling, so the chances of incorrectly choosing H2 would
also be nearly 50 percent. Thus, you have a high probability of making an error if �� is
near zero. In such cases, there is not enough evidence to make a confident decision, so
the best response may be to reserve judgment until you can obtain more evidence.

The question is, how far from zero must �� be for you to be able to make a confident
decision? The answer can be obtained by considering the sampling distribution of ��. If
X has a roughly normal distribution, then �� has an approximately normal sampling
distribution. The mean of the sampling distribution of �� is �. Assume temporarily that
�, the standard deviation of X, is known to be 12. Then the standard error of �� for
samples of nine observations is ��

�
� � ���

�
� � �.

You know that about 95 percent of the values from a normal distribution are within
two standard deviations of the mean, so about 95 percent of the possible samples of
nine X values have a sample mean �� between �� � 	�
and � � � 	�
, or between −8
and 8. Consider the chances of making an error with the following decision rule:

� If �� � ��, then decide on �� � � � �.

� If �� � �� � �, then reserve judgment.

� If �� � �, then decide on �� � � � �.

If H0 is true, then in about 95 percent of the possible samples �� will be between the
critical values �� and 8, so you will reserve judgment. In these cases the statistical
evidence is not strong enough to fell the straw man. In the other 5 percent of the
samples you will make an error; in 2.5 percent of the samples you will incorrectly
choose H1, and in 2.5 percent you will incorrectly choose H2.

The price you pay for controlling the chances of making an error is the necessity of
reserving judgment when there is not sufficient statistical evidence to reject the null
hypothesis.

Significance and Power
The probability of rejecting the null hypothesis if it is true is called the Type I error

rate of the statistical test and is typically denoted as �. In this example, an �� value less
than �� or greater than 8 is said to be statistically significant at the 5 percent level.
You can adjust the type I error rate according to your needs by choosing different critical
values. For example, critical values of −4 and 4 would produce a significance level of
about 32 percent, while −12 and 12 would give a type I error rate of about 0.3 percent.

The decision rule is a two-tailed test because the alternative hypotheses allow for
population means either smaller or larger than the value specified in the null
hypothesis. If you were interested only in the possibility of the students being
overweight on the average, then you could use a one-tailed test:



SAS Elementary Statistics Procedures � Testing Hypotheses 1609

� If �� � �, then reserve judgment.
� If �� � �, then decide on �� � � � �.

For this one-tailed test, the type I error rate is 2.5 percent, half that of the two-tailed
test.

The probability of rejecting the null hypothesis if it is false is called the power of the
statistical test and is typically denoted as �� �. � is called the Type II error rate,
which is the probability of not rejecting a false null hypothesis. The power depends on
the true value of the parameter. In the example, assume the population mean is 4. The
power for detecting H2 is the probability of getting a sample mean greater than 8. The
critical value 8 is one standard error higher than the population mean 4. The chance of
getting a value at least one standard deviation greater than the mean from a normal
distribution is about 16 percent, so the power for detecting the alternative hypothesis
H2 is about 16 percent. If the population mean were 8, then the power for H2 would be
50 percent, whereas a population mean of 12 would yield a power of about 84 percent.

The smaller the type I error rate is, the less the chance of making an incorrect
decision, but the higher the chance of having to reserve judgment. In choosing a type I
error rate, you should consider the resulting power for various alternatives of interest.

Student’s t Distribution
In practice, you usually cannot use any decision rule that uses a critical value based

on � because you do not usually know the value of �. You can, however, use s as an
estimate of �. Consider the following statistic:

� �
��� ��
��
�
�

This t statistic is the difference between the sample mean and the hypothesized
mean �� divided by the estimated standard error of the mean.

If the null hypothesis is true and the population is normally distributed, then the t
statistic has what is called a Student’s t distribution with �� � degrees of freedom.
This distribution looks very similar to a normal distribution, but the tails of the
Student’s t distribution are heavier. As the sample size gets larger, the sample standard
deviation becomes a better estimator of the population standard deviation, and the t
distribution gets closer to a normal distribution.

You can base a decision rule on the t statistic:
� If � 	 ��
�, then decide on �� � � 	 �.
� If ��
� � � � �
�, then reserve judgment.
� If � � �
�, then decide on �� � � � �.

The value 2.3 was obtained from a table of Student’s t distribution to give a type I
error rate of 5 percent for 8 (that is, 	� � � �) degrees of freedom. Most common
statistics texts contain a table of Student’s t distribution. If you do not have a statistics
text handy, then you can use the DATA step and the TINV function to print any values
from the t distribution.

By default, PROC UNIVARIATE computes a t statistic for the null hypothesis that
�� � �, along with related statistics. Use the MU0= option in the PROC statement to
specify another value for the null hypothesis.

This example uses the data on deviations from normal weight, which consist of nine
observations. First, PROC MEANS computes the t statistic for the null hypothesis that
� � �. Then, the TINV function in a DATA step computes the value of Student’s t
distribution for a two-tailed test at the 5 percent level of significance and 8 degrees of
freedom.



1610 Testing Hypotheses � Appendix 1

data devnorm;
title ’Deviations from Normal Weight’;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

proc means data=devnorm maxdec=3 n mean
std stderr t probt;

run;

title ’Student’’s t Critical Value’;

data _null_;
file print;
t=tinv(.975,8);
put t 5.3;

run;

Deviations from Normal Weight 1
The MEANS Procedure

Analysis Variable : X

N Mean Std Dev Std Error t Value Pr > |t|
--------------------------------------------------------------
9 8.556 11.759 3.920 2.18 0.0606
--------------------------------------------------------------

Student’s t Critical Value 2
2.306

In the current example, the value of the t statistic is 2.18, which is less than the critical
t value of 2.3 (for a 5 percent significance level and 8 degrees of freedom). Thus, at a 5
percent significance level you must reserve judgment. If you had elected to use a 10
percent significance level, then the critical value of the t distribution would have been
1.86 and you could have rejected the null hypothesis. The sample size is so small,
however, that the validity of your conclusion depends strongly on how close the
distribution of the population is to a normal distribution.

Probability Values
Another way to report the results of a statistical test is to compute a probability

value or p-value. A p-value gives the probability in repeated sampling of obtaining a
statistic as far in the direction(s) specified by the alternative hypothesis as is the value
actually observed. A two-tailed p-value for a t statistic is the probability of obtaining an
absolute t value that is greater than the observed absolute t value. A one-tailed p-value
for a t statistic for the alternative hypothesis � � �� is the probability of obtaining a t
value greater than the observed t value. Once the p-value is computed, you can perform
a hypothesis test by comparing the p-value with the desired significance level. If the
p-value is less than or equal to the type I error rate of the test, then the null hypothesis
can be rejected. The two-tailed p-value, labeled Pr > |t| in the PROC MEANS output,



SAS Elementary Statistics Procedures � References 1611

is .0606, so the null hypothesis could be rejected at the 10 percent significance level but
not at the 5 percent level.

A p-value is a measure of the strength of the evidence against the null hypothesis.
The smaller the p-value, the stronger the evidence for rejecting the null hypothesis.

References
Ali, M.M. (1974), “Stochastic Ordering and Kurtosis Measure,” Journal of the

American Statistical Association, 69, 543–545.
Johnson, M.E., Tietjen, G.L., and Beckman, R.J. (1980), “A New Family of

Probability Distributions With Applications to Monte Carlo Studies,” Journal of
the American Statistical Association, 75, 276-279.

Kaplansky, I. (1945), “A Common Error Concerning Kurtosis,” Journal of the
American Statistical Association, 40, 259-263.

Mendenhall, W. and Beaver, R.. (1998), Introduction to Probability and Statistics,
10th Edition, Belmont, CA: Wadsworth Publishing Company.

Ott, R. and Mendenhall, W. (1994) Understanding Statistics, 6th Edition, North
Scituate, MA: Duxbury Press.

Schlotzhauer, S.D. and Littell, R.C. (1997), SAS System for Elementary Statistical
Analysis, Second Edition, Cary, NC: SAS Institute Inc.

Snedecor, G.W. and Cochran, W.C. (1989), Statistical Methods, 8th Edition, Ames, IA:
Iowa State University Press.



1612



1613

A P P E N D I X

2
Operating Environment-Specific
Procedures

Descriptions of Operating Environment-Specific Procedures 1613

Descriptions of Operating Environment-Specific Procedures
The following table gives a brief description and the relevant releases for some

common operating environment-specific procedures. All of these procedures are
described in more detail in operating environment-companion documentation.

Table A2.1 Host-Specific Procedures

Procedure Description Releases

BMDP Calls any BMDP program to analyze data in a SAS data set. All

CONVERT Converts BMDP, OSIRIS, and SPSS system files to SAS data
sets.

All

C16PORT Converts a 16-bit SAS data library or catalog created in Release
6.08 to a transport file, which you can then convert to a 32-bit
format for use in the current release of SAS by using the
CIMPORT procedure.

6.10 - 6.12

FSDEVICE Creates, copies, modifies, deletes, or renames device descriptions
in a catalog.

All

PDS Lists, deletes, or renames the members of a partitioned data set. 6.09E

PDSCOPY Copies partitioned data sets from disk to disk, disk to tape, tape
to tape, or tape to disk.

6.09E

RELEASE Releases unused space at the end of a disk data set. 6.09E

SOURCE Provides an easy way to back up and process source library data
sets.

6.09E

TAPECOPY Copies an entire tape volume, or files from one or more tape
volumes, to one output tape volume.

6.09E

TAPELABEL Writes the label information of an IBM standard-labeled tape
volume to the SAS procedure output file.

6.09E



1614



1615

A P P E N D I X

3
Raw Data and DATA Steps

Overview 1615
AIRCRAFT 1615

CENSUS 1616

CHARITY 1617

CUSTOMER_RESPONSE 1619

DJIA 1621
EDUCATION 1622

EMPDATA 1623

ENERGY 1625

GROC 1626

HOMELOANS 1627

MATCH_11 1641
PROCLIB.DELAY 1642

PROCLIB.EMP95 1643

PROCLIB.EMP96 1644

PROCLIB.INTERNAT 1645

PROCLIB.LAKES 1646
PROCLIB.MARCH 1646

PROCLIB.PAYLIST2 1647

PROCLIB.PAYROLL 1648

PROCLIB.PAYROLL2 1651

PROCLIB.SCHEDULE 1651
PROCLIB.STAFF 1654

PROCLIB.SUPERV 1657

RADIO 1658

STATEPOP 1670

Overview

The programs for examples in this document generally show you how to create the
data sets that are used. Some examples show only partial data. For these examples,
the complete data is shown in this appendix.

AIRCRAFT



1616 CENSUS � Appendix 3

data aircraft;
input Holesize MMC_Bonus PositionDev @@;
label HoleSize = ’Actual Hole Size’

MMC_Bonus = ’MMC Bonus’
AdjustTol = ’Adjusted Tolerance’
PositionDev = ’True Position Deviation’
Deviation = ’Position Deviation - Adjusted Tolerance’;

AdjustTol = 0.006 + MMC_Bonus;
Deviation = PositionDev - AdjustTol;

datalines;
0.25776 0.00176 0.00123 0.25726 0.00126 0.00867
0.25783 0.00183 0.00081 0.25806 0.00206 0.00072
0.25798 0.00198 0.00149 0.25793 0.00193 0.00192
0.25752 0.00152 0.00121 0.25759 0.00159 0.00611
0.25937 0.00337 0.00206 0.25789 0.00189 0.00025
0.25800 0.00200 0.00525 0.25808 0.00208 0.00311
0.25773 0.00173 0.00032 0.25827 0.00227 0.00154
0.25797 0.00197 0.00224 0.25834 0.00234 0.00205
0.25945 0.00345 0.00274 0.25801 0.00201 0.00555
0.25775 0.00175 0.00553 0.25843 0.00243 0.00036
0.25799 0.00199 0.00178 0.25807 0.00207 0.00022
0.25819 0.00219 0.00275 0.25823 0.00223 0.00312
0.25941 0.00341 0.00803 0.25852 0.00252 0.00243
0.25887 0.00287 0.00925 0.25915 0.00315 0.00157
0.25977 0.00377 0.00246 0.25763 0.00163 0.00308
;

CENSUS

data census;

input Density CrimeRate State $ 14-27 PostalCode $ 29-30;

datalines;

263.3 4575.3 Ohio OH

62.1 7017.1 Washington WA

103.4 5161.9 South Carolina SC

53.4 3438.6 Mississippi MS

180.0 8503.2 Florida FL

80.8 2190.7 West Virginia WV

428.7 5477.6 Maryland MD

71.2 4707.5 Missouri MO

43.9 4245.2 Arkansas AR

7.3 6371.4 Nevada NV

264.3 3163.2 Pennsylvania PA

11.5 4156.3 Idaho ID

44.1 6025.6 Oklahoma OK

51.2 4615.8 Minnesota MN

55.2 4271.2 Vermont VT

27.4 6969.9 Oregon OR

205.3 5416.5 Illinois IL

94.1 5792.0 Georgia GA

9.1 2678.0 South Dakota SD



Raw Data and DATA Steps � CHARITY 1617

9.4 2833.0 North Dakota ND

102.4 3371.7 New Hampshire NH

54.3 7722.4 Texas TX

76.6 4451.4 Alabama AL

307.6 4938.8 Delaware DE

151.4 6506.4 California CA

111.6 4665.6 Tennessee TN

120.4 4649.9 North Carolina NC

;

CHARITY

data Charity;

input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26

HoursVolunteered 28-29;

datalines;

Monroe 1992 Allison 31.65 19

Monroe 1992 Barry 23.76 16

Monroe 1992 Candace 21.11 5

Monroe 1992 Danny 6.89 23

Monroe 1992 Edward 53.76 31

Monroe 1992 Fiona 48.55 13

Monroe 1992 Gert 24.00 16

Monroe 1992 Harold 27.55 17

Monroe 1992 Ima 15.98 9

Monroe 1992 Jack 20.00 23

Monroe 1992 Katie 22.11 2

Monroe 1992 Lisa 18.34 17

Monroe 1992 Tonya 55.16 40

Monroe 1992 Max 26.77 34

Monroe 1992 Ned 28.43 22

Monroe 1992 Opal 32.66 14

Monroe 1993 Patsy 18.33 18

Monroe 1993 Quentin 16.89 15

Monroe 1993 Randall 12.98 17

Monroe 1993 Sam 15.88 5

Monroe 1993 Tyra 21.88 23

Monroe 1993 Myrtle 47.33 26

Monroe 1993 Frank 41.11 22

Monroe 1993 Cameron 65.44 14

Monroe 1993 Vern 17.89 11

Monroe 1993 Wendell 23.00 10

Monroe 1993 Bob 26.88 6

Monroe 1993 Leah 28.99 23

Monroe 1994 Becky 30.33 26

Monroe 1994 Sally 35.75 27

Monroe 1994 Edgar 27.11 12

Monroe 1994 Dawson 17.24 16

Monroe 1994 Lou 5.12 16

Monroe 1994 Damien 18.74 17

Monroe 1994 Mona 27.43 7

Monroe 1994 Della 56.78 15



1618 CHARITY � Appendix 3

Monroe 1994 Monique 29.88 19

Monroe 1994 Carl 31.12 25

Monroe 1994 Reba 35.16 22

Monroe 1994 Dax 27.65 23

Monroe 1994 Gary 23.11 15

Monroe 1994 Suzie 26.65 11

Monroe 1994 Benito 47.44 18

Monroe 1994 Thomas 21.99 23

Monroe 1994 Annie 24.99 27

Monroe 1994 Paul 27.98 22

Monroe 1994 Alex 24.00 16

Monroe 1994 Lauren 15.00 17

Monroe 1994 Julia 12.98 15

Monroe 1994 Keith 11.89 19

Monroe 1994 Jackie 26.88 22

Monroe 1994 Pablo 13.98 28

Monroe 1994 L.T. 56.87 33

Monroe 1994 Willard 78.65 24

Monroe 1994 Kathy 32.88 11

Monroe 1994 Abby 35.88 10

Kennedy 1992 Arturo 34.98 14

Kennedy 1992 Grace 27.55 25

Kennedy 1992 Winston 23.88 22

Kennedy 1992 Vince 12.88 21

Kennedy 1992 Claude 15.62 5

Kennedy 1992 Mary 28.99 34

Kennedy 1992 Abner 25.89 22

Kennedy 1992 Jay 35.89 35

Kennedy 1992 Alicia 28.77 26

Kennedy 1992 Freddy 29.00 27

Kennedy 1992 Eloise 31.67 25

Kennedy 1992 Jenny 43.89 22

Kennedy 1992 Thelma 52.63 21

Kennedy 1992 Tina 19.67 21

Kennedy 1992 Eric 24.89 12

Kennedy 1993 Bubba 37.88 12

Kennedy 1993 G.L. 25.89 21

Kennedy 1993 Bert 28.89 21

Kennedy 1993 Clay 26.44 21

Kennedy 1993 Leeann 27.17 17

Kennedy 1993 Georgia 38.90 11

Kennedy 1993 Bill 42.23 25

Kennedy 1993 Holly 18.67 27

Kennedy 1993 Benny 19.09 25

Kennedy 1993 Cammie 28.77 28

Kennedy 1993 Amy 27.08 31

Kennedy 1993 Doris 22.22 24

Kennedy 1993 Robbie 19.80 24

Kennedy 1993 Ted 27.07 25

Kennedy 1993 Sarah 24.44 12

Kennedy 1993 Megan 28.89 11

Kennedy 1993 Jeff 31.11 12

Kennedy 1993 Taz 30.55 11

Kennedy 1993 George 27.56 11



Raw Data and DATA Steps � CUSTOMER_RESPONSE 1619

Kennedy 1993 Heather 38.67 15

Kennedy 1994 Nancy 29.90 26

Kennedy 1994 Rusty 30.55 28

Kennedy 1994 Mimi 37.67 22

Kennedy 1994 J.C. 23.33 27

Kennedy 1994 Clark 27.90 25

Kennedy 1994 Rudy 27.78 23

Kennedy 1994 Samuel 34.44 18

Kennedy 1994 Forrest 28.89 26

Kennedy 1994 Luther 72.22 24

Kennedy 1994 Trey 6.78 18

Kennedy 1994 Albert 23.33 19

Kennedy 1994 Che-Min 26.66 33

Kennedy 1994 Preston 32.22 23

Kennedy 1994 Larry 40.00 26

Kennedy 1994 Anton 35.99 28

Kennedy 1994 Sid 27.45 25

Kennedy 1994 Will 28.88 21

Kennedy 1994 Morty 34.44 25

;

CUSTOMER_RESPONSE

data customer_response;

input Customer Factor1-Factor4 Source1-Source3

Quality1-Quality3;

datalines;

1 . . 1 1 1 1 . 1 . .

2 1 1 . 1 1 1 . 1 1 .

3 . . 1 1 1 1 . . . .

4 1 1 . 1 . 1 . . . 1

5 . 1 . 1 1 . . . . 1

6 . 1 . 1 1 . . . . .

7 . 1 . 1 1 . . 1 . .

8 1 . . 1 1 1 . 1 1 .

9 1 1 . 1 1 . . . . 1

10 1 . . 1 1 1 . 1 1 .

11 1 1 1 1 . 1 . 1 1 1

12 1 1 . 1 1 1 . . . .

13 1 1 . 1 . 1 . 1 1 .

14 1 1 . 1 1 1 . . . .

15 1 1 . 1 . 1 . 1 1 1

16 1 . . 1 1 . . 1 . .

17 1 1 . 1 1 1 . . 1 .

18 1 1 . 1 1 1 1 . . 1

19 . 1 . 1 1 1 1 . 1 .

20 1 . . 1 1 1 . 1 1 1

21 . . . 1 1 1 . 1 . .

22 . . . 1 1 1 . 1 1 .

23 1 . . 1 . . . . . 1

24 . 1 . 1 1 . . 1 . 1

25 1 1 . 1 1 . . . 1 1



1620 CUSTOMER_RESPONSE � Appendix 3

26 1 1 . 1 1 . . 1 . .

27 1 . . 1 1 . . . 1 .

28 1 1 . 1 . . . 1 1 1

29 1 . . 1 1 1 . 1 . 1

30 1 . 1 1 1 . . 1 1 .

31 . . . 1 1 . . 1 1 .

32 1 1 1 1 1 . . 1 1 1

33 1 . . 1 1 . . 1 . 1

34 . . 1 1 . . . 1 1 .

35 1 1 1 1 1 . 1 1 . .

36 1 1 1 1 . 1 . 1 . .

37 1 1 . 1 . . . 1 . .

38 . . . 1 1 1 . 1 . .

39 1 1 . 1 1 . . 1 . 1

40 1 . . 1 . . 1 1 . 1

41 1 . . 1 1 1 1 1 . 1

42 1 1 1 1 . . 1 1 . .

43 1 . . 1 1 1 . 1 . .

44 1 . 1 1 . 1 . 1 . 1

45 . . . 1 . . 1 . . 1

46 . . . 1 1 . . . 1 .

47 1 1 . 1 . . 1 1 . .

48 1 . 1 1 1 . 1 1 . .

49 . . 1 1 1 1 . 1 . 1

50 . 1 . 1 1 . . 1 1 .

51 1 . 1 1 1 1 . . . .

52 1 1 1 1 1 1 . 1 . .

53 . 1 1 1 . 1 . 1 1 1

54 1 . . 1 1 . . 1 1 .

55 1 1 . 1 1 1 . 1 . .

56 1 . . 1 1 . . 1 1 .

57 1 1 . 1 1 . 1 . . 1

58 . 1 . 1 . 1 . . 1 1

59 1 1 1 1 . . 1 1 1 .

60 . 1 1 1 1 1 . . 1 1

61 1 1 1 1 1 1 . 1 . .

62 1 1 . 1 1 . . 1 1 .

63 . . . 1 . . . 1 1 1

64 1 . . 1 1 1 . 1 . .

65 1 . . 1 1 1 . 1 . .

66 1 . . 1 1 1 1 1 1 .

67 1 1 . 1 1 1 . 1 1 .

68 1 1 . 1 1 1 . 1 1 .

69 1 1 . 1 1 . 1 . . .

70 . . . 1 1 1 . 1 . .

71 1 . . 1 1 . 1 . . 1

72 1 . 1 1 1 1 . . 1 .

73 1 1 . 1 . 1 . 1 1 .

74 1 1 1 1 1 1 . 1 . .

75 . 1 . 1 1 1 . . 1 .

76 1 1 . 1 1 1 . 1 1 1

77 . . . 1 1 1 . . . .

78 1 1 1 1 1 1 . 1 1 .

79 1 . . 1 1 1 . 1 1 .



Raw Data and DATA Steps � DJIA 1621

80 1 1 1 1 1 . 1 1 . 1

81 1 1 . 1 1 1 1 1 1 .

82 . . . 1 1 1 1 . . .

83 1 1 . 1 1 1 . 1 1 .

84 1 . . 1 1 . . 1 1 .

85 . . . 1 . 1 . 1 . .

86 1 . . 1 1 1 . 1 1 1

87 1 1 . 1 1 1 . 1 . .

88 . . . 1 . 1 . . . .

89 1 . . 1 . 1 . . 1 1

90 1 1 . 1 1 1 . 1 . 1

91 . . . 1 1 . . . 1 .

92 1 . . 1 1 1 . 1 1 .

93 1 . . 1 1 . . 1 1 .

94 1 . . 1 1 1 1 1 . .

95 1 . . 1 . 1 1 1 1 .

96 1 . 1 1 1 1 . . 1 .

97 1 1 . 1 1 . . . 1 .

98 1 . 1 1 1 1 1 1 . .

99 1 1 . 1 1 1 1 1 1 .

100 1 . 1 1 1 . . . 1 1

101 1 . 1 1 1 1 . . . .

102 1 . . 1 1 . 1 1 . .

103 1 1 . 1 1 1 . 1 . .

104 . . . 1 1 1 . 1 1 1

105 1 . 1 1 1 . . 1 . 1

106 1 1 1 1 1 1 1 1 1 1

107 1 1 1 1 . . . 1 . 1

108 1 . . 1 . 1 1 1 . .

109 . 1 . 1 1 . . 1 1 .

110 1 . . 1 . . . . . .

111 1 . . 1 1 1 . 1 1 .

112 1 1 . 1 1 1 . . . 1

113 1 1 . 1 1 . 1 1 1 .

114 1 1 . 1 1 . . . . .

115 1 1 . 1 1 . . 1 . .

116 . 1 . 1 1 1 1 1 . .

117 . 1 . 1 1 1 . . . .

118 . 1 1 1 1 . . 1 1 .

119 . . . 1 . . . 1 . .

120 1 1 . 1 . . . . 1 .

;

DJIA

data djia;

input Year @7 HighDate date7. High @24 LowDate date7. Low;

format highdate lowdate date7.;

datalines;

1954 31DEC54 404.39 11JAN54 279.87

1955 30DEC55 488.40 17JAN55 388.20

1956 06APR56 521.05 23JAN56 462.35



1622 EDUCATION � Appendix 3

1957 12JUL57 520.77 22OCT57 419.79

1958 31DEC58 583.65 25FEB58 436.89

1959 31DEC59 679.36 09FEB59 574.46

1960 05JAN60 685.47 25OCT60 568.05

1961 13DEC61 734.91 03JAN61 610.25

1962 03JAN62 726.01 26JUN62 535.76

1963 18DEC63 767.21 02JAN63 646.79

1964 18NOV64 891.71 02JAN64 768.08

1965 31DEC65 969.26 28JUN65 840.59

1966 09FEB66 995.15 07OCT66 744.32

1967 25SEP67 943.08 03JAN67 786.41

1968 03DEC68 985.21 21MAR68 825.13

1969 14MAY69 968.85 17DEC69 769.93

1970 29DEC70 842.00 06MAY70 631.16

1971 28APR71 950.82 23NOV71 797.97

1972 11DEC72 1036.27 26JAN72 889.15

1973 11JAN73 1051.70 05DEC73 788.31

1974 13MAR74 891.66 06DEC74 577.60

1975 15JUL75 881.81 02JAN75 632.04

1976 21SEP76 1014.79 02JAN76 858.71

1977 03JAN77 999.75 02NOV77 800.85

1978 08SEP78 907.74 28FEB78 742.12

1979 05OCT79 897.61 07NOV79 796.67

1980 20NOV80 1000.17 21APR80 759.13

1981 27APR81 1024.05 25SEP81 824.01

1982 27DEC82 1070.55 12AUG82 776.92

1983 29NOV83 1287.20 03JAN83 1027.04

1984 06JAN84 1286.64 24JUL84 1086.57

1985 16DEC85 1553.10 04JAN85 1184.96

1986 02DEC86 1955.57 22JAN86 1502.29

1987 25AUG87 2722.42 19OCT87 1738.74

1988 21OCT88 2183.50 20JAN88 1879.14

1989 09OCT89 2791.41 03JAN89 2144.64

1990 16JUL90 2999.75 11OCT90 2365.10

1991 31DEC91 3168.83 09JAN91 2470.30

1992 01JUN92 3413.21 09OCT92 3136.58

1993 29DEC93 3794.33 20JAN93 3241.95

1994 31JAN94 3978.36 04APR94 3593.35

;

EDUCATION

data education;

input State $14. +1 Code $ DropoutRate Expenditures MathScore Region $;

label dropoutrate=’Dropout Percentage - 1989’

expenditures=’Expenditure Per Pupil - 1989’

mathscore=’8th Grade Math Exam - 1990’;

datalines;

Alabama AL 22.3 3197 252 SE

Alaska AK 35.8 7716 . W

Arizona AZ 31.2 3902 259 W

Arkansas AR 11.5 3273 256 SE



Raw Data and DATA Steps � EMPDATA 1623

California CA 32.7 4121 256 W

Colorado CO 24.7 4408 267 W

Connecticut CT 16.8 6857 270 NE

Delaware DE 28.5 5422 261 NE

Florida FL 38.5 4563 255 SE

Georgia GA 27.9 3852 258 SE

Hawaii HI 18.3 4121 251 W

Idaho ID 21.8 2838 272 W

Illinois IL 21.5 4906 260 MW

Indiana IN 13.8 4284 267 MW

Iowa IA 13.6 4285 278 MW

Kansas KS 17.9 4443 . MW

Kentucky KY 32.7 3347 256 SE

Louisiana LA 43.1 3317 246 SE

Maine ME 22.5 4744 . NE

Maryland MD 26.0 5758 260 NE

Massachusetts MA 28.0 5979 . NE

Michigan MI 29.3 5116 264 MW

Minnesota MN 11.4 4755 276 MW

Mississippi MS 39.9 2874 . SE

Missouri MO 26.5 4263 . MW

Montana MT 15.0 4293 280 W

Nebraska NE 13.9 4360 276 MW

Nevada NV 28.1 3791 . W

New Hampshire NH 25.9 4807 273 NE

New Jersey NE 20.4 7549 269 NE

New Mexico NM 28.5 3473 256 W

New York NY 35.0 . 261 NE

North Carolina NC 31.2 3874 250 SE

North Dakota ND 12.1 3952 281 MW

Ohio OH 24.4 4649 264 MW

;

EMPDATA

data empdata;

input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /

Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date7.

@43 Hired date7. HomePhone $ 54-65;

format birth hired date7.;

datalines;

1919 Adams Gerald Stamford CT

M TA2 34376 15SEP48 07JUN75 203/781-1255

1653 Alexander Susan Bridgeport CT

F ME2 35108 18OCT52 12AUG78 203/675-7715

1400 Apple Troy New York NY

M ME1 29769 08NOV55 19OCT78 212/586-0808

1350 Arthur Barbara New York NY

F FA3 32886 03SEP53 01AUG78 718/383-1549

1401 Avery Jerry Paterson NJ

M TA3 38822 16DEC38 20NOV73 201/732-8787



1624 EMPDATA � Appendix 3

1499 Barefoot Joseph Princeton NJ

M ME3 43025 29APR42 10JUN68 201/812-5665

1101 Baucom Walter New York NY

M SCP 18723 09JUN50 04OCT78 212/586-8060

1333 Blair Justin Stamford CT

M PT2 88606 02APR49 13FEB69 203/781-1777

1402 Blalock Ralph New York NY

M TA2 32615 20JAN51 05DEC78 718/384-2849

1479 Bostic Marie New York NY

F TA3 38785 25DEC56 08OCT77 718/384-8816

1403 Bowden Earl Bridgeport CT

M ME1 28072 31JAN57 24DEC79 203/675-3434

1739 Boyce Jonathan New York NY

M PT1 66517 28DEC52 30JAN79 212/587-1247

1658 Bradley Jeremy New York NY

M SCP 17943 11APR55 03MAR80 212/587-3622

1428 Brady Christine Stamford CT

F PT1 68767 07APR58 19NOV79 203/781-1212

1782 Brown Jason Stamford CT

M ME2 35345 07DEC58 25FEB80 203/781-0019

1244 Bryant Leonard New York NY

M ME2 36925 03SEP51 20JAN76 718/383-3334

1383 Burnette Thomas New York NY

M BCK 25823 28JAN56 23OCT80 718/384-3569

1574 Cahill Marshall New York NY

M FA2 28572 30APR48 23DEC80 718/383-2338

1789 Caraway Davis New York NY

M SCP 18326 28JAN45 14APR66 212/587-9000

1404 Carter Donald New York NY

M PT2 91376 27FEB41 04JAN68 718/384-2946

1437 Carter Dorothy Bridgeport CT

F A3 33104 23SEP48 03SEP72 203/675-4117

1639 Carter Karen Stamford CT

F A3 40260 29JUN45 31JAN72 203/781-8839

1269 Caston Franklin Stamford CT

M NA1 41690 06MAY60 01DEC80 203/781-3335

1065 Chapman Neil New York NY

M ME2 35090 29JAN32 10JAN75 718/384-5618

1876 Chin Jack New York NY

M TA3 39675 23MAY46 30APR73 212/588-5634

1037 Chow Jane Stamford CT

F TA1 28558 13APR52 16SEP80 203/781-8868

1129 Cook Brenda New York NY

F ME2 34929 11DEC49 20AUG79 718/383-2313

1988 Cooper Anthony New York NY

M FA3 32217 03DEC47 21SEP72 212/587-1228

1405 Davidson Jason Paterson NJ

M SCP 18056 08MAR54 29JAN80 201/732-2323

1430 Dean Sandra Bridgeport CT

F TA2 32925 03MAR50 30APR75 203/675-1647

1983 Dean Sharon New York NY

F FA3 33419 03MAR50 30APR75 718/384-1647

1134 Delgado Maria Stamford CT

F TA2 33462 08MAR57 24DEC76 203/781-1528



Raw Data and DATA Steps � ENERGY 1625

1118 Dennis Roger New York NY

M PT3 111379 19JAN32 21DEC68 718/383-1122

1438 Donaldson Karen Stamford CT

F TA3 39223 18MAR53 21NOV75 203/781-2229

1125 Dunlap Donna New York NY

F FA2 28888 11NOV56 14DEC75 718/383-2094

1475 Eaton Alicia New York NY

F FA2 27787 18DEC49 16JUL78 718/383-2828

1117 Edgerton Joshua New York NY

M TA3 39771 08JUN51 16AUG80 212/588-1239

1935 Fernandez Katrina Bridgeport CT

F NA2 51081 31MAR42 19OCT69 203/675-2962

1124 Fields Diana White Plains NY

F FA1 23177 13JUL46 04OCT78 914/455-2998

1422 Fletcher Marie Princeton NJ

F FA1 22454 07JUN52 09APR79 201/812-0902

1616 Flowers Annette New York NY

F TA2 34137 04MAR58 07JUN81 718/384-3329

1406 Foster Gerald Bridgeport CT

M ME2 35185 11MAR49 20FEB75 203/675-6363

1120 Garcia Jack New York NY

M ME1 28619 14SEP60 10OCT81 718/384-4930

1094 Gomez Alan Bridgeport CT

M FA1 22268 05APR58 20APR79 203/675-7181

1389 Gordon Levi New York NY

M BCK 25028 18JUL47 21AUG78 718/384-9326

1905 Graham Alvin New York NY

M PT1 65111 19APR60 01JUN80 212/586-8815

1407 Grant Daniel Mt. Vernon NY

M PT1 68096 26MAR57 21MAR78 914/468-1616

1114 Green Janice New York NY

F TA2 32928 21SEP57 30JUN75 212/588-1092

;

ENERGY

data energy;

length State $2;

input Region Division state $ Type Expenditures;

datalines;

1 1 ME 1 708

1 1 ME 2 379

1 1 NH 1 597

1 1 NH 2 301

1 1 VT 1 353

1 1 VT 2 188

1 1 MA 1 3264

1 1 MA 2 2498

1 1 RI 1 531

1 1 RI 2 358

1 1 CT 1 2024

1 1 CT 2 1405



1626 GROC � Appendix 3

1 2 NY 1 8786

1 2 NY 2 7825

1 2 NJ 1 4115

1 2 NJ 2 3558

1 2 PA 1 6478

1 2 PA 2 3695

4 3 MT 1 322

4 3 MT 2 232

4 3 ID 1 392

4 3 ID 2 298

4 3 WY 1 194

4 3 WY 2 184

4 3 CO 1 1215

4 3 CO 2 1173

4 3 NM 1 545

4 3 NM 2 578

4 3 AZ 1 1694

4 3 AZ 2 1448

4 3 UT 1 621

4 3 UT 2 438

4 3 NV 1 493

4 3 NV 2 378

4 4 WA 1 1680

4 4 WA 2 1122

4 4 OR 1 1014

4 4 OR 2 756

4 4 CA 1 10643

4 4 CA 2 10114

4 4 AK 1 349

4 4 AK 2 329

4 4 HI 1 273

4 4 HI 2 298

;

GROC

data groc;

input Region $9. Manager $ Department $ Sales;

datalines;

Southeast Hayes Paper 250

Southeast Hayes Produce 100

Southeast Hayes Canned 120

Southeast Hayes Meat 80

Southeast Michaels Paper 40

Southeast Michaels Produce 300

Southeast Michaels Canned 220

Southeast Michaels Meat 70

Northwest Jeffreys Paper 60

Northwest Jeffreys Produce 600

Northwest Jeffreys Canned 420

Northwest Jeffreys Meat 30

Northwest Duncan Paper 45



Raw Data and DATA Steps � HOMELOANS 1627

Northwest Duncan Produce 250

Northwest Duncan Canned 230

Northwest Duncan Meat 73

Northwest Aikmann Paper 45

Northwest Aikmann Produce 205

Northwest Aikmann Canned 420

Northwest Aikmann Meat 76

Southwest Royster Paper 53

Southwest Royster Produce 130

Southwest Royster Canned 120

Southwest Royster Meat 50

Southwest Patel Paper 40

Southwest Patel Produce 350

Southwest Patel Canned 225

Southwest Patel Meat 80

Northeast Rice Paper 90

Northeast Rice Produce 90

Northeast Rice Canned 420

Northeast Rice Meat 86

Northeast Fuller Paper 200

Northeast Fuller Produce 300

Northeast Fuller Canned 420

Northeast Fuller Meat 125

;

HOMELOANS

data HomeLoans (drop=i n);

input LoanType $ n;

label LoanToValueRatio = ’Loan to Value Ratio’;

do i = 1 to n;

input LoanToValueRatio @@;

output;

end;

datalines;

Gold 4757

.06517857 .07288330 .06901565 .07047869 .10615958 .08180662 .07577663 .07402611

.07464491 .09195804 .10319149 .09403409 .09291500 .08666949 .08220036 .09706867

.08137446 .10625967 .10988118 .10192037 .13252796 .11190476 .08284432 .08546917

.11474902 .10060089 .13741259 .10128205 .11250977 .09956752 .10565992 .11426634

.12092438 .10454545 .12624580 .10063108 .12174459 .10463925 .10384962 .10373187

.11889101 .12302905 .10689936 .10830375 .10678448 .14175434 .14000000 .09835142

.10306777 .12897700 .09069053 .09938729 .12606732 .10433429 .12735051 .10419874

.10789909 .22230769 .06997554 .12153911 .12029524 .19348849 .13105041 .10736050

.14354887 .09396996 .10714286 .10797101 .19285714 .14932459 .23832392 .11417826

.18745704 .10577867 .12645260 .10076142 .11188119 .13421053 .10140067 .10351314

.14038322 .15803569 .11037262 .07024115 .09421671 .11320407 .24090399 .09201611

.23026934 .09363636 .10837845 .10310785 .10254265 .11392259 .19275909 .11753247

.14715812 .25000000 .09727273 .16507735 .11277613 .13139946 .15729614 .15459219

.10779527 .09516673 .11557296 .10474698 .13294859 .13418444 .13371444 .13247549

.15376633 .09505782 .11561042 .11290187 .12175698 .14684362 .11671033 .20535845

.10442688 .13454515 .11740196 .09767105 .09713787 .12035137 .12866358 .13301761



1628 HOMELOANS � Appendix 3

.12565753 .13436403 .11707470 .19032626 .12227205 .15390960 .16677858 .10112291

.12632055 .14785576 .11646998 .20606177 .13310128 .21073997 .11930765 .11873847

.12166386 .19595923 .22040359 .13781390 .13240328 .20940635 .19105401 .11405796

.11675491 .07318562 .21712771 .12858653 .14967177 .12565169 .16525914 .11471072

.12470624 .13818738 .13634087 .10173440 .12500000 .15442047 .14260688 .11356331

.11966618 .13733624 .18856813 .14757208 .10822529 .16280316 .08893247 .14760000

.17869198 .10313635 .16097770 .22304965 .16425789 .14338498 .11989321 .18025838

.11391919 .11228049 .12348758 .07523094 .23284231 .15422620 .12077949 .12556000

.19883453 .12742451 .13665027 .11291223 .14559935 .11427401 .16984845 .08994279

.11917018 .15007102 .10418889 .14130435 .13643161 .15903616 .21133163 .12840209

.12078254 .10368464 .13988315 .14798432 .11495649 .13545154 .26146617 .10093433

.12692308 .16004694 .14122397 .12429076 .15060678 .13610020 .13531513 .13196301

.13138869 .17387257 .12011086 .15199691 .18807685 .24139901 .13558896 .17240594

.22357402 .11657790 .13468614 .22405275 .12174472 .12405719 .23138185 .10608283

.12361268 .14285714 .11046512 .10530503 .14169653 .13958474 .12354416 .12777974

.18524590 .13051432 .18072931 .10859895 .19188666 .10211788 .17094736 .16861346

.26935568 .16239913 .14820447 .13070928 .16535018 .15410516 .23510844 .14475322

.16220149 .09321633 .09241887 .09248327 .15449642 .12819777 .09398391 .14088965

.12711674 .16898513 .16741953 .07746243 .14403955 .11805921 .12661627 .11073302

.12888780 .18281491 .11270105 .15105448 .17091051 .15081382 .15447897 .13147457

.24065514 .10607761 .11262245 .12060081 .19748641 .12127293 .12467463 .13640055

.12957077 .14664237 .15472457 .08989741 .14296149 .27435897 .19285714 .31315789

.14167944 .16111111 .16864407 .15235564 .09339713 .12495369 .15332103 .14497947

.11203203 .15364964 .22668284 .26143538 .08942167 .14805005 .15004368 .14222576

.18056751 .14229941 .13489965 .11220302 .11326500 .19925373 .23917002 .14650181

.11136799 .13325239 .27737321 .08696203 .13413434 .14188978 .11176809 .16366290

.08544016 .19567503 .13230910 .21572977 .09535370 .11183310 .12885847 .13543851

.11443243 .18668772 .17474083 .15156325 .13895942 .13094066 .13102840 .17976003

.17447720 .14305095 .17393007 .20059031 .15805671 .12172161 .12156898 .25329611

.19734774 .32932961 .13756567 .13996258 .14807127 .13111791 .08726659 .14077120

.17187886 .14777938 .31579932 .17971940 .12636272 .23839394 .28848608 .26171877

.13951615 .15978670 .22111111 .16432814 .14406074 .33562950 .14205791 .16301757

.13455220 .18565217 .16828039 .19879249 .16696257 .14111298 .14689682 .17633011

.18220339 .17420382 .20504184 .17270518 .30725594 .11315789 .13204912 .18790696

.22233481 .19168625 .29998418 .16776807 .16046016 .13288220 .27302524 .19905660

.26279461 .11425272 .15468845 .19754496 .17128563 .18067412 .19226016 .14129919

.12592942 .14843489 .08177491 .13288695 .19260250 .14205984 .14580838 .28374043

.14216590 .22216793 .11866953 .15030845 .19814815 .13333333 .13547009 .18333333

.17221577 .11609112 .16241165 .13937050 .21326531 .11480094 .13427262 .16666569

.14179302 .09047309 .21060594 .11539958 .15842648 .13804826 .13280261 .18788408

.14535806 .16344538 .14786391 .29559595 .14864455 .27175377 .19365268 .29858826

.17297882 .26992169 .19682710 .21380016 .11828383 .14448964 .11176094 .15197863

.21611969 .08323094 .14358487 .08292234 .18892418 .17322303 .15648244 .14196330

.26217139 .09652641 .17648075 .15934208 .21622408 .15231455 .12803578 .09094370

.13374012 .18841999 .11538397 .29448420 .28938810 .16416153 .17614365 .21452585

.17548569 .19350179 .15597549 .16054728 .25029924 .08294501 .14546265 .18086529

.21598008 .12203923 .15849390 .20965837 .14294409 .12084873 .13811589 .20354525

.18067015 .19356275 .15016933 .11896778 .17557180 .15949191 .21816817 .15841368

.21201828 .14177118 .14029539 .15708276 .20272727 .26359915 .11795402 .26480080

.20465626 .15758335 .14265387 .13975414 .16867424 .11671326 .12130791 .09187976

.24776640 .14666670 .23815717 .30830370 .18592823 .17705531 .16744225 .19840422

.15477529 .18186268 .18948146 .35495462 .15337363 .15762355 .18561377 .15245284

.18501493 .31262938 .16326688 .14670850 .14594979 .20904425 .20663419 .22995020

.19160341 .15886076 .14178522 .08420490 .16824069 .20495495 .17142091 .15633825



Raw Data and DATA Steps � HOMELOANS 1629

.15206140 .21633464 .22068233 .19963548 .13526502 .17977019 .16920768 .16322195

.09870286 .18685055 .15013466 .19855796 .16906554 .14969290 .09313572 .15429779

.17447955 .13962604 .15262096 .18006817 .12530707 .13874110 .31479988 .17893664

.22375674 .12282833 .14064766 .14897836 .15699133 .15852752 .18261184 .19868491

.15543154 .18523596 .18567886 .13045871 .19461316 .09339507 .27160665 .14460535

.17463353 .14811026 .12195480 .16744608 .32311381 .14369976 .14813433 .15177477

.12610090 .11682133 .16370169 .16913367 .15957487 .26035713 .23108938 .14229110

.19708286 .13942233 .18994931 .14729414 .15673371 .16916426 .18184109 .12141497

.28504832 .18322084 .22360776 .14944751 .13800235 .19132278 .13571429 .18846154

.13173793 .12438017 .22394666 .18340053 .09515919 .16275511 .17317968 .29907979

.20850093 .23058780 .15486045 .20470402 .22187323 .18429554 .31405896 .16692300

.21211209 .17222968 .21126460 .15513182 .16834012 .15830497 .14630987 .13035356

.17223152 .40195103 .20333333 .15432850 .18836459 .18325608 .19753520 .15327563

.13815751 .14250326 .21305491 .13528980 .21131830 .18181953 .25258790 .14296932

.21263859 .18735249 .30276547 .19234549 .22995356 .35293160 .18184944 .21802168

.14839916 .18888681 .18007539 .26084611 .28319960 .12745740 .21856753 .20895294

.23586258 .19017089 .14989267 .16996222 .13052220 .15587016 .18428571 .28412204

.35865211 .19394659 .12511227 .10264720 .18276836 .17355903 .12890672 .14893695

.14429987 .14283217 .17575756 .16166813 .12492965 .20101615 .13055325 .19034878

.12845297 .12207891 .21585196 .27401434 .20989767 .10847989 .20087747 .16176471

.23023146 .31950355 .17511524 .21470180 .20915030 .19711348 .15701573 .18821103

.22311334 .20083430 .20778315 .09769452 .14659503 .19050700 .14638554 .20013606

.20930966 .20540770 .21871705 .21133911 .20963815 .14470725 .24742525 .15535920

.23657434 .21867512 .21551489 .13267915 .20005260 .19384862 .12917075 .09619048

.21636652 .17935748 .24834373 .20340334 .18778801 .18042192 .21006865 .22835800

.16160072 .20778712 .35721003 .09808282 .13784274 .17551551 .14013152 .09752644

.19033882 .19868309 .18346771 .14773904 .23647486 .18225907 .13660227 .09668201

.14471711 .26682855 .19966173 .17539345 .18776041 .15871615 .15478482 .18428337

.22083588 .18322458 .18111367 .22052501 .09821131 .16011133 .15162915 .32045486

.20000000 .12368977 .31581463 .09504443 .17578137 .13620915 .09501309 .14135285

.14832256 .16236593 .09907963 .19020876 .16361811 .27429652 .18682159 .12950083

.18071895 .15989011 .18058069 .22706950 .13408732 .25297974 .18795197 .17861736

.17738854 .14523810 .28531073 .21949153 .22170330 .15217114 .16217679 .17841916

.10208333 .14267841 .24607843 .47735043 .18888889 .25161290 .11410256 .10704507

.18149244 .15266940 .14768010 .13912656 .13927455 .19652015 .10128416 .20307372

.11351384 .18808722 .12684800 .19388075 .24348348 .09680607 .23496475 .14528302

.26318361 .16798376 .17014227 .15250061 .10041455 .19675966 .19521092 .17812381

.16086596 .18819525 .23123744 .16292865 .16318936 .10601619 .19196360 .17181590

.18785385 .14176062 .10748958 .19542627 .22894737 .33927143 .13925681 .15391833

.15277078 .20606591 .19852999 .19249790 .16130268 .14928747 .19094238 .17688935

.17911392 .22052864 .23147529 .17163419 .16076121 .21796206 .19657068 .28679079

.16791226 .19037212 .15105313 .13971134 .16978157 .14630637 .20844168 .18733333

.17250529 .16948956 .16464826 .19909170 .21141165 .18562268 .25376672 .23363999

.18953425 .15651830 .15367910 .21421147 .19501528 .17159418 .15597907 .19247379

.17864708 .18852465 .25175112 .21970376 .18718326 .17450467 .19208233 .18085547

.16977289 .30924818 .18547488 .18408282 .24877676 .17675662 .24245004 .15398232

.23806850 .20008514 .24477990 .21596068 .19267467 .10850038 .21143911 .19307516

.16989039 .31923077 .14133453 .20748268 .23001337 .19708560 .20450265 .16797753

.23203252 .16905032 .24533430 .15265234 .15699874 .24488836 .23822601 .37588454

.17072018 .20939850 .21476513 .14950622 .28705161 .13523710 .16429557 .26105027

.21419090 .17247822 .23375342 .19492159 .15571246 .10287864 .18020354 .20893960

.10252205 .21962443 .22214499 .18683599 .18225698 .17920369 .14847640 .12732147

.10212918 .15457877 .23855171 .17533106 .20370561 .19081326 .17889419 .20595804

.14995890 .18497830 .10797761 .21619294 .10252307 .11067479 .18707053 .16534398



1630 HOMELOANS � Appendix 3

.20470029 .20706422 .17505844 .21502668 .20814132 .10909970 .13615276 .13439750

.20199080 .16126015 .27365286 .09778761 .13852894 .22540440 .28086789 .17875229

.18411651 .23703890 .10848365 .21062107 .15938814 .20212125 .17549384 .14987516

.16370815 .17475886 .20465246 .18782366 .26820386 .16720276 .19338440 .18148604

.21124457 .13811220 .23873200 .19862113 .21340849 .19303148 .18120832 .25819406

.21344034 .20399178 .20837268 .35453733 .19170935 .19319496 .13707531 .22864752

.36630100 .14771958 .22887342 .17414369 .17704132 .15685629 .15123973 .21123831

.17864745 .20876452 .22240028 .22888506 .20711143 .13029197 .42446809 .16224490

.15297697 .14166667 .17716763 .11662790 .12675240 .21741496 .15123227 .19688798

.23082885 .16215220 .22073587 .15256888 .23162905 .13933067 .14936407 .24348824

.14715341 .25979021 .20599309 .27084278 .17597603 .17819921 .21204616 .14744279

.28252404 .16084592 .16671311 .21565928 .20551446 .19364283 .14031660 .17802325

.17336623 .23076409 .20439182 .21462248 .15783399 .29368825 .11097126 .15319726

.23435782 .23865680 .28718763 .15390189 .14838975 .17821834 .25321515 .18975543

.18323975 .18007828 .21789087 .20341835 .15818852 .11158956 .28260644 .20313098

.20059037 .10761661 .19150294 .19157385 .22032180 .19005776 .20836755 .26356618

.17665890 .10791753 .22667845 .26049494 .44510490 .18776960 .21350035 .16080169

.10267500 .16262608 .20453837 .16198208 .43809832 .34807039 .17565168 .17729892

.19605835 .20643654 .10837652 .25141343 .20402075 .23775940 .30418627 .46546704

.18001232 .10638373 .12871297 .10686353 .20225376 .23568287 .19136379 .18899297

.14413190 .18135801 .10348489 .23156844 .21051364 .17906991 .20202189 .24713385

.18239391 .20617361 .19180200 .35490230 .14675167 .22958368 .21460552 .36146742

.17262286 .19711291 .15689766 .15831808 .14029908 .39779480 .28200000 .14754949

.29658816 .25525887 .27384747 .21313902 .21008832 .10837800 .16460299 .36803476

.24848338 .17809004 .18750147 .14921392 .23382931 .19568003 .24797959 .21925859

.17753851 .19224578 .18764706 .23835727 .18568836 .20383604 .20704698 .18450286

.16357459 .22223359 .19039888 .15577036 .15873606 .18570567 .14415520 .24150248

.16538875 .22941583 .43769878 .25653924 .23005646 .20127429 .19352088 .14398496

.13589002 .27699292 .24826934 .28026187 .17880127 .21908836 .15702948 .13381813

.23652038 .26915689 .18691853 .15878906 .23556058 .35177770 .18678161 .14691501

.22445867 .19698072 .13253686 .24850537 .27647686 .16290001 .10235487 .15730194

.16029241 .16401635 .10695851 .13268770 .16284541 .20900163 .14723291 .14487741

.21171635 .25017682 .22372170 .19308881 .26786888 .32805455 .23350027 .22465469

.27607811 .17799044 .14898622 .17227555 .27668027 .19185236 .23750000 .13888889

.24933555 .16857708 .14725655 .17889366 .17644889 .11854597 .24591837 .24047619

.15702341 .16320755 .22699115 .20000000 .15105263 .25168067 .16401425 .27222222

.17121212 .20000000 .15801080 .15540184 .17252900 .24059720 .15350985 .22792011

.15505673 .16922030 .20797996 .15451141 .18964546 .19550614 .20770815 .19686961

.14578241 .23789403 .16816406 .23220148 .21127098 .23454968 .21311015 .40653250

.30208333 .17855109 .21636647 .18362045 .17236931 .23093729 .21627046 .15707586

.13361435 .20173555 .15637924 .39865293 .40130505 .21677463 .21233113 .19680754

.13853796 .21718971 .18789518 .12488981 .16888752 .15696781 .10254634 .23845774

.19921722 .10305986 .14755551 .18425330 .18866473 .21042078 .16042823 .15934643

.19435095 .13964492 .16592072 .19331488 .11841201 .21844008 .14030704 .16821808

.20957654 .29341975 .13524854 .24097303 .11912442 .30416899 .15155050 .11915824

.18659078 .25570282 .26709969 .31579078 .14902026 .12808978 .15307982 .20609137

.11257317 .26586241 .17711691 .12722681 .28659156 .10288884 .38813264 .26407731

.24697234 .22880317 .13446119 .13565902 .35437664 .23984338 .44472847 .19144756

.17831524 .15560197 .26898705 .11904170 .25194840 .14681217 .23764543 .15511887

.23112267 .17485766 .18205155 .29026448 .18804528 .18383298 .21927119 .17399318

.20645926 .19929473 .17370359 .44255095 .23777509 .18933787 .39720293 .36887755

.22129389 .18951016 .16428260 .18432549 .18865047 .21241718 .16062335 .11344347

.17182623 .14891352 .35509213 .38261179 .21333727 .21956680 .22454183 .14087696

.17977115 .16755267 .26044193 .18370686 .23557794 .10499740 .18955431 .12196813



Raw Data and DATA Steps � HOMELOANS 1631

.31260287 .20190661 .35679293 .16804071 .15232363 .20376420 .26630276 .37921171

.17901784 .11310716 .22269278 .17452323 .15459906 .18547967 .17185761 .24586071

.24251467 .19319540 .20381448 .20299362 .11930650 .14787903 .28733438 .16167433

.18849366 .11093149 .25347821 .23265361 .21328197 .16320121 .17401539 .10620518

.21272565 .24598536 .18472691 .19712305 .31496098 .25469847 .30037654 .16195564

.19669478 .17157015 .18112604 .16225805 .16575016 .37599837 .17588513 .19202181

.19827586 .27323360 .20389571 .28996428 .22279486 .16455669 .22740250 .12185789

.15960627 .16287571 .18172809 .17804733 .20271333 .16626335 .17569669 .17799905

.35214311 .12286324 .24974606 .15558366 .27303676 .25561046 .16726526 .21538886

.19205171 .24497597 .22627526 .23076341 .23029350 .39054011 .26919102 .33952585

.17708344 .49856975 .21868877 .16811310 .18429336 .17212306 .22948364 .29459538

.18777754 .23546259 .23011777 .35457804 .16594410 .16111681 .31756128 .25072880

.32253669 .20627442 .18113828 .56130777 .39904014 .34399792 .13915896 .20199701

.23044278 .55876644 .16363636 .27525254 .11172986 .22644584 .17172399 .27057077

.23698526 .20102083 .18283848 .23053775 .22432035 .21054315 .32539522 .17616413

.19987358 .24868655 .26873800 .17293890 .22827980 .15626131 .23097172 .24107909

.27000537 .12187742 .24091974 .19948529 .21655731 .19391313 .21220002 .47844623

.15498020 .39341910 .16691348 .16545223 .21401590 .43286394 .19947683 .14498521

.15649201 .18850992 .15920437 .23446346 .17227861 .20083812 .23323850 .35093902

.28087071 .24025276 .12307130 .23397610 .27359705 .17818042 .16454556 .16485320

.54012382 .16559588 .21633941 .22021168 .19421409 .22308468 .25851624 .28584069

.24267544 .24681570 .12431522 .24408476 .18084787 .16054646 .25450522 .15333207

.20769715 .24319214 .16739249 .32922484 .19557306 .18742744 .21352631 .16288203

.20274485 .23842190 .16425745 .44805133 .16598719 .19386036 .24470405 .18140093

.16758046 .22355085 .19432946 .20381635 .25042460 .23301611 .25187822 .16748734

.17948274 .15705704 .14963100 .26496815 .16553471 .14272169 .20764766 .17149028

.14370770 .14919250 .11726223 .14730010 .17069256 .21966915 .21108972 .11385126

.43422421 .23914108 .16807298 .18029566 .17253798 .25029750 .22891441 .22918786

.20539483 .23518519 .20542857 .17264959 .31145801 .18342097 .27983455 .12448586

.15375422 .29040586 .21737432 .31746381 .14414957 .17494300 .17611850 .17158756

.25285477 .19363297 .17974714 .18967050 .16388954 .25566865 .34900260 .20255615

.20700206 .21163475 .17835287 .38353621 .16061054 .17042262 .39127992 .16380628

.22463575 .22326639 .21313602 .17175397 .26066876 .19445382 .17016384 .19891304

.21899393 .36039834 .19669771 .15992425 .20432616 .17690005 .15866142 .27543126

.36069185 .15162826 .33807014 .37031939 .47649195 .18574127 .19425037 .12470645

.15606899 .22090207 .36298195 .23695360 .22102851 .20790430 .14608206 .31127820

.20306179 .21363144 .19706194 .12774528 .18799265 .22375000 .18229905 .39001125

.17170670 .16841780 .22157952 .19801090 .12156353 .18707952 .17851331 .19371678

.25391397 .26855002 .22080784 .55037798 .25112573 .24891811 .17388065 .27878434

.17240009 .29507659 .28969730 .18777493 .20819209 .34090909 .27969647 .16200000

.33865979 .28333333 .26760080 .19372094 .18244783 .25371933 .20768785 .26216943

.14840047 .15401759 .31443615 .20484806 .25560829 .23262593 .19346034 .16982969

.18001143 .25808430 .22616852 .16037099 .18679627 .39843206 .49835970 .16684550

.24466455 .27886983 .20968692 .21427010 .15993605 .23449945 .24022613 .16480221

.19285714 .25278798 .19300000 .33718319 .22480594 .27584058 .16255500 .21009135

.22694078 .19300000 .42631579 .39181905 .17179542 .17613344 .39153332 .54115576

.19012464 .16594062 .25394193 .23586877 .21135220 .16799751 .22349398 .26039098

.16048876 .25286833 .25656415 .39296330 .34710937 .26395459 .21208185 .20871441

.18547841 .27526751 .18618695 .20585934 .26008097 .19086849 .32676873 .15133352

.17109897 .18934046 .28330652 .21359780 .27951391 .52346939 .20820713 .33035576

.23053238 .26323529 .16167591 .21208724 .23484524 .46213086 .21011838 .31370828

.26974053 .26864143 .33914899 .24722534 .22571097 .27954892 .23162818 .21590909

.11188748 .34648282 .36068457 .18713942 .18909663 .32832320 .23739090 .20362923

.17320155 .20240720 .21325618 .26431383 .16683264 .38261681 .26473647 .39385161



1632 HOMELOANS � Appendix 3

.33459141 .20224957 .17740510 .16895129 .42593985 .19508488 .36919745 .22940613

.26598272 .21265380 .20597644 .17800975 .18151067 .27185331 .20433869 .19002555

.26131084 .17741047 .27336925 .26318890 .22356225 .39042553 .19964611 .30084746

.20855840 .29390646 .28876359 .34058923 .29331700 .21951094 .20882044 .18804940

.43169908 .18522033 .22614375 .17691112 .21792327 .23306917 .24057120 .20235953

.19778227 .17624230 .38812917 .18045115 .22199982 .52255082 .25599743 .19416751

.19975777 .15651683 .26262933 .18083259 .15283380 .23317720 .22832992 .19424427

.23328761 .25711128 .31096856 .20399778 .16165117 .18869754 .31173443 .22170330

.21666667 .14169825 .20860428 .14615385 .35737705 .26428571 .20090543 .14740260

.13527572 .20957447 .22985612 .22045455 .18111888 .28076923 .14433962 .19285714

.16538462 .18452915 .25270270 .20789474 .22357093 .14740260 .17679628 .16053795

.30597270 .18043478 .12396450 .18516558 .47492918 .15677145 .41667644 .28090422

.27212679 .18438091 .21201853 .27052338 .23907642 .18991624 .19098804 .25768432

.13562906 .21141446 .33363199 .18770336 .19199336 .28739526 .23714523 .31061443

.18142320 .27892315 .30228476 .22334405 .20128441 .27049268 .15542558 .32929344

.38072694 .14216702 .24749922 .29092925 .51765152 .18859950 .20390260 .27844776

.30292023 .22600741 .19343547 .25802540 .13231344 .18272791 .16601105 .29243971

.21955959 .27651744 .25399946 .43378993 .13539422 .28929848 .34867170 .29448698

.17779445 .30835401 .20979143 .21521739 .17466680 .20151515 .20885956 .23001161

.27748702 .20919231 .18304740 .23703319 .21224642 .39412181 .14091936 .22605836

.36812039 .20356820 .21572790 .20783284 .20315929 .17633352 .32833364 .21109842

.20000000 .18600000 .28538462 .18509576 .14771488 .19845289 .20925390 .18015517

.21084438 .19986189 .33768051 .20488809 .31383404 .40812930 .19636386 .18544892

.37532004 .16896118 .27181572 .27106427 .31953706 .28489575 .21891151 .40537915

.17920005 .21887446 .40080526 .27078537 .17183544 .25684746 .32787301 .22870405

.31930610 .40749106 .15611542 .36899909 .32096456 .27728950 .16281917 .13635146

.24174388 .14774246 .29617633 .21715375 .44552924 .19507539 .18449141 .22476013

.18400306 .21538096 .17989625 .22573696 .34343834 .40606809 .27116949 .29495859

.13930320 .16568373 .43997635 .17671474 .28340365 .19580529 .18839480 .30159261

.18235144 .16338610 .37762785 .19663170 .19603460 .21092096 .19126468 .17813457

.21875264 .17636183 .20119356 .28430108 .16023333 .22731097 .21832490 .20833476

.13631401 .21165235 .34734848 .26745755 .28901592 .17321360 .20498213 .17842746

.60677708 .21796474 .23690476 .50780603 .12685454 .20236062 .33777242 .16920128

.19127980 .30890501 .28100465 .21849109 .22624211 .17793455 .19442281 .15956852

.31261115 .22382312 .24815391 .56982234 .19133391 .40791954 .15022583 .16100183

.21183882 .45218913 .19216432 .16435106 .20652243 .21359664 .22606615 .17302038

.24637819 .21348999 .41081297 .31232339 .21490111 .18865392 .27231233 .15162991

.21235258 .20017426 .27563753 .20092262 .18961085 .36604683 .21494974 .18170538

.28072905 .18277551 .18193488 .29582940 .28924885 .22710944 .18200389 .17242258

.22231850 .22625150 .21489671 .19520548 .24367806 .18914779 .14279253 .18433706

.35439943 .25739896 .35892802 .21786445 .35486643 .20495618 .14579691 .20964081

.14942891 .19961241 .34629630 .17307692 .22937220 .15505581 .30236593 .32671129

.14996876 .22582418 .17480499 .22600211 .52930022 .18821819 .19725914 .24019543

.30063834 .21910995 .39677070 .22482709 .23244430 .13831679 .22821738 .23685695

.23651932 .23372643 .20601985 .15098666 .22683563 .22172234 .19043106 .17920311

.29988359 .23919586 .20186673 .18820810 .25281165 .32824825 .27463131 .29571525

.59163162 .14577347 .27130888 .21173752 .22322445 .22581794 .28323447 .48277322

.16743385 .22495545 .24630891 .20914025 .18916689 .19855571 .22002519 .23475856

.22162108 .27040816 .19116663 .17549287 .41107520 .19332478 .18763222 .20524974

.17346808 .14859964 .23387122 .21099879 .23160346 .17074790 .15106396 .24047174

.28327370 .23341398 .24583814 .20913928 .25655397 .19211976 .43236881 .21533955

.25811919 .22766607 .25719105 .36542101 .22313092 .17758079 .18220689 .14991897

.23333650 .23513083 .22374722 .26339163 .20042421 .22858698 .36873129 .19152449

.26442674 .23305819 .24037890 .20501531 .18411732 .24198352 .19126119 .17273061



Raw Data and DATA Steps � HOMELOANS 1633

.21387218 .27721639 .19643627 .32691068 .30095820 .23653764 .21949501 .17880462

.21724442 .21369697 .44590182 .43466918 .22647059 .25625000 .13549223 .20000000

.14844223 .16896779 .15423510 .30416680 .27381986 .15060976 .21679808 .16421768

.29639369 .18964589 .61568843 .26669184 .36108597 .22133362 .18426293 .18436291

.20558951 .22483991 .15115598 .18892027 .25355111 .29211309 .21563395 .37720965

.34312567 .24615489 .22387479 .42586324 .42830447 .21532053 .20894750 .23193703

.20474569 .22487277 .61827849 .17152790 .17812546 .32613347 .32178335 .19849328

.26772007 .23013937 .25085151 .22299425 .34623585 .41939547 .34575843 .24489992

.22903663 .17228340 .25072884 .23578111 .23665008 .16981002 .45115571 .22546242

.23723044 .21738736 .21300077 .20091763 .30012655 .22915796 .25255118 .32566743

.14139873 .19111362 .17843153 .15128312 .37784341 .34669423 .22480890 .32108530

.27495840 .23576940 .24147104 .22425375 .13072066 .23836380 .19649157 .25957601

.23435492 .18915191 .17306303 .19364641 .20875091 .15558416 .14886480 .21832850

.30115235 .22729387 .15311217 .15640295 .33197515 .15714668 .17727981 .27558386

.15214075 .25833844 .15706638 .31350053 .33302672 .32878450 .23315808 .23261701

.22545851 .24996471 .27972973 .25000000 .20081618 .19214047 .25000000 .13893725

.24169401 .13156255 .19602804 .16995653 .20719200 .17317769 .20266216 .17676823

.18236473 .23115174 .28900707 .24220178 .22805823 .19299452 .18256944 .28205949

.15655069 .20365124 .23752673 .23143814 .29751759 .29869833 .18067001 .19761995

.33133792 .27965659 .15113795 .17996390 .20099204 .31713882 .22799303 .24171822

.17849341 .24412435 .34741834 .19567136 .19209357 .31139818 .15117647 .26657286

.25080790 .30680074 .27470736 .33434922 .20745437 .30247336 .29620670 .21809022

.19482869 .19394510 .31028268 .23505369 .44713692 .19488115 .25894326 .31086039

.20664614 .31397302 .32089662 .20055785 .16068033 .26847020 .50550290 .19907111

.23960151 .25632819 .17577062 .21043177 .23806188 .18944191 .40234216 .29156276

.31974351 .26929547 .40531233 .22181622 .24240551 .24667684 .26156816 .44831517

.51535262 .28636808 .15450702 .31329727 .33405381 .27273140 .16215242 .17874965

.31054925 .25906175 .15342184 .13571893 .27120237 .20013201 .20193720 .25483119

.20313802 .15709849 .23527733 .19930594 .16325908 .30725836 .23564291 .14019363

.30168268 .17630819 .29002853 .20409813 .21062709 .25071569 .20346704 .18398360

.17592012 .23439686 .39555200 .26888642 .23297501 .21924379 .25272527 .23233429

.22073952 .23311207 .31631158 .44007957 .47516185 .24379845 .26346529 .30630944

.22970369 .18087837 .22394226 .25031413 .37257473 .31802711 .31666667 .20314735

.23041845 .23708184 .48112897 .24919870 .18783329 .20171255 .21592765 .24623930

.35825496 .36381866 .18265084 .23325258 .17984250 .20649314 .29686881 .36722704

.24572068 .23187984 .20913259 .25730457 .32658219 .31469976 .21428545 .23611654

.20738285 .28955319 .24790312 .24457167 .25784195 .15873416 .20389936 .14765196

.15386397 .15267651 .25142810 .35890979 .20287631 .23835182 .16289760 .27347491

.38637764 .24922536 .23944205 .15693973 .26953493 .24524433 .33154393 .23673065

.17508473 .21052804 .31312308 .18689620 .23149924 .23200570 .34148853 .26051893

.18828496 .23949164 .22947593 .38729973 .22531728 .20938654 .20632328 .40467980

.34380080 .15434783 .44130435 .32190332 .18709063 .14230769 .20126050 .19925373

.31277372 .28076923 .27511537 .20681355 .20149347 .14143554 .18255567 .25039411

.27958012 .30205848 .33641897 .23551728 .15209059 .22395817 .14856777 .22721990

.30069252 .16031944 .25124304 .26030372 .20207656 .14922266 .20128340 .18110527

.25832134 .28296522 .50565541 .37475688 .24584717 .15572800 .30277778 .16472010

.15686395 .24178486 .37122560 .16441072 .18296609 .89611808 .19654374 .25230539

.24257221 .65268892 .16663078 .13717227 .25125174 .24758555 .22247588 .24495265

.34180228 .27960954 .33000918 .22619194 .20926893 .24215423 .13685953 .35729447

.25879685 .18129197 .20437176 .35373948 .35247934 .24236429 .16953518 .23475331

.23836656 .24558805 .19658763 .24174350 .24507644 .20494998 .25610242 .20060734

.24220926 .24087731 .19690736 .18340487 .19244022 .21483615 .32735906 .35454500

.35794979 .31452364 .23084427 .24192857 .25158654 .31739514 .24654714 .26624275

.24442985 .20987003 .32875299 .30827889 .25373327 .22422095 .54282080 .24281076



1634 HOMELOANS � Appendix 3

.32205882 .24321149 .24473684 .30879555 .19513219 .36136918 .20069196 .25587291

.21067865 .31520660 .25739717 .26424622 .18799755 .28332832 .31125797 .20040999

.17097482 .51386353 .34226442 .24312235 .36421042 .13751706 .31719915 .31488180

.16950348 .31785329 .24561445 .94855072 .23371459 .15775675 .20528469 .33874512

.25746658 .27093834 .22893025 .34327813 .34249370 .15497656 .16503020 .24886213

.19065121 .28667591 .25860990 .22003091 .27489206 .24797997 .31025357 .25887787

.21303969 .19360754 .35821466 .20580713 .23195544 .23829940 .14432874 .16516080

.20334796 .33842761 .25813728 .16373123 .19932249 .36028222 .21112030 .14276666

.43226609 .21411236 .23149866 .36900349 .21067876 .21074572 .14507520 .32600508

.24251337 .17229448 .21758885 .14192249 .16728422 .33859809 .23450185 .19825274

.21667990 .20734397 .26517128 .21070062 .17066633 .25585272 .71343099 .29163498

.14699222 .16296949 .14491268 .16212019 .23936563 .19315529 .27028986 .28750000

.30099075 .17025316 .14984235 .16509153 .13755760 .16010982 .33947529 .33736065

.38420238 .15801396 .34652399 .14666383 .21470203 .29892156 .35896150 .25530349

.24445598 .28503489 .25120303 .16937403 .22490799 .21616903 .14609032 .30074112

.24793814 .24885657 .19902551 .36892628 .22217385 .21170790 .30348043 .29717605

.14857450 .26670540 .40864273 .23733135 .20201040 .24069639 .23775780 .20931980

.15007570 .21520154 .28108791 .23193130 .23255215 .29588086 .14656449 .30492773

.23729846 .28429952 .16233027 .16183232 .29122153 .24251570 .20268012 .30086194

.17776245 .20897733 .18919424 .70000000 .19092141 .16424420 .26851188 .26687631

.31872089 .32486081 .21047269 .26777778 .27737028 .36702899 .29483168 .28190052

.22388064 .17024983 .37184809 .22402827 .22377957 .30938117 .19606983 .26927628

.85549536 .18369256 .25227119 .19786903 .25674533 .28813533 .34086422 .30411982

.21258694 .28134355 .25800941 .25808374 .17892693 .17283041 .13873233 .26747683

.29116535 .20305455 .14991364 .27098589 .13954807 .23494768 .89193603 .33190163

.26152661 .24493559 .29789291 .67656642 .37553143 .19285714 .13919294 .33475426

.19372979 .16111111 .25000000 .27222222 .48010753 .22006803 .24005987 .26231423

.32100271 .17271821 .44880359 .40477977 .16665209 .35802953 .25000000 .26451402

.23761726 .25921596 .25356234 .24047619 .22021277 .27075055 .16299435 .20619875

.43461538 .16111111 .20151515 .12207207 .37258065 .47062758 .39297669 .30564986

.44163468 .26809299 .16526182 .18641355 .80451767 .20377163 .16065252 .21834171

.23859427 .31949480 .40704770 .26319700 .92501632 .24941070 .28016409 .47872683

.34202383 .30135368 .30130654 .29254857 .19394466 .24646557 .14989365 .12004583

.23161119 .16203301 .80658264 .19511494 .26825333 .17137745 .25658621 .32873987

.16563672 .45527256 .21591103 .15255473 .35976369 .25582212 .34249928 .34692346

.37070110 .25651018 .33815155 .16765665 .23797341 .20708427 .23907817 .41890981

.22170794 .40057422 .15135860 .27418306 .41443280 .21117763 .70881284 .14302453

.42751212 .21570008 .20881419 .26599644 .15416986 .37159917 .25692383 .34701240

.22765083 .14995982 .24723484 .23024227 .25335739 .25380435 .25763993 .23650776

.26602824 .24763227 .36536521 .19777011 .20721341 .14280805 .35866521 .36336941

.15305081 .25930328 .27699339 .22265920 .13913043 .20471698 .19978044 .25396995

.16041332 .40314993 .25849861 .24073014 .26001550 .25234365 .24343994 .87750864

.41472442 .36105608 .17351527 .24463709 .19898603 .26328584 .42438209 .24431396

.16705277 .76939934 .21370124 .13803268 .16873062 .25712842 .19691062 .24905569

.19549697 .36846154 .31217798 .36855956 .28861947 .19087670 .26408404 .16273220

.25544682 .25349980 .15831190 .22968210 .26183851 .35369397 .16419787 .15406192

.25800624 .42871202 .21408573 .19148312 .21793967 .82809367 .32924711 .47413491

.26423422 .25958446 .31502555 .20942118 .19797530 .31136564 .16552154 .40570835

.25541550 .19464969 .64909419 .33154594 .15235465 .27662214 .42602101 .29058939

.33314412 .24805921 .24822828 .27875531 .28775937 .16957411 .33300993 .22721777

.31561944 .19576956 .24115238 .31234259 .20014156 .24961977 .29192434 .16095671

.22796610 .29676851 .20671642 .36343284 .20000000 .25873507 .26485354 .17084384

.20605841 .27962113 .15516458 .29330055 .43761114 .30285208 .30919465 .22037839

.30202456 .27066283 .21599795 .16714283 .84773157 .15372632 .20214037 .42498894



Raw Data and DATA Steps � HOMELOANS 1635

.19231244 .17137451 .24515428 .37765096 .24690342 .25271756 .22832509 .34816320

.26855895 .28389490 .25827398 .27277098 .19555441 .12527247 .30296912 .27616267

.18719807 .17036074 .23579416 .18316745 .16833662 .14026648 .49807203 .19392767

.29521937 .20014909 .14243067 .29034664 .22031552 .25717829 .21966839 .28690884

.31073545 .16705869 .26190024 .23608696 .25317099 .20760441 .18120543 .24729139

.27254807 .25381535 .19511721 .22582201 .31447507 .35808655 .26541528 .20995097

.91394832 .25690922 .27562178 .16566692 .17751454 .19635408 .74789334 .18393469

.17075599 .16669498 .50372051 .12549422 .16498802 .20009774 .15718167 .24282511

.55588235 .16252479 .27238772 .45337711 .32338038 .20036437 .25717300 .32280802

.33420733 .29854917 .28676589 .47074917 .33559340 .18894249 .16644581 .36625183

.20539345 .24815241 .37759536 .27382724 .38021969 .16039502 .19656190 .25519251

.27015880 .20134953 .44843577 .36420924 .19615135 .20889831 .32674689 .32678924

.16646629 .27466559 .33730306 .45329325 .27421061 .37376945 .49870867 .45227648

.27142857 .20451658 .19739044 .35295415 .36844330 .46698693 .22207882 .28059839

.20548088 .17546689 .28226690 .14262856 .14413786 .48933012 .32211224 .22819921

.27118282 .90269499 .24000802 .27018868 .41097496 .35983073 .18521979 .22635686

.18062261 .35457988 .41493907 .16343330 .34285905 .32293461 .26446829 .20743390

.20433730 .20119089 .36761686 .24239723 .25881405 .93277975 .30042882 .33274482

.26246665 .16626364 .28780825 .23424728 .43396802 .20565253 .20372089 .17122281

.26991204 .27445544 .29877591 .35427086 .41596523 .27494888 .29719101 .32163847

.27222222 .22745084 .26168501 .23128332 .16969597 .28147661 .14485498 .30880526

.28979770 .27769142 .26633792 .22491373 .27602915 .23743904 .26721823 .32394543

.50102041 .25898345 .20621466 .17951015 .38899865 .47223921 .37882990 .31081620

.17304964 .31013288 .41450808 .18649107 .17323475 .19969757 .27424922 .24108938

.26723176 .20751607 .27926542 .25359128 .70436538 .17132938 .26285532 .26659317

.21326590 .26179197 .48191106 .16959477 .26608737 .57359709 .29537042 .20304477

.20521466 .24961867 .19909806 1.0455802 .12930694 .21905660 .26880769 .26155826

.17316964 .21523926 .26461489 .37317636 .28398166 .18352090 .18642814 .23515916

.34096199 .25124520 .23420901 .26880556 .30371799 .25817650 .22982435 .27212306

.19248095 .26315875 .44419963 .44548721 .39092293 .25162742 .42458820 .22784835

.27026648 .63468847 .30900175 .18394850 .20706368 .28509007 .30787966 .57570093

.28488882 .30865339 .26317921 .23987021 .34260680 .30522647 .20999204 .24604597

.95685583 .17444415 .18072500 .27793287 .25156435 .23759857 .17613508 .29675991

.29885483 .20603317 .45811904 .13692308 .21243451 .52410267 .54405386 .37110027

.43398804 .13545651 .31456265 .45780238 .27203446 .17832233 .29418842 .28078018

.22158363 .26377583 .46498327 .26368125 .27883526 .21858146 .30661026 .18824688

.36895910 .16485878 .21265522 .44715865 .27510070 .23633236 .25780925 .26586003

.32834070 .18274491 .32011978 .20433561 .28352521 .35404865 .20527104 .18380596

.33022910 .44473001 .28734424 .28657342 .27401038 .20471091 .14828411 .29821696

.24851762 .27049974 .43171120 .45098759 .23605483 .33182881 .29590340 .28465279

.17658998 .28778373 .31003225 .21488699 .48367927 .31366996 .18109386 .33247542

.27201970 .35833446 .19760527 .45787374 .27510179 .20296215 .21343585 .30277781

.25648358 .30564929 .54097041 .26820597 .17475591 .40341119 .19076749 .13214286

.38093525 .40537701 .49184885 .51086643 .27604423 .25073516 .27760415 .28985546

.17850753 .17592467 .22012815 .26470596 .18267856 .41141185 .17433593 .19789585

.28060797 .13658398 .14766529 .28358840 .22174880 .19586608 .21560782 .33413614

.18555836 .18136215 .26120186 .22257597 .26960001 .30900688 .18161760 .27660300

.51435618 .22154174 .27273418 .22099788 .29433539 .27284653 .28502471 .29723707

.26953279 .38934191 .19119180 .24472090 .43267183 .24564563 .25030988 .40351704

.24219288 .31051771 .24694938 .50536458 .38480076 .30162216 .18906148 .33673223

.22911176 .18096738 .27994579 .44429530 .21574391 .43594186 .31980172 .25996953

.13224001 .29178447 .40489376 .31381077 .15059802 .24881557 .21912193 .29153845

.17854521 .46201117 .21975364 .18687984 .39600047 .38579488 .17471332 .34435242

.27388555 .28210527 .18485714 .25653563 .23838254 .18911977 .27173991 .17925062



1636 HOMELOANS � Appendix 3

.33209756 .28481854 .35046401 .28313921 .35071563 .17701986 .18099206 .55787528

.36542802 .29159268 .28868271 .27175024 .21876976 .21468283 .47665034 .29196512

.17783603 .38148556 .26574582 .39523274 .15179641 .39927064 .47752699 .21124552

.40375080 .95188679 .13950104 .42878788 .52951527 .22561391 .29969180 .81612386

.22760669 .46216845 .27104660 .60065318 .28726794 .24792797 .30892422 .43377545

.18022181 .25504637 .20750834 .40134977 .24601277 .52428955 .18293527 .32871004

.58333333 .16709430 .21000000 .32272727 .14007995 .19652372 .52642680 .31172609

.26327434 .15095129 .29823352 .28604772 .19934993 .26463623 .31561742 .53752857

.39467043 .22063042 .24948891 .14074887 .40874174 .31419791 .55816849 .32071168

.18209030 .25754539 .20294772 .18885714 .29706923 .40631021 .22706079 .38147363

.22534871 .14267381 .21860598 .29715216 .55128932 .20863276 .45080491 .40332606

.21827586 .14334603 .39208645 .28356435 .20756167 .18401513 .49545869 .45742720

.89429066 .20417959 .22424713 .30292051 .21504664 .25604106 .28497236 .13415795

.20284581 .24776782 .47946291 .21389166 .51909704 .27778196 .20432293 .30883198

.19272565 .30504893 .30136713 .33852382 .13707984 .52459466 .24932149 .20318819

.73930591 .19893205 .26722813 .30975672 .44870340 .19949046 .21757037 .13483022

.32547595 .18841102 .20067774 .50720421 .23555245 .34738971 .38289756 .26468553

.27019755 .46378850 .43900130 .16701646 .22669481 .59907344 .25378648 .28272618

.39020138 .31606016 .37121157 .31384386 .79844450 .19695121 .21960120 .22353851

.35000000 .19536241 .56562403 .46196342 .31622084 .21859995 .44923985 .19285714

.25000000 .17500000 .17345679 .16061947 .15582011 .49883303 .40211268 .18513514

.31041667 .15361449 .25833333 .22636684 .28086158 .17065637 .25491803 .15584251

.18616558 .55481594 .27123894 .30252525 .40211268 .25408163 .27361360 .19009291

.31766595 .59628092 .18541842 .76428571 .26371905 .28970698 .34633142 .28994570

.54339519 .18390880 .27497490 .40070070 .56886305 .40985663 .46985180 .29906724

.40175246 .30362758 .58335033 .21714168 .64035209 .24606005 .32122234 .38171222

.15294944 .26813757 .38283828 .51085488 .19921292 .17430789 .24804003 .29389300

.30101602 .39738975 .38347007 .54447638 .17143935 .42013645 .29651022 .31920776

.32796775 .32759113 .26966144 .33459583 .16821657 .15285055 .21439246 .21476503

.79466519 .54913194 .21113726 .34072106 .34210733 .45456697 .30008649 .30868742

.34150838 .17053682 .28645063 .37564103 .17115488 .31368516 .15438628 .28439302

.28989422 .60985364 .19250428 .85246719 .19252658 .26687915 .37083139 .36979734

.27553797 .18816570 .44628887 .26640797 .14532496 .25951786 .62038048 .53730150

.64259604 .25079531 .54255397 .36761787 .14668696 .15363324 .33600795 .24873616

.14698513 .21732026 .29723789 .22344408 .17119491 .29850991 .17070404 .26442152

.17173202 .22873536 .50299914 .52156829 .15246637 .54613900 .35235294 .15593482

.41738428 .27081694 .38561867 .31176677 .22773905 .29564154 .17378791 .45658094

.42438509 .29136512 .27178286 .19308453 .20440226 .54783884 .15812120 .21739052

.81428234 .24060375 .17266103 .26164972 .18932746 .35173468 .33336670 .34952931

.32345482 .19518894 .14981611 .17521250 .23919273 .40003164 .14081922 .20089084

.30780351 .33442344 .21384455 .26961685 .52651339 .46079441 .76946412 .29059069

.19334201 .17844362 .78998469 .28046968 .22235800 .26665145 .17522070 .38529888

.56648395 .24182896 .26678154 .28127510 .15675490 .26200498 .38955417 .19405974

.24754650 .15837463 .26463956 .75490485 .26372731 .19277416 .19790320 .56545381

.33186524 .34844310 .33888083 .56513074 .22795159 .62282251 .65498712 .37922326

.29108534 .15529561 .25623245 .44981826 .26326095 .31771047 .17421425 .17735044

.21000000 .18986014 .15128991 .19448415 .43291392 .14296495 .15553077 .35084442

.51086155 .39027582 .19146612 .46459370 .31412311 .14900065 .73011498 .19755093

.25215119 .46270187 .25739906 .43970588 .27261238 .21016827 .48379332 .39795625

.26598624 .20135135 .32402341 .25164806 .26875360 .17740989 .38948057 .21090397

.22353862 .19416847 .40316993 .20162184 .29546307 .27216860 .28288878 .53122848

.16435669 .20702003 .54942015 .19642648 .20468529 .18876304 .23549023 .19622116

.21084407 .21105382 .47735724 .40757649 .17677389 .14501255 .26185773 .80995141

.30719476 .33950880 .23495600 .33948699 .39113678 .25818822 .36441028 .22700978



Raw Data and DATA Steps � HOMELOANS 1637

.31440985 .41451346 .14387378 .27961136 .43213315 .80664163 .20160618 .40064935

.37711809 .37757052 .36619257 .75237507 .36362163 .51492406 .48658237 .75393159

.16420047 .39928532 .39977220 .90540229 .47870250 .62986520 .21965174 .41501266

.34012714 .20178826 .27423373 .20029119 .31142786 .25168466 .26524437 .51722551

.34410493 .34149227 .27972257 .43130089 .26649141 .34196924 .36489342 .19723648

.42229980 .77739868 .17819730 .68082007 .20396850 .28391713 .19489369 .24102463

.73744041 .27528263 .16122206 .35441062 .37135862 .23351696 .43849819 .37555937

.23348379 .18298644 .20363128 .19297152 .72390399 .28344850 .18032311 .63291116

.36882451 .32540512 .37031196 .22988425 .26103499 .20832678 .19377097 .35027743

.18626803 .36477025 .28473180 .34294387 .22474991 .22541964 .30817073 .22787402

.19669693 .28289763 .32243401 .18412680 .36577027 .32300861 .60582310 .29193408

.40138015 .20117282 .26886852 .70153475 .23027751 .20176752 .43765114 .32921698

.23429025 .27492273 .59947227 .33497330 .21406988 .20677163 .17133592 .35267198

.31134118 .18413655 .32154606 .29248008 .19459330 .20076436 .39219273 .22852344

.20145018 .37397283 .37040279 .18350753 .42570781 .31904192 .28712335 .31415094

.26952004 .18526719 .20305178 .26822361 .30349343 .56538828 .22331878 .27801882

.26800977 .33906771 .43648137 .37216053 .22571626 .18620885 .49726408 .17389233

.29065335 .19732080 .26463474 .35368296 .20159416 .29123910 1.0089320 .21966732

.24251701 .28736832 .32732048 .20817302 .20202548 .16792158 .27389531 .34692515

.47424786 .19760071 .16658792 .16709216 .18784400 .21153159 .36360424 .17223203

.43651025 .16895537 .39192341 .30463480 .26618751 .73242224 .31295152 .43908912

.26835399 .20312866 .50805207 .60427431 .26951875 .27465555 .20417208 .61735900

.42684635 .23318538 .48893979 .23412307 .20373490 .18376336 .32051738 .20992956

.16722327 .22058782 .28692004 .19826789 .69341726 .20491367 .55725659 .15140351

.20342309 .27607621 .18660556 .28221618 .29493394 .24598136 .29493809 .27106970

.20859166 .63354366 .20069241 .63102260 .23240424 .39838633 .21148835 .25419580

.15057876 .30268641 .23296895 .43913081 .25212715 .15198437 .41772955 .41261278

.15154722 .42375886 .24979415 .20889012 .15248932 .46971831 .15158804 .21414051

.31000000 .22871872 .30234258 .31144702 .30276994 .88623554 .15238908 .44473684

.35927835 .15638298 .57631579 .24590941 .83752559 .83947368 .79586183 .21170711

.15527383 .30885793 .47180493 .22623099 .81780312 .25310031 .42960682 .21594738

.43208368 .24772905 .50395299 .44594904 .43564488 .49627129 .42776646 .34245392

.30049689 .34586947 .25541764 .25673621 .21836225 .51803548 .21838828 .47560294

.29592931 .15767103 .43905064 .41856954 .52325420 .22461406 .73849894 .72699747

.15507714 .87500737 .22580310 .42543577 .15618082 .15232330 .15360818 .21475866

.48288834 .23562874 .57696891 .35010262 .33567754 .21519356 .72303751 .15724487

.53172681 .22708659 .54644374 .45848820 .23206566 .15500185 .26705813 .92024001

.55280224 .46205186 .36281033 .59227134 .16137078 .52680121 .76460877 .33902788

.35703369 .46042320 .22593361 .32719665 .33587610 .23154519 .47515643 .16235876

.15624827 .43451339 .56964553 .27178653 .71729422 .32616896 .78811838 .42234414

.46618978 .93154270 .78804142 .23177494 .24018503 .58454630 .23827767 .15960210

.26230723 .76349680 .15972511 .58277472 .75900191 .84723559 .23467168 .15776725

.46293787 .35462294 .23061207 .24131039 .15931939 .16326489 .86500000 .89493171

.31080000 .89750156 .47020586 .46988837 .80626571 .16053894 .45822931 .16192418

.37502816 .54806225 .48201933 .62455255 .76295856 .36511401 .22368421 .16415091

.26668046 .76814454 .79584826 .16115501 .23877902 .37031491 .87447601 .22025554

.74528542 .94393250 .48536635 .33455181 .84143829 .46475282 .84737224 .37081669

.81167523 .30464384 .33341515 .16828945 .31995850 .22214078 .84044894 .78838738

.24575724 .21957084 .30296312 .73909109 .47716084 .82299547 .24698537 .59494599

.93253671 .16688083 .25074512 .16875448 .37830258 .22153953 .85826756 .22348834

.98460505 .24516649 .30036496 .22475926 .25307754 .28703867 .26630094 .86176829

.22713885 .31289273 .26005994 .23245783 .22785683 .24999198 .97824086 .93830233

.90683510 .75000000 .18207547 .68702359 .31435500 .99940123 .99932442 .86807195

.31208136 .30357803 .23081341 .26719899 .81236161 .73695367 .87973086 .18174455



1638 HOMELOANS � Appendix 3

.31061003 .18411018 .18284525 .23917200 .33161522 .29620295 .69193755 .66240717

.71480570 .72509604 .69211420 .89745763 .87833215 .56857143 .23603936 .53510604

.27115291 .68513113 .32678924 .18544438 .23648233 .91247637 .27234541 .32749901

.67933095 .66445984 .27482344 .74277108 .57410901 .68423498 .53569675 .18920176

.18836352 .30695637 .28475795 .24643793 .57748239 .23771842 .23346124 .54310697

.78362004 .69857074 .27677914 .18889194 .23679705 .40185185 .32162453 .19069736

.56985973 .38709655 .31787409 .24486117 .23184848 .31697044 .31513080 .58466256

.25118837 .23385330 .59164509 .19367445 .75758149 .19436816 .81917009 .25045012

.40962952 .58162708 .23944494 .60992629 .25483515 .38736463 .25469877 .25546634

.24059415 .38877767 .25818622 .25834418 .69516129 .13602151 .24170217 .25281001

.39739669 .13627481 .59919597 .41930390 .24831920 .40598137 .24697198 .13698801

.67356971 .72666667 .24503920 .67892110 .13699965 .25545151 .66637938 .63956655

.63859084 .25159998 .41558006 .26131105 .32218543 .41492462 .31088663 .24873236

.13774402 .95000000 .31143544 .91094497 .83375221 .13856830 .43169336 .63708415

.67197753 .13898388 .66722045 .68906978 .69102564 .80929325 .66957687 .73665896

.14004387 .69194983 .69611268 .31826574 .71279775 .29482759 .69074603 .67840324

.65001963 .68338908 .31921456 .69287962 .32555110 .29379433 .71259862 .71459014

.72048318 .29142440 .14255391 .75906853 .73202939 .86034547 .93533573 .29143142

.89472580 .98405768 .69975616 .95038117 .72498844 .86042075 .70501858 .30229450

.91682427 .91191733 .33699227 .92778128 .33480993 .63690804 .34801325 .33656383

.31157483 .58522500 .31417813 .30891524 .62573292 .34505577 .52084753 .47901609

.48682297 .61813425 .36088625 .66819980 .48979599 .59932373 .35942280 .35456595

.50251002 .35280376 .85666667 .51329700 .75874701 .52581516 .75510340 .53075985

.53726554 .53460246 .53012752 .65827251 .68529980 .89745763 .25000000 .83229912

.63421568 .52160487 .63667477 .54088633 .61956507 .84031550 .53408475 .82509843

.53560059 .24809345 .65816890 .63927929 .85468874 .51826319 .60637698 .64744589

.79325015 .70402308 .85413283 .88830564 .67089915 .25219686 .65172424 .69322363

.80992327 .62220315 .86526891 .68520983 .25110706 .25272443 .25584717 .67539839

.65962742 .62845745 .82448071 .69353079 .66832025 .67768022 .68747430 .70265583

.82300344 .94030260 .25655601 .25566109 .67801192 .25761541 .88912806 .73013425

.68772935 .69990863 .71156760 .64030326 .26013554 .88823529 .81876176 .87313272

.88342767 .34898990 .84178258 .90023078 .91148429 .87961072 .33874334 .90762067

.91173743 .36511864 .35172808 .36149717 .50633079 .49055584 .48624680 .50607398

.50290358 .48796307 .51023746 .49856806 .51039098 .50839063 .51134819 .51392867

.50787110 .28611111 .28602807 .28588631 .28346225 .28733853 .28715469 .28677926

.28897827 .29435725 .29215063 .29600076 .81183073 .81409993 .81199100 .81786597

.76925459 .77851607 .78583989 .78694797 .79938858 .80175471 .78133041 .78863075

.79401933 1.0617647 1.0192081 1.0581342 .98106139 .98465840 .99409832 1.0021158

1.0357515 1.0076380 1.0099242 1.0275639 1.0608620

Platinum 1083

.22818706 .21900585 .28982036 .24216270 .23155846 .24182739 .24278990 .23212851

.26711409 .23636364 .22504472 .26342434 .22144250 .25728518 .24978355 .23269978

.25882353 .33969732 .25055718 .32376238 .26877579 .24437401 .24601479 .22566372

.24264957 .24089403 .34778325 .54090909 .29090909 .21550388 .30084034 .40689655

.41276596 .23627570 .26535948 .28587258 .25245902 .27836607 .24934464 .22453039

.22008313 .26538462 .29051880 .37078169 .25825243 .26858449 .25901639 .37499054

.23889776 .28485640 .37653449 .30000000 .24962225 .32515645 .27690533 .30752688

.25213425 .25760369 .42222222 .26855184 .44968789 .24301075 .26779661 .41430065

.26307692 .28362369 .26867060 .26818182 .29782609 .25172414 .23063934 .24253308

.28070332 .30444444 .41275672 .28201523 .27449752 .34326648 .27092199 .24868549

.30559662 .23952569 .23855243 .23787879 .74945055 .29836711 .27014886 .23174603

.39801980 .29615385 .34609204 .32961763 .26711409 .25312424 .33333333 .38650453

.26053269 .24632203 .26612357 .25875441 .33583265 .35394089 .26664774 .25868407

.30912592 .36748218 .35000000 .23594714 .74736842 .33155565 .34690393 .28281250



Raw Data and DATA Steps � HOMELOANS 1639

.29398987 .28510638 .26136364 .35416959 .32751553 .38333333 .59941903 .31791189

.62399013 .31339739 .24500634 .28395802 .26451613 .26739262 .27600000 .25198501

.26151455 .27138742 .32384430 .41071429 .37824773 .34095948 .26982834 .39672131

.26358963 .30290713 .30928166 .36713092 .38633540 .43210832 .30989011 .41621622

.23000000 .26282723 .33735320 .26379619 .30804217 .26408040 .28289474 .39349489

.34159292 .29228498 .30655738 .28084577 .26143667 .23111388 .29497753 .35766561

.28247270 .52475401 .36190476 .44808464 .31878529 .30823190 .28313253 .24451510

.41538462 .31023622 .35047291 .28111240 .30501050 .28626001 .27169560 .24375000

.33084112 .34044944 .48000000 .28578431 .25857741 .27232675 .32909091 .29491979

.31076923 .30746269 .34400000 .38154312 .29384409 .28297812 .29632513 .37360285

.29434572 .27366996 .28308259 .34532067 .29375000 .40374345 .30416667 .35075377

.45531915 .28708273 .34962594 .26843066 .38679950 .30285244 .28539223 .24954419

.30445828 .37857143 .28180985 .31194030 .40885547 .29375000 .43262840 .86655273

.30506856 .24742865 .31282491 .29874105 .39070322 .32698413 .28844666 .30847458

.40779221 .36666667 .31704462 .45516713 .27079646 .26908463 .41775225 .27020808

.40542213 .40343580 .33666667 .28644865 .27477477 .37568368 .33014504 .31666667

.35000000 .28822325 .37142857 .38278353 .39873743 .31556764 .41144279 .38518519

.40336258 .54400000 .32951222 .31211340 .32385399 .67927673 .30958904 .37235639

.43446034 .32941176 .31866667 .31448271 .28900000 .30593599 .25654420 .25656720

.29825026 .28286835 .33044613 .35444015 .37742730 .28653846 .36071429 .39482628

.33753056 .44781460 .98787879 .29891304 .42580645 .31794872 .30823529 .28790336

.29518936 .45050505 .35373680 .30549115 .35079365 .40808691 .33816373 .43750000

.29623481 .42068966 .33287671 .37321429 .30543478 .37786416 .31829268 .38148148

.28237232 .29432794 .47049180 .31665587 .45195327 .33079667 .33404826 .38468585

.44242424 .29009009 .41459227 .59984006 .38315018 .24429679 .33651877 .29852217

.35278839 .38416206 .33346680 .38834165 .48169014 .32500000 .37857143 .35384615

.29652510 .27968127 .26600660 .34285714 .37024174 .46525199 .27520776 .38587361

.32500000 .30224949 .31520737 .38348624 .36482611 .40576132 .31072726 .35363815

.32578616 .29090909 .32820513 .28105698 .40833333 .34534884 .59920949 .33648649

.29693238 .33762025 .31277697 .45505101 .28434051 .38727273 .33661741 .34380133

.35718092 .76451613 .38667662 .23917910 .36114180 .32825787 .34929577 .50113636

.35595622 .27229730 .41504944 .38021053 .30058301 .34778932 .33688213 .32356979

.36191904 .24722963 .47169811 .29909091 .86605561 .39282138 .29956103 .32758949

.37248138 .36437046 .35616571 .33496933 .24680851 .36176471 .33538462 .37336485

.27857143 .29312169 .35022602 .36176471 .34356666 .62045455 .32987925 .32099279

.28045977 .37197697 .33671541 .38864775 .35804196 .34302168 .49523516 .35144033

.33855422 .33855422 .36625104 .36000000 .39333333 .37221077 .37145621 .36160444

.33764706 .35000000 .32485727 .32643580 .30916627 .35063291 .29240565 .35281880

.36527778 .44498703 .37101082 .33477694 .40000000 .32917115 .32464942 .33793103

.31695678 .43121387 .29036145 .36666667 .28611410 .35000000 .34634146 .48007929

.33363029 .33186813 .40689655 .34499058 .55420172 .42234987 .25326384 .36655884

.51225806 .35297092 .31111111 .37329545 .45477443 .38467637 .32154150 .37571429

.39218750 .33085106 .34599407 .51538462 .33523022 .38931009 .31071429 .36625996

.34760499 .32314907 .39325912 .40833333 .36579789 .38518519 .31870845 .32183236

.34651163 .42105263 .31413043 .34615643 .39384615 .46800599 .37735410 .35269361

.32757517 .38823529 .30281124 .35240091 .36847109 .40806452 .28993746 .35116279

.46355269 .29023016 .34332334 .40000000 .72273915 .42413793 .41666667 .30833333

.28176101 .41666667 .26500000 .35046296 .29433072 .27482014 .57643678 .37525084

.36211038 .35000000 .37733333 .35563929 .37570513 .40944882 .42634445 .29032328

.38660354 .30229008 .44222704 .33917526 .34438503 .32443428 .32385321 .35697857

.51192661 .35454545 .34822509 .36817038 .36913580 .53906634 .37468354 .31813652

.35012907 .43421177 .28315187 .36242492 .32178987 .37188505 .68289183 .34990898

.52941176 .37948718 .28805031 .39851117 .42173646 .43500000 .36592335 .36022205

.31637341 .48944150 .39589041 .46481481 .49017410 .34661274 .28690476 .52731757



1640 HOMELOANS � Appendix 3

.36781609 .41262439 .29051557 .36470588 .35336788 .39003163 .39486294 .38483830

.40910226 .47337841 .37647059 .34992504 .47027027 .74545455 .55650624 .31296031

.40576132 .27226756 .41978022 .45646286 .33157895 .44183797 .51649576 .34285714

.40491803 .32254902 .40689655 .37006803 .58560411 .44768006 .31034117 .98947368

.71679587 .35384615 .30917825 .40066890 .39493177 .50000000 .33071895 .29677419

.28080808 .30242404 .62857143 .38656716 .37552071 .77471264 .34285714 .45862069

.35625000 .57500000 .36666667 .27283321 .38518519 .28233841 .40586015 .40297700

.31538462 .31783189 .33470916 .33888889 .28469791 .34705882 .43060124 .39473318

.39740260 .33341408 .32801725 .59760915 .34143749 .42719511 .27470361 .35910077

.38845443 .43134328 .55307517 .45619835 .41198900 .34814532 .35424775 .39500000

.31862216 .40204880 .39625000 .32474178 .42791609 .39036145 .46781931 .33034798

.37610147 .44365044 .46709222 .35259117 .46666667 .35067474 .33617021 .42494025

.38306636 .40801034 .72451539 .50961538 .39479970 .31960398 .38290824 .32278308

.27850054 .54927343 .46164058 .45873016 .35837390 .45076923 .41410464 .42029095

.42620690 .45884383 .34224138 .43957486 .29983844 .38965517 .35068493 .55162493

.36129032 .45846154 .39040927 .80472985 .31489379 .30803859 .43427368 .39882353

.36620281 .42666667 .40731707 .51264368 .35127920 .35454545 .41794872 .33385827

.40941119 .40731707 .34782609 .44637681 .46771654 .28999518 .44735647 .44225352

.38210526 .38836698 .43046358 .35519779 .35309085 .37766497 .32323944 .42435897

.33156411 .35086207 .38409079 .43162688 .33169802 .33179014 .39445742 .76019779

.31194030 1.0372093 .40696792 .32857143 .50000000 .46086957 .44774961 .32233247

.28397202 .40371842 .43131085 .30621535 .36064399 .42180205 .36694491 .38763065

.32372077 .46714676 .37572368 .50093192 .42493651 .44708414 .46210666 .40499216

.42691421 .31215912 .33715019 .41609195 .44216798 .66325800 .45115612 .42237910

.49687500 .35862414 .46388889 .29500000 .36101695 .34615385 .35499955 .60402322

1.0189655 .41029573 .34296296 .64124371 .30604396 .32229974 .35287146 .28846329

.35937623 .41885522 .47857143 .33068845 .35844145 .34411765 .43279448 .31445171

.35307692 .39417476 .40025031 .37278618 .38315018 .30309278 .32121212 .41276596

.29803922 .32987013 .35102318 .38227387 .34295926 .42909507 .32040939 .37746229

.60000000 .30774411 .26480881 .46666667 .34485196 .29925558 .32210012 .41197668

.30526316 .33661202 .38975332 .88339453 .42599759 .52371795 .36898816 .42788761

.35254556 .29192050 .42027388 .66403712 .41456757 .35632745 .51550596 .34190779

.39797964 .44653534 .48611111 .29919168 .46157697 .46317115 .33850599 .43573467

.35412957 .49291154 .58181818 .35217391 .42105263 .36800000 .51343284 .43325299

.41530612 .39948623 .40938272 .34812651 .30070351 .34521864 .36174870 .38581738

.31320933 .32862461 .43511057 .68444444 .37031250 .41312581 .49055883 .35109701

.40036430 .38032787 .34193548 .46626506 .36518519 .41862745 .42300000 .52873978

.75368796 .61443875 .36039641 .44725275 .44485374 .32085561 .41862364 .42755752

.33613972 .44105263 .31824481 .53176107 .41065550 .30623557 .45000000 .49487179

.61818182 .33511231 .48438691 .41693186 .43283236 .37570054 .50347642 .47011494

.36414283 .40088389 .51519730 .42358491 .50789133 .47054370 .76801909 .42611164

.40518608 .83157895 .69180328 .30702359 .61551724 .34855740 .36897507 .40486986

.44043199 .38283582 .41778392 .42820082 .35030303 .57014925 .44293005 .49751237

.41651044 .43809524 .52913359 .39230769 .47901786 .42222222 .63859649 .30740677

.31363636 .39481785 .39685039 .37730496 .54260655 .35151515 .32500000 .39531250

.71334702 .38518519 .31848341 .93529412 .34925373 .30822511 .43016019 .35151515

.36534392 .33262599 .40833333 .36198004 .54482759 .35923567 .34470775 .41889885

.33185079 .39661117 .49230046 .77736721 .52000000 .40254927 .49304700 .47689745

.60751605 .55358844 .47263158 .65029382 .56464104 .33684211 .50063800 .48724730

.78888889 .45825243 .42960725 .40787602 .35759885 .69715250 .45258216 .43331980

.36666667 .46831683 .97307867 .39821821 .38700519 .68176671 .34945652 .40139733

.40922082 .62203093 .44814785 .91025641 .43783357 .90447430 .42954839 .42047244

.64094488 .48383838 .45089286 .45691952 .40803776 .41061655 .37109663 .67960428

.99413058 .34427861 .45663717 .54186047 .37363155 .80000000 .76497175 .32500000



Raw Data and DATA Steps � MATCH_11 1641

.84935065 .61088435 .45998623 .77664859 .69402313 .36459234 .49941566 .63055556

.58733706 1.1000000 .93187732 .52490421 .65737154 .34883721 .34608774 .41672241

.79112061 .40121951 .41143135 .62542286 .59294118 .70557643 .40294626 .35397212

.41219512 .31075949 .26930693 .40454545 .31108137 .49200000 .27139374 .41372485

.43806452 .45517241 .63285522 .43750000 .30439560 .48616397 .84500000 .43835186

.44195906 .27629645 1.1397590 .83225973 .36765957 .99000000 1.1000000 .51007752

.37777778 .45157233 .37777778 .24705882 .29638554 .50839695 .34103448 .61407035

.62142857 1.1420930 .24882264 .24882252 .38400479 1.0287129 .53600000 .45454545

.34254784 1.1708958 .34834044 1.1428621 .34473328 .25082316 .55200000 .63172809

.53940283 .59130435 .55053902 1.0996063 .59835451 1.3129808 .37537313 .39957537

.40434783 .60085874 1.1000000 .50674847 .36949153 .36616816 .37361111 .40408163

.54482759 .41276596 .38477893 .40628515 .49311386 .37478741 .37880256 .38030140

.54842529 .53609467 .57518759 .93269690 .42526690 .42567608 1.0505882 1.0414333

1.0500000 .55906977 .54456662

;

MATCH_11

data match_11;

input Pair Low Age Lwt Race Smoke Ptd Ht UI @@;

select(race);

when (1) do;

race1=0;

race2=0;

end;

when (2) do;

race1=1;

race2=0;

end;

when (3) do;

race1=0;

race2=1;

end;

end;

datalines;

1 0 14 135 1 0 0 0 0 1 1 14 101 3 1 1 0 0

2 0 15 98 2 0 0 0 0 2 1 15 115 3 0 0 0 1

3 0 16 95 3 0 0 0 0 3 1 16 130 3 0 0 0 0

4 0 17 103 3 0 0 0 0 4 1 17 130 3 1 1 0 1

5 0 17 122 1 1 0 0 0 5 1 17 110 1 1 0 0 0

6 0 17 113 2 0 0 0 0 6 1 17 120 1 1 0 0 0

7 0 17 113 2 0 0 0 0 7 1 17 120 2 0 0 0 0

8 0 17 119 3 0 0 0 0 8 1 17 142 2 0 0 1 0

9 0 18 100 1 1 0 0 0 9 1 18 148 3 0 0 0 0

10 0 18 90 1 1 0 0 1 10 1 18 110 2 1 1 0 0

11 0 19 150 3 0 0 0 0 11 1 19 91 1 1 1 0 1

12 0 19 115 3 0 0 0 0 12 1 19 102 1 0 0 0 0

13 0 19 235 1 1 0 1 0 13 1 19 112 1 1 0 0 1

14 0 20 120 3 0 0 0 1 14 1 20 150 1 1 0 0 0

15 0 20 103 3 0 0 0 0 15 1 20 125 3 0 0 0 1

16 0 20 169 3 0 1 0 1 16 1 20 120 2 1 0 0 0

17 0 20 141 1 0 1 0 1 17 1 20 80 3 1 0 0 1



1642 PROCLIB.DELAY � Appendix 3

18 0 20 121 2 1 0 0 0 18 1 20 109 3 0 0 0 0

19 0 20 127 3 0 0 0 0 19 1 20 121 1 1 1 0 1

20 0 20 120 3 0 0 0 0 20 1 20 122 2 1 0 0 0

21 0 20 158 1 0 0 0 0 21 1 20 105 3 0 0 0 0

22 0 21 108 1 1 0 0 1 22 1 21 165 1 1 0 1 0

23 0 21 124 3 0 0 0 0 23 1 21 200 2 0 0 0 0

24 0 21 185 2 1 0 0 0 24 1 21 103 3 0 0 0 0

25 0 21 160 1 0 0 0 0 25 1 21 100 3 0 1 0 0

26 0 21 115 1 0 0 0 0 26 1 21 130 1 1 0 1 0

27 0 22 95 3 0 0 1 0 27 1 22 130 1 1 0 0 0

28 0 22 158 2 0 1 0 0 28 1 22 130 1 1 1 0 1

29 0 23 130 2 0 0 0 0 29 1 23 97 3 0 0 0 1

30 0 23 128 3 0 0 0 0 30 1 23 187 2 1 0 0 0

31 0 23 119 3 0 0 0 0 31 1 23 120 3 0 0 0 0

32 0 23 115 3 1 0 0 0 32 1 23 110 1 1 1 0 0

33 0 23 190 1 0 0 0 0 33 1 23 94 3 1 0 0 0

34 0 24 90 1 1 1 0 0 34 1 24 128 2 0 1 0 0

35 0 24 115 1 0 0 0 0 35 1 24 132 3 0 0 1 0

36 0 24 110 3 0 0 0 0 36 1 24 155 1 1 1 0 0

37 0 24 115 3 0 0 0 0 37 1 24 138 1 0 0 0 0

38 0 24 110 3 0 1 0 0 38 1 24 105 2 1 0 0 0

39 0 25 118 1 1 0 0 0 39 1 25 105 3 0 1 1 0

40 0 25 120 3 0 0 0 1 40 1 25 85 3 0 0 0 1

41 0 25 155 1 0 0 0 0 41 1 25 115 3 0 0 0 0

42 0 25 125 2 0 0 0 0 42 1 25 92 1 1 0 0 0

43 0 25 140 1 0 0 0 0 43 1 25 89 3 0 1 0 0

44 0 25 241 2 0 0 1 0 44 1 25 105 3 0 1 0 0

45 0 26 113 1 1 0 0 0 45 1 26 117 1 1 1 0 0

46 0 26 168 2 1 0 0 0 46 1 26 96 3 0 0 0 0

47 0 26 133 3 1 1 0 0 47 1 26 154 3 0 1 1 0

48 0 26 160 3 0 0 0 0 48 1 26 190 1 1 0 0 0

49 0 27 124 1 1 0 0 0 49 1 27 130 2 0 0 0 1

50 0 28 120 3 0 0 0 0 50 1 28 120 3 1 1 0 1

51 0 28 130 3 0 0 0 0 51 1 28 95 1 1 0 0 0

52 0 29 135 1 0 0 0 0 52 1 29 130 1 0 0 0 1

53 0 30 95 1 1 0 0 0 53 1 30 142 1 1 1 0 0

54 0 31 215 1 1 0 0 0 54 1 31 102 1 1 1 0 0

55 0 32 121 3 0 0 0 0 55 1 32 105 1 1 0 0 0

56 0 34 170 1 0 1 0 0 56 1 34 187 2 1 0 1 0

;

PROCLIB.DELAY

data proclib.delay;

input flight $3. +5 date date7. +2 orig $3. +3 dest $3. +3

delaycat $15. +2 destype $15. +8 delay;

informat date date7.;

format date date7.;

datalines;

114 01MAR94 LGA LAX 1-10 Minutes Domestic 8

202 01MAR94 LGA ORD No Delay Domestic -5

219 01MAR94 LGA LON 11+ Minutes International 18



Raw Data and DATA Steps � PROCLIB.EMP95 1643

622 01MAR94 LGA FRA No Delay International -5

132 01MAR94 LGA YYZ 11+ Minutes International 14

271 01MAR94 LGA PAR 1-10 Minutes International 5

302 01MAR94 LGA WAS No Delay Domestic -2

114 02MAR94 LGA LAX No Delay Domestic 0

202 02MAR94 LGA ORD 1-10 Minutes Domestic 5

219 02MAR94 LGA LON 11+ Minutes International 18

622 02MAR94 LGA FRA No Delay International 0

132 02MAR94 LGA YYZ 1-10 Minutes International 5

271 02MAR94 LGA PAR 1-10 Minutes International 4

302 02MAR94 LGA WAS No Delay Domestic 0

114 03MAR94 LGA LAX No Delay Domestic -1

202 03MAR94 LGA ORD No Delay Domestic -1

219 03MAR94 LGA LON 1-10 Minutes International 4

622 03MAR94 LGA FRA No Delay International -2

132 03MAR94 LGA YYZ 1-10 Minutes International 6

271 03MAR94 LGA PAR 1-10 Minutes International 2

302 03MAR94 LGA WAS 1-10 Minutes Domestic 5

114 04MAR94 LGA LAX 11+ Minutes Domestic 15

202 04MAR94 LGA ORD No Delay Domestic -5

219 04MAR94 LGA LON 1-10 Minutes International 3

622 04MAR94 LGA FRA 11+ Minutes International 30

132 04MAR94 LGA YYZ No Delay International -5

271 04MAR94 LGA PAR 1-10 Minutes International 5

302 04MAR94 LGA WAS 1-10 Minutes Domestic 7

114 05MAR94 LGA LAX No Delay Domestic -2

202 05MAR94 LGA ORD 1-10 Minutes Domestic 2

219 05MAR94 LGA LON 1-10 Minutes International 3

622 05MAR94 LGA FRA No Delay International -6

132 05MAR94 LGA YYZ 1-10 Minutes International 3

271 05MAR94 LGA PAR 1-10 Minutes International 5

114 06MAR94 LGA LAX No Delay Domestic -1

202 06MAR94 LGA ORD No Delay Domestic -3

219 06MAR94 LGA LON 11+ Minutes International 27

132 06MAR94 LGA YYZ 1-10 Minutes International 7

302 06MAR94 LGA WAS 1-10 Minutes Domestic 1

114 07MAR94 LGA LAX No Delay Domestic -1

202 07MAR94 LGA ORD No Delay Domestic -2

219 07MAR94 LGA LON 11+ Minutes International 15

622 07MAR94 LGA FRA 11+ Minutes International 21

132 07MAR94 LGA YYZ No Delay International -2

271 07MAR94 LGA PAR 1-10 Minutes International 4

302 07MAR94 LGA WAS No Delay Domestic 0

;

PROCLIB.EMP95

data proclib.emp95;

input #1 idnum $4. @6 name $15.

#2 address $42.

#3 salary 6.;

datalines;



1644 PROCLIB.EMP96 � Appendix 3

2388 James Schmidt

100 Apt. C Blount St. SW Raleigh NC 27693

92100

2457 Fred Williams

99 West Lane Garner NC 27509

33190

2776 Robert Jones

12988 Wellington Farms Ave. Cary NC 27512

29025

8699 Jerry Capalleti

222 West L St. Oxford NC 27587

39985

2100 Lanny Engles

293 Manning Pl. Raleigh NC 27606

30998

9857 Kathy Krupski

1000 Taft Ave. Morrisville NC 27508

38756

0987 Dolly Lunford

2344 Persimmons Branch Apex NC 27505

44010

3286 Hoa Nguyen

2818 Long St. Cary NC 27513

87734

6579 Bryan Samosky

3887 Charles Ave. Garner NC 27508

50234

3888 Kim Siu

5662 Magnolia Blvd Southeast Cary NC 27513

77558

;

PROCLIB.EMP96

data proclib.emp96;

input #1 idnum $4. @6 name $15.

#2 address $42.

#3 salary 6.;

datalines;

2388 James Schmidt

100 Apt. C Blount St. SW Raleigh NC 27693

92100

2457 Fred Williams

99 West Lane Garner NC 27509

33190

2776 Robert Jones

12988 Wellington Farms Ave. Cary NC 27511

29025

8699 Jerry Capalleti

222 West L St. Oxford NC 27587

39985



Raw Data and DATA Steps � PROCLIB.INTERNAT 1645

3278 Mary Cravens

211 N. Cypress St. Cary NC 27512

35362

2100 Lanny Engles

293 Manning Pl. Raleigh NC 27606

30998

9857 Kathy Krupski

100 Taft Ave. Morrisville NC 27508

40456

0987 Dolly Lunford

2344 Persimmons Branch Trail Apex NC 27505

45110

3286 Hoa Nguyen

2818 Long St. Cary NC 27513

89834

6579 Bryan Samosky

3887 Charles Ave. Garner NC 27508

50234

3888 Kim Siu

5662 Magnolia Blvd Southwest Cary NC 27513

79958

6544 Roger Monday

3004 Crepe Myrtle Court Raleigh NC 27604

47007

;

PROCLIB.INTERNAT

data proclib.internat;

input flight $3. +5 date date7. +2 dest $3. +8 boarded;

informat date date7.;

format date date7.;

datalines;

219 01MAR94 LON 198

622 01MAR94 FRA 207

132 01MAR94 YYZ 115

271 01MAR94 PAR 138

219 02MAR94 LON 147

622 02MAR94 FRA 176

132 02MAR94 YYZ 106

271 02MAR94 PAR 172

219 03MAR94 LON 197

622 03MAR94 FRA 180

132 03MAR94 YYZ 75

271 03MAR94 PAR 147

219 04MAR94 LON 232

622 04MAR94 FRA 137

132 04MAR94 YYZ 117

271 04MAR94 PAR 146

219 05MAR94 LON 160

622 05MAR94 FRA 185

132 05MAR94 YYZ 157



1646 PROCLIB.LAKES � Appendix 3

271 05MAR94 PAR 177

219 06MAR94 LON 163

132 06MAR94 YYZ 150

219 07MAR94 LON 241

622 07MAR94 FRA 210

132 07MAR94 YYZ 164

271 07MAR94 PAR 155

;

PROCLIB.LAKES

data proclib.lakes;

input region $ 1-2 lake $ 5-13 pol_a1 pol_a2 pol_b1-pol_b4;

datalines;

NE Carr 0.24 0.99 0.95 0.36 0.44 0.67

NE Duraleigh 0.34 0.01 0.48 0.58 0.12 0.56

NE Charlie 0.40 0.48 0.29 0.56 0.52 0.95

NE Farmer 0.60 0.65 0.25 0.20 0.30 0.64

NW Canyon 0.63 0.44 0.20 0.98 0.19 0.01

NW Morris 0.85 0.95 0.80 0.67 0.32 0.81

NW Golf 0.69 0.37 0.08 0.72 0.71 0.32

NW Falls 0.01 0.02 0.59 0.58 0.67 0.02

SE Pleasant 0.16 0.96 0.71 0.35 0.35 0.48

SE Juliette 0.82 0.35 0.09 0.03 0.59 0.90

SE Massey 1.01 0.77 0.45 0.32 0.55 0.66

SE Delta 0.84 1.05 0.90 0.09 0.64 0.03

SW Alumni 0.45 0.32 0.45 0.44 0.55 0.12

SW New Dam 0.80 0.70 0.31 0.98 1.00 0.22

SW Border 0.51 0.04 0.55 0.35 0.45 0.78

SW Red 0.22 0.09 0.02 0.10 0.32 0.01

;

PROCLIB.MARCH

data proclib.march;

input flight $3. +5 date date7. +3 depart time5. +2 orig $3.

+3 dest $3. +7 miles +6 boarded +6 capacity;

format date date7. depart time5.;

informat date date7. depart time5.;

datalines;

114 01MAR94 7:10 LGA LAX 2475 172 210

202 01MAR94 10:43 LGA ORD 740 151 210

219 01MAR94 9:31 LGA LON 3442 198 250

622 01MAR94 12:19 LGA FRA 3857 207 250

132 01MAR94 15:35 LGA YYZ 366 115 178

271 01MAR94 13:17 LGA PAR 3635 138 250

302 01MAR94 20:22 LGA WAS 229 105 180

114 02MAR94 7:10 LGA LAX 2475 119 210

202 02MAR94 10:43 LGA ORD 740 120 210

219 02MAR94 9:31 LGA LON 3442 147 250



Raw Data and DATA Steps � PROCLIB.PAYLIST2 1647

622 02MAR94 12:19 LGA FRA 3857 176 250

132 02MAR94 15:35 LGA YYZ 366 106 178

302 02MAR94 20:22 LGA WAS 229 78 180

271 02MAR94 13:17 LGA PAR 3635 104 250

114 03MAR94 7:10 LGA LAX 2475 197 210

202 03MAR94 10:43 LGA ORD 740 118 210

219 03MAR94 9:31 LGA LON 3442 197 250

622 03MAR94 12:19 LGA FRA 3857 180 250

132 03MAR94 15:35 LGA YYZ 366 75 178

271 03MAR94 13:17 LGA PAR 3635 147 250

302 03MAR94 20:22 LGA WAS 229 123 180

114 04MAR94 7:10 LGA LAX 2475 178 210

202 04MAR94 10:43 LGA ORD 740 148 210

219 04MAR94 9:31 LGA LON 3442 232 250

622 04MAR94 12:19 LGA FRA 3857 137 250

132 04MAR94 15:35 LGA YYZ 366 117 178

271 04MAR94 13:17 LGA PAR 3635 146 250

302 04MAR94 20:22 LGA WAS 229 115 180

114 05MAR94 7:10 LGA LAX 2475 117 210

202 05MAR94 10:43 LGA ORD 740 104 210

219 05MAR94 9:31 LGA LON 3442 160 250

622 05MAR94 12:19 LGA FRA 3857 185 250

132 05MAR94 15:35 LGA YYZ 366 157 178

271 05MAR94 13:17 LGA PAR 3635 177 250

114 06MAR94 7:10 LGA LAX 2475 128 210

202 06MAR94 10:43 LGA ORD 740 115 210

219 06MAR94 9:31 LGA LON 3442 163 250

132 06MAR94 15:35 LGA YYZ 366 150 178

302 06MAR94 20:22 LGA WAS 229 66 180

114 07MAR94 7:10 LGA LAX 2475 160 210

202 07MAR94 10:43 LGA ORD 740 175 210

219 07MAR94 9:31 LGA LON 3442 241 250

622 07MAR94 12:19 LGA FRA 3857 210 250

132 07MAR94 15:35 LGA YYZ 366 164 178

271 07MAR94 13:17 LGA PAR 3635 155 250

302 07MAR94 20:22 LGA WAS 229 135 180

;

PROCLIB.PAYLIST2

proc sql;

create table proclib.paylist2

(IdNum char(4),

Gender char(1),

Jobcode char(3),

Salary num,

Birth num informat=date7.

format=date7.,

Hired num informat=date7.

format=date7.);

insert into proclib.paylist2



1648 PROCLIB.PAYROLL � Appendix 3

values(’1919’,’M’,’TA2’,34376,’12SEP66’d,’04JUN87’d)

values(’1653’,’F’,’ME2’,31896,’15OCT64’d,’09AUG92’d)

values(’1350’,’F’,’FA3’,36886,’31AUG55’d,’29JUL91’d)

values(’1401’,’M’,’TA3’,38822,’13DEC55’d,’17NOV93’d)

values(’1499’,’M’,’ME1’,23025,’26APR74’d,’07JUN92’d);

title ’PROCLIB.PAYLIST2 Table’;

select * from proclib.paylist2;

PROCLIB.PAYROLL

This data set (table) is updated in Example 3 on page 1211 and its updated data is
used in subsequent examples.

data proclib.payroll;

input IdNumber $4. +3 Gender $1. +4 Jobcode $3. +9 Salary 5.

+2 Birth date7. +2 Hired date7.;

informat birth date7. hired date7.;

format birth date7. hired date7.;

datalines;

1919 M TA2 34376 12SEP60 04JUN87

1653 F ME2 35108 15OCT64 09AUG90

1400 M ME1 29769 05NOV67 16OCT90

1350 F FA3 32886 31AUG65 29JUL90

1401 M TA3 38822 13DEC50 17NOV85

1499 M ME3 43025 26APR54 07JUN80

1101 M SCP 18723 06JUN62 01OCT90

1333 M PT2 88606 30MAR61 10FEB81

1402 M TA2 32615 17JAN63 02DEC90

1479 F TA3 38785 22DEC68 05OCT89

1403 M ME1 28072 28JAN69 21DEC91

1739 M PT1 66517 25DEC64 27JAN91

1658 M SCP 17943 08APR67 29FEB92

1428 F PT1 68767 04APR60 16NOV91

1782 M ME2 35345 04DEC70 22FEB92

1244 M ME2 36925 31AUG63 17JAN88

1383 M BCK 25823 25JAN68 20OCT92

1574 M FA2 28572 27APR60 20DEC92

1789 M SCP 18326 25JAN57 11APR78

1404 M PT2 91376 24FEB53 01JAN80

1437 F FA3 33104 20SEP60 31AUG84

1639 F TA3 40260 26JUN57 28JAN84

1269 M NA1 41690 03MAY72 28NOV92

1065 M ME2 35090 26JAN44 07JAN87

1876 M TA3 39675 20MAY58 27APR85

1037 F TA1 28558 10APR64 13SEP92

1129 F ME2 34929 08DEC61 17AUG91

1988 M FA3 32217 30NOV59 18SEP84

1405 M SCP 18056 05MAR66 26JAN92

1430 F TA2 32925 28FEB62 27APR87

1983 F FA3 33419 28FEB62 27APR87

1134 F TA2 33462 05MAR69 21DEC88

1118 M PT3 111379 16JAN44 18DEC80



Raw Data and DATA Steps � PROCLIB.PAYROLL 1649

1438 F TA3 39223 15MAR65 18NOV87

1125 F FA2 28888 08NOV68 11DEC87

1475 F FA2 27787 15DEC61 13JUL90

1117 M TA3 39771 05JUN63 13AUG92

1935 F NA2 51081 28MAR54 16OCT81

1124 F FA1 23177 10JUL58 01OCT90

1422 F FA1 22454 04JUN64 06APR91

1616 F TA2 34137 01MAR70 04JUN93

1406 M ME2 35185 08MAR61 17FEB87

1120 M ME1 28619 11SEP72 07OCT93

1094 M FA1 22268 02APR70 17APR91

1389 M BCK 25028 15JUL59 18AUG90

1905 M PT1 65111 16APR72 29MAY92

1407 M PT1 68096 23MAR69 18MAR90

1114 F TA2 32928 18SEP69 27JUN87

1410 M PT2 84685 03MAY67 07NOV86

1439 F PT1 70736 06MAR64 10SEP90

1409 M ME3 41551 19APR50 22OCT81

1408 M TA2 34138 29MAR60 14OCT87

1121 M ME1 29112 26SEP71 07DEC91

1991 F TA1 27645 07MAY72 12DEC92

1102 M TA2 34542 01OCT59 15APR91

1356 M ME2 36869 26SEP57 22FEB83

1545 M PT1 66130 12AUG59 29MAY90

1292 F ME2 36691 28OCT64 02JUL89

1440 F ME2 35757 27SEP62 09APR91

1368 M FA2 27808 11JUN61 03NOV84

1369 M TA2 33705 28DEC61 13MAR87

1411 M FA2 27265 27MAY61 01DEC89

1113 F FA1 22367 15JAN68 17OCT91

1704 M BCK 25465 30AUG66 28JUN87

1900 M ME2 35105 25MAY62 27OCT87

1126 F TA3 40899 28MAY63 21NOV80

1677 M BCK 26007 05NOV63 27MAR89

1441 F FA2 27158 19NOV69 23MAR91

1421 M TA2 33155 08JAN59 28FEB90

1119 M TA1 26924 20JUN62 06SEP88

1834 M BCK 26896 08FEB72 02JUL92

1777 M PT3 109630 23SEP51 21JUN81

1663 M BCK 26452 11JAN67 11AUG91

1106 M PT2 89632 06NOV57 16AUG84

1103 F FA1 23738 16FEB68 23JUL92

1477 M FA2 28566 21MAR64 07MAR88

1476 F TA2 34803 30MAY66 17MAR87

1379 M ME3 42264 08AUG61 10JUN84

1104 M SCP 17946 25APR63 10JUN91

1009 M TA1 28880 02MAR59 26MAR92

1412 M ME1 27799 18JUN56 05DEC91

1115 F FA3 32699 22AUG60 29FEB80

1128 F TA2 32777 23MAY65 20OCT90

1442 F PT2 84536 05SEP66 12APR88

1417 M NA2 52270 27JUN64 07MAR89

1478 M PT2 84203 09AUG59 24OCT90

1673 M BCK 25477 27FEB70 15JUL91



1650 PROCLIB.PAYROLL � Appendix 3

1839 F NA1 43433 29NOV70 03JUL93

1347 M TA3 40079 21SEP67 06SEP84

1423 F ME2 35773 14MAY68 19AUG90

1200 F ME1 27816 10JAN71 14AUG92

1970 F FA1 22615 25SEP64 12MAR91

1521 M ME3 41526 12APR63 13JUL88

1354 F SCP 18335 29MAY71 16JUN92

1424 F FA2 28978 04AUG69 11DEC89

1132 F FA1 22413 30MAY72 22OCT93

1845 M BCK 25996 20NOV59 22MAR80

1556 M PT1 71349 22JUN64 11DEC91

1413 M FA2 27435 16SEP65 02JAN90

1123 F TA1 28407 31OCT72 05DEC92

1907 M TA2 33329 15NOV60 06JUL87

1436 F TA2 34475 11JUN64 12MAR87

1385 M ME3 43900 16JAN62 01APR86

1432 F ME2 35327 03NOV61 10FEB85

1111 M NA1 40586 14JUL73 31OCT92

1116 F FA1 22862 28SEP69 21MAR91

1352 M NA2 53798 02DEC60 16OCT86

1555 F FA2 27499 16MAR68 04JUL92

1038 F TA1 26533 09NOV69 23NOV91

1420 M ME3 43071 19FEB65 22JUL87

1561 M TA2 34514 30NOV63 07OCT87

1434 F FA2 28622 11JUL62 28OCT90

1414 M FA1 23644 24MAR72 12APR92

1112 M TA1 26905 29NOV64 07DEC92

1390 M FA2 27761 19FEB65 23JUN91

1332 M NA1 42178 17SEP70 04JUN91

1890 M PT2 91908 20JUL51 25NOV79

1429 F TA1 27939 28FEB60 07AUG92

1107 M PT2 89977 09JUN54 10FEB79

1908 F TA2 32995 10DEC69 23APR90

1830 F PT2 84471 27MAY57 29JAN83

1882 M ME3 41538 10JUL57 21NOV78

1050 M ME2 35167 14JUL63 24AUG86

1425 F FA1 23979 28DEC71 28FEB93

1928 M PT2 89858 16SEP54 13JUL90

1480 F TA3 39583 03SEP57 25MAR81

1100 M BCK 25004 01DEC60 07MAY88

1995 F ME1 28810 24AUG73 19SEP93

1135 F FA2 27321 20SEP60 31MAR90

1415 M FA2 28278 09MAR58 12FEB88

1076 M PT1 66558 14OCT55 03OCT91

1426 F TA2 32991 05DEC66 25JUN90

1564 F SCP 18833 12APR62 01JUL92

1221 F FA2 27896 22SEP67 04OCT91

1133 M TA1 27701 13JUL66 12FEB92

1435 F TA3 38808 12MAY59 08FEB80

1418 M ME1 28005 29MAR57 06JAN92

1017 M TA3 40858 28DEC57 16OCT81

1443 F NA1 42274 17NOV68 29AUG91

1131 F TA2 32575 26DEC71 19APR91

1427 F TA2 34046 31OCT70 30JAN90



Raw Data and DATA Steps � PROCLIB.SCHEDULE 1651

1036 F TA3 39392 19MAY65 23OCT84

1130 F FA1 23916 16MAY71 05JUN92

1127 F TA2 33011 09NOV64 07DEC86

1433 F FA3 32982 08JUL66 17JAN87

1431 F FA3 33230 09JUN64 05APR88

1122 F FA2 27956 01MAY63 27NOV88

1105 M ME2 34805 01MAR62 13AUG90

;

PROCLIB.PAYROLL2

data proclib.payroll2;

input idnum $4. +3 gender $1. +4 jobcode $3. +9 salary 5.

+2 birth date7. +2 hired date7.;

informat birth date7. hired date7.;

format birth date7. hired date7.;

datalines;

1639 F TA3 42260 26JUN57 28JAN84

1065 M ME3 38090 26JAN44 07JAN87

1561 M TA3 36514 30NOV63 07OCT87

1221 F FA3 29896 22SEP67 04OCT91

1447 F FA1 22123 07AUG72 29OCT92

1998 M SCP 23100 10SEP70 02NOV92

1036 F TA3 42465 19MAY65 23OCT84

1106 M PT3 94039 06NOV57 16AUG84

1129 F ME3 36758 08DEC61 17AUG91

1350 F FA3 36098 31AUG65 29JUL90

1369 M TA3 36598 28DEC61 13MAR87

1076 M PT1 69742 14OCT55 03OCT91

;

PROCLIB.SCHEDULE

data proclib.schedule;

input flight $3. +5 date date7. +2 dest $3. +3 idnum $4.;

format date date7.;

informat date date7.;

datalines;

132 01MAR94 YYZ 1739

132 01MAR94 YYZ 1478

132 01MAR94 YYZ 1130

132 01MAR94 YYZ 1390

132 01MAR94 YYZ 1983

132 01MAR94 YYZ 1111

219 01MAR94 LON 1407

219 01MAR94 LON 1777

219 01MAR94 LON 1103

219 01MAR94 LON 1125

219 01MAR94 LON 1350

219 01MAR94 LON 1332



1652 PROCLIB.SCHEDULE � Appendix 3

271 01MAR94 PAR 1439

271 01MAR94 PAR 1442

271 01MAR94 PAR 1132

271 01MAR94 PAR 1411

271 01MAR94 PAR 1988

271 01MAR94 PAR 1443

622 01MAR94 FRA 1545

622 01MAR94 FRA 1890

622 01MAR94 FRA 1116

622 01MAR94 FRA 1221

622 01MAR94 FRA 1433

622 01MAR94 FRA 1352

132 02MAR94 YYZ 1556

132 02MAR94 YYZ 1478

132 02MAR94 YYZ 1113

132 02MAR94 YYZ 1411

132 02MAR94 YYZ 1574

132 02MAR94 YYZ 1111

219 02MAR94 LON 1407

219 02MAR94 LON 1118

219 02MAR94 LON 1132

219 02MAR94 LON 1135

219 02MAR94 LON 1441

219 02MAR94 LON 1332

271 02MAR94 PAR 1739

271 02MAR94 PAR 1442

271 02MAR94 PAR 1103

271 02MAR94 PAR 1413

271 02MAR94 PAR 1115

271 02MAR94 PAR 1443

622 02MAR94 FRA 1439

622 02MAR94 FRA 1890

622 02MAR94 FRA 1124

622 02MAR94 FRA 1368

622 02MAR94 FRA 1477

622 02MAR94 FRA 1352

132 03MAR94 YYZ 1739

132 03MAR94 YYZ 1928

132 03MAR94 YYZ 1425

132 03MAR94 YYZ 1135

132 03MAR94 YYZ 1437

132 03MAR94 YYZ 1111

219 03MAR94 LON 1428

219 03MAR94 LON 1442

219 03MAR94 LON 1130

219 03MAR94 LON 1411

219 03MAR94 LON 1115

219 03MAR94 LON 1332

271 03MAR94 PAR 1905

271 03MAR94 PAR 1118

271 03MAR94 PAR 1970

271 03MAR94 PAR 1125

271 03MAR94 PAR 1983

271 03MAR94 PAR 1443



Raw Data and DATA Steps � PROCLIB.SCHEDULE 1653

622 03MAR94 FRA 1545

622 03MAR94 FRA 1830

622 03MAR94 FRA 1414

622 03MAR94 FRA 1368

622 03MAR94 FRA 1431

622 03MAR94 FRA 1352

132 04MAR94 YYZ 1428

132 04MAR94 YYZ 1118

132 04MAR94 YYZ 1103

132 04MAR94 YYZ 1390

132 04MAR94 YYZ 1350

132 04MAR94 YYZ 1111

219 04MAR94 LON 1739

219 04MAR94 LON 1478

219 04MAR94 LON 1130

219 04MAR94 LON 1125

219 04MAR94 LON 1983

219 04MAR94 LON 1332

271 04MAR94 PAR 1407

271 04MAR94 PAR 1410

271 04MAR94 PAR 1094

271 04MAR94 PAR 1411

271 04MAR94 PAR 1115

271 04MAR94 PAR 1443

622 04MAR94 FRA 1545

622 04MAR94 FRA 1890

622 04MAR94 FRA 1116

622 04MAR94 FRA 1221

622 04MAR94 FRA 1433

622 04MAR94 FRA 1352

132 05MAR94 YYZ 1556

132 05MAR94 YYZ 1890

132 05MAR94 YYZ 1113

132 05MAR94 YYZ 1475

132 05MAR94 YYZ 1431

132 05MAR94 YYZ 1111

219 05MAR94 LON 1428

219 05MAR94 LON 1442

219 05MAR94 LON 1422

219 05MAR94 LON 1413

219 05MAR94 LON 1574

219 05MAR94 LON 1332

271 05MAR94 PAR 1739

271 05MAR94 PAR 1928

271 05MAR94 PAR 1103

271 05MAR94 PAR 1477

271 05MAR94 PAR 1433

271 05MAR94 PAR 1443

622 05MAR94 FRA 1545

622 05MAR94 FRA 1830

622 05MAR94 FRA 1970

622 05MAR94 FRA 1441

622 05MAR94 FRA 1350

622 05MAR94 FRA 1352



1654 PROCLIB.STAFF � Appendix 3

132 06MAR94 YYZ 1333

132 06MAR94 YYZ 1890

132 06MAR94 YYZ 1414

132 06MAR94 YYZ 1475

132 06MAR94 YYZ 1437

132 06MAR94 YYZ 1111

219 06MAR94 LON 1106

219 06MAR94 LON 1118

219 06MAR94 LON 1425

219 06MAR94 LON 1434

219 06MAR94 LON 1555

219 06MAR94 LON 1332

132 07MAR94 YYZ 1407

132 07MAR94 YYZ 1118

132 07MAR94 YYZ 1094

132 07MAR94 YYZ 1555

132 07MAR94 YYZ 1350

132 07MAR94 YYZ 1111

219 07MAR94 LON 1905

219 07MAR94 LON 1478

219 07MAR94 LON 1124

219 07MAR94 LON 1434

219 07MAR94 LON 1983

219 07MAR94 LON 1332

271 07MAR94 PAR 1410

271 07MAR94 PAR 1777

271 07MAR94 PAR 1103

271 07MAR94 PAR 1574

271 07MAR94 PAR 1115

271 07MAR94 PAR 1443

622 07MAR94 FRA 1107

622 07MAR94 FRA 1890

622 07MAR94 FRA 1425

622 07MAR94 FRA 1475

622 07MAR94 FRA 1433

622 07MAR94 FRA 1352

;

PROCLIB.STAFF

data proclib.staff;

input idnum $4. +3 lname $15. +2 fname $15. +2 city $15. +2

state $2. +5 hphone $12.;

datalines;

1919 ADAMS GERALD STAMFORD CT 203/781-1255

1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715

1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808

1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549

1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787

1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665

1101 BAUCOM WALTER NEW YORK NY 212/586-8060

1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777



Raw Data and DATA Steps � PROCLIB.STAFF 1655

1402 BLALOCK RALPH NEW YORK NY 718/384-2849

1479 BALLETTI MARIE NEW YORK NY 718/384-8816

1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434

1739 BRANCACCIO JOSEPH NEW YORK NY 212/587-1247

1658 BREUHAUS JEREMY NEW YORK NY 212/587-3622

1428 BRADY CHRISTINE STAMFORD CT 203/781-1212

1782 BREWCZAK JAKOB STAMFORD CT 203/781-0019

1244 BUCCI ANTHONY NEW YORK NY 718/383-3334

1383 BURNETTE THOMAS NEW YORK NY 718/384-3569

1574 CAHILL MARSHALL NEW YORK NY 718/383-2338

1789 CARAWAY DAVIS NEW YORK NY 212/587-9000

1404 COHEN LEE NEW YORK NY 718/384-2946

1437 CARTER DOROTHY BRIDGEPORT CT 203/675-4117

1639 CARTER-COHEN KAREN STAMFORD CT 203/781-8839

1269 CASTON FRANKLIN STAMFORD CT 203/781-3335

1065 COPAS FREDERICO NEW YORK NY 718/384-5618

1876 CHIN JACK NEW YORK NY 212/588-5634

1037 CHOW JANE STAMFORD CT 203/781-8868

1129 COUNIHAN BRENDA NEW YORK NY 718/383-2313

1988 COOPER ANTHONY NEW YORK NY 212/587-1228

1405 DACKO JASON PATERSON NJ 201/732-2323

1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647

1983 DEAN SHARON NEW YORK NY 718/384-1647

1134 DELGADO MARIA STAMFORD CT 203/781-1528

1118 DENNIS ROGER NEW YORK NY 718/383-1122

1438 DABBOUSSI KAMILLA STAMFORD CT 203/781-2229

1125 DUNLAP DONNA NEW YORK NY 718/383-2094

1475 ELGES MARGARETE NEW YORK NY 718/383-2828

1117 EDGERTON JOSHUA NEW YORK NY 212/588-1239

1935 FERNANDEZ KATRINA BRIDGEPORT CT 203/675-2962

1124 FIELDS DIANA WHITE PLAINS NY 914/455-2998

1422 FUJIHARA KYOKO PRINCETON NJ 201/812-0902

1616 FUENTAS CARLA NEW YORK NY 718/384-3329

1406 FOSTER GERALD BRIDGEPORT CT 203/675-6363

1120 GARCIA JACK NEW YORK NY 718/384-4930

1094 GOMEZ ALAN BRIDGEPORT CT 203/675-7181

1389 GOLDSTEIN LEVI NEW YORK NY 718/384-9326

1905 GRAHAM ALVIN NEW YORK NY 212/586-8815

1407 GREGORSKI DANIEL MT. VERNON NY 914/468-1616

1114 GREENWALD JANICE NEW YORK NY 212/588-1092

1410 HARRIS CHARLES STAMFORD CT 203/781-0937

1439 HASENHAUER CHRISTINA BRIDGEPORT CT 203/675-4987

1409 HAVELKA RAYMOND STAMFORD CT 203/781-9697

1408 HENDERSON WILLIAM PRINCETON NJ 201/812-4789

1121 HERNANDEZ ROBERTO NEW YORK NY 718/384-3313

1991 HOWARD GRETCHEN BRIDGEPORT CT 203/675-0007

1102 HERMANN JOACHIM WHITE PLAINS NY 914/455-0976

1356 HOWARD MICHAEL NEW YORK NY 212/586-8411

1545 HERRERO CLYDE STAMFORD CT 203/781-1119

1292 HUNTER HELEN BRIDGEPORT CT 203/675-4830

1440 JACKSON LAURA STAMFORD CT 203/781-0088

1368 JEPSEN RONALD STAMFORD CT 203/781-8413

1369 JONSON ANTHONY NEW YORK NY 212/587-5385

1411 JOHNSEN JACK PATERSON NJ 201/732-3678



1656 PROCLIB.STAFF � Appendix 3

1113 JOHNSON LESLIE NEW YORK NY 718/383-3003

1704 JONES NATHAN NEW YORK NY 718/384-0049

1900 KING WILLIAM NEW YORK NY 718/383-3698

1126 KIMANI ANNE NEW YORK NY 212/586-1229

1677 KRAMER JACKSON BRIDGEPORT CT 203/675-7432

1441 LAWRENCE KATHY PRINCETON NJ 201/812-3337

1421 LEE RUSSELL MT. VERNON NY 914/468-9143

1119 LI JEFF NEW YORK NY 212/586-2344

1834 LEBLANC RUSSELL NEW YORK NY 718/384-0040

1777 LUFKIN ROY NEW YORK NY 718/383-4413

1663 MARKS JOHN NEW YORK NY 212/587-7742

1106 MARSHBURN JASPER STAMFORD CT 203/781-1457

1103 MCDANIEL RONDA NEW YORK NY 212/586-0013

1477 MEYERS PRESTON BRIDGEPORT CT 203/675-8125

1476 MONROE JOYCE STAMFORD CT 203/781-2837

1379 MORGAN ALFRED STAMFORD CT 203/781-2216

1104 MORGAN CHRISTOPHER NEW YORK NY 718/383-9740

1009 MORGAN GEORGE NEW YORK NY 212/586-7753

1412 MURPHEY JOHN PRINCETON NJ 201/812-4414

1115 MURPHY ALICE NEW YORK NY 718/384-1982

1128 NELSON FELICIA BRIDGEPORT CT 203/675-1166

1442 NEWKIRK SANDRA PRINCETON NJ 201/812-3331

1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611

1478 NEWTON JAMES NEW YORK NY 212/587-5549

1673 NICHOLLS HENRY STAMFORD CT 203/781-7770

1839 NORRIS DIANE NEW YORK NY 718/384-1767

1347 O’NEAL BRYAN NEW YORK NY 718/384-0230

1423 OSWALD LESLIE MT. VERNON NY 914/468-9171

1200 OVERMAN MICHELLE STAMFORD CT 203/781-1835

1970 PARKER ANNE NEW YORK NY 718/383-3895

1521 PARKER JAY NEW YORK NY 212/587-7603

1354 PARKER MARY WHITE PLAINS NY 914/455-2337

1424 PATTERSON RENEE NEW YORK NY 212/587-8991

1132 PEARCE CAROL NEW YORK NY 718/384-1986

1845 PEARSON JAMES NEW YORK NY 718/384-2311

1556 PENNINGTON MICHAEL NEW YORK NY 718/383-5681

1413 PETERS RANDALL PRINCETON NJ 201/812-2478

1123 PETERSON SUZANNE NEW YORK NY 718/383-0077

1907 PHELPS WILLIAM STAMFORD CT 203/781-1118

1436 PORTER SUSAN NEW YORK NY 718/383-5777

1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846

1432 REED MARILYN MT. VERNON NY 914/468-5454

1111 RHODES JEREMY PRINCETON NJ 201/812-1837

1116 RICHARDS CASEY NEW YORK NY 212/587-1224

1352 RIVERS SIMON NEW YORK NY 718/383-3345

1555 RODRIGUEZ JULIA BRIDGEPORT CT 203/675-2401

1038 RODRIGUEZ MARIA BRIDGEPORT CT 203/675-2048

1420 ROUSE JEREMY PATERSON NJ 201/732-9834

1561 SANDERS RAYMOND NEW YORK NY 212/588-6615

1434 SANDERSON EDITH STAMFORD CT 203/781-1333

1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715

1112 SANYERS RANDY NEW YORK NY 718/384-4895

1390 SMART JONATHAN NEW YORK NY 718/383-1141

1332 STEPHENSON ADAM BRIDGEPORT CT 203/675-1497



Raw Data and DATA Steps � PROCLIB.SUPERV 1657

1890 STEPHENSON ROBERT NEW YORK NY 718/384-9874

1429 THOMPSON ALICE STAMFORD CT 203/781-3857

1107 THOMPSON WAYNE NEW YORK NY 718/384-3785

1908 TRENTON MELISSA NEW YORK NY 212/586-6262

1830 TRIPP KATHY BRIDGEPORT CT 203/675-2479

1882 TUCKER ALAN NEW YORK NY 718/384-0216

1050 TUTTLE THOMAS WHITE PLAINS NY 914/455-2119

1425 UNDERWOOD JENNY STAMFORD CT 203/781-0978

1928 UPCHURCH LARRY WHITE PLAINS NY 914/455-5009

1480 UPDIKE THERESA NEW YORK NY 212/587-8729

1100 VANDEUSEN RICHARD NEW YORK NY 212/586-2531

1995 VARNER ELIZABETH NEW YORK NY 718/384-7113

1135 VEGA ANNA NEW YORK NY 718/384-5913

1415 VEGA FRANKLIN NEW YORK NY 718/384-2823

1076 VENTER RANDALL NEW YORK NY 718/383-2321

1426 VICK THERESA PRINCETON NJ 201/812-2424

1564 WALTERS ANNE NEW YORK NY 212/587-3257

1221 WALTERS DIANE NEW YORK NY 718/384-1918

1133 WANG CHIN NEW YORK NY 212/587-1956

1435 WARD ELAINE NEW YORK NY 718/383-4987

1418 WATSON BERNARD NEW YORK NY 718/383-1298

1017 WELCH DARIUS NEW YORK NY 212/586-5535

1443 WELLS AGNES STAMFORD CT 203/781-5546

1131 WELLS NADINE NEW YORK NY 718/383-1045

1427 WHALEY CAROLYN MT. VERNON NY 914/468-4528

1036 WONG LESLIE NEW YORK NY 212/587-2570

1130 WOOD DEBORAH NEW YORK NY 212/587-0013

1127 WOOD SANDRA NEW YORK NY 212/587-2881

1433 YANCEY ROBIN PRINCETON NJ 201/812-1874

1431 YOUNG DEBORAH STAMFORD CT 203/781-2987

1122 YOUNG JOANN NEW YORK NY 718/384-2021

1105 YOUNG LAWRENCE NEW YORK NY 718/384-0008

;

PROCLIB.SUPERV

data proclib.superv;

input supid $4. +8 state $2. +5 jobcat $2.;

label supid=’Supervisor Id’ jobcat=’Job Category’;

datalines;

1677 CT BC

1834 NY BC

1431 CT FA

1433 NJ FA

1983 NY FA

1385 CT ME

1420 NJ ME

1882 NY ME

1935 CT NA

1417 NJ NA

1352 NY NA

1106 CT PT



1658 RADIO � Appendix 3

1442 NJ PT

1118 NY PT

1405 NJ SC

1564 NY SC

1639 CT TA

1401 NJ TA

1126 NY TA

;

RADIO

This DATA step uses an INFILE statement to read data that is stored in an external
file.

data radio;

infile ’input-file’ missover;

input /(time1-time7) ($1. +1);

listener=_n_;

run;

Here is the data that is stored in the external file:

967 32 f 5 3 5

7 5 5 5 7 0 0 0 8 7 0 0 8 0

781 30 f 2 3 5

5 0 0 0 5 0 0 0 4 7 5 0 0 0

859 39 f 1 0 5

1 0 0 0 1 0 0 0 0 0 0 0 0 0

859 40 f 6 1 5

7 5 0 5 7 0 0 0 0 0 0 5 0 0

467 37 m 2 3 1

1 5 5 5 5 4 4 8 8 0 0 0 0 0

220 35 f 3 1 7

7 0 0 0 7 0 0 0 7 0 0 0 0 0

833 42 m 2 2 4

7 0 0 0 7 5 4 7 4 0 1 4 4 0

967 39 f .5 1 7

7 0 0 0 7 7 0 0 0 0 0 0 8 0

677 28 m .5 .5 7

7 0 0 0 0 0 0 0 0 0 0 0 0 0

833 28 f 3 4 1

1 0 0 0 0 1 1 1 1 0 0 0 1 1

677 24 f 3 1 2

2 0 0 0 0 0 0 2 0 8 8 0 0 0

688 32 m 5 2 4

5 5 0 4 8 0 0 5 0 8 0 0 0 0

542 38 f 6 8 5

5 0 0 5 5 5 0 5 5 5 5 5 5 0

677 27 m 6 1 1

1 1 0 4 4 0 0 1 4 0 0 0 0 0

779 37 f 2.5 4 7

7 0 0 0 7 7 0 7 7 4 4 7 8 0

362 31 f 1 2 2

8 0 0 0 8 0 0 0 0 0 8 8 0 0



Raw Data and DATA Steps � RADIO 1659

859 29 m 10 3 4

4 4 0 2 2 0 0 4 0 0 0 4 4 0

467 24 m 5 8 1

7 1 1 1 7 1 1 0 1 7 1 1 1 1

851 34 m 1 2 8

0 0 0 0 8 0 0 0 4 0 0 0 8 0

859 23 f 1 1 8

8 0 0 0 8 0 0 0 0 0 0 0 0 8

781 34 f 9 3 1

2 1 0 1 4 4 4 0 1 1 1 1 4 4

851 40 f 2 4 5

5 0 0 0 5 0 0 5 0 0 5 5 0 0

783 34 m 3 2 4

7 0 0 0 7 4 4 0 0 4 4 0 0 0

848 29 f 4 1.5 7

7 4 4 1 7 0 0 0 7 0 0 7 0 0

851 28 f 1 2 2

2 0 2 0 2 0 0 0 0 2 2 2 0 0

856 42 f 1.5 1 2

2 0 0 0 0 0 0 2 0 0 0 0 0 0

859 29 m .5 .5 5

5 0 0 0 1 0 0 0 0 0 8 8 5 0

833 29 m 1 3 2

2 0 0 0 2 2 0 0 4 2 0 2 0 0

859 23 f 10 3 1

1 5 0 8 8 1 4 0 1 1 1 1 1 4

781 37 f .5 2 7

7 0 0 0 1 0 0 0 1 7 0 1 0 0

833 31 f 5 4 1

1 0 0 0 1 0 0 0 4 0 4 0 0 0

942 23 f 4 2 1

1 0 0 0 1 0 1 0 1 1 0 0 0 0

848 33 f 5 4 1

1 1 0 1 1 0 0 0 1 1 1 0 0 0

222 33 f 2 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

851 45 f .5 1 8

8 0 0 0 8 0 0 0 0 0 8 0 0 0

848 27 f 2 4 1

1 0 0 0 1 1 0 0 4 1 1 1 1 1

781 38 m 2 2 1

5 0 0 0 1 0 0 0 0 0 1 1 0 0

222 27 f 3 1 2

2 0 2 0 2 2 0 0 2 0 0 0 0 0

467 34 f 2 2 1

1 0 0 0 0 1 0 1 0 0 0 0 1 0

833 27 f 8 8 1

7 0 1 0 7 4 0 0 1 1 1 4 1 0

677 49 f 1.5 0 8

8 0 8 0 8 0 0 0 0 0 0 0 0 0

849 43 m 1 4 1

1 0 0 0 4 0 0 0 4 0 1 0 0 0

467 28 m 2 1 7

7 0 0 0 7 0 0 7 0 0 1 0 0 0



1660 RADIO � Appendix 3

732 29 f 1 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

851 31 m 2 2 2

2 5 0 6 0 0 8 0 2 2 8 2 0 0

779 42 f 8 2 2

7 2 0 2 7 0 0 0 0 0 0 0 2 0

493 40 m 1 3 3

3 0 0 0 5 3 0 5 5 0 0 0 1 1

859 30 m 1 0 7

7 0 0 0 7 0 0 0 0 0 0 0 0 0

833 36 m 4 2 5

7 5 0 5 0 5 0 0 7 0 0 0 5 0

467 30 f 1 4 1

0 0 0 0 1 0 6 0 0 1 1 1 0 6

859 32 f 3 5 2

2 2 2 2 2 2 6 6 2 2 2 2 2 6

851 43 f 8 1 5

7 5 5 5 0 0 0 4 0 0 0 0 0 0

848 29 f 3 5 1

7 0 0 0 7 1 0 0 1 1 1 1 1 0

833 25 f 2 4 5

7 0 0 0 5 7 0 0 7 5 0 0 5 0

783 33 f 8 3 8

8 0 8 0 7 0 0 0 8 0 5 4 0 5

222 26 f 10 2 1

1 1 0 1 1 0 0 0 3 1 1 0 0 0

222 23 f 3 2 2

2 2 2 2 7 0 0 2 2 0 0 0 0 0

859 50 f 1 5 4

7 0 0 0 7 0 0 5 4 4 4 7 0 0

833 26 f 3 2 1

1 0 0 1 1 0 0 5 5 0 1 0 0 0

467 29 m 7 2 1

1 1 1 1 1 0 0 1 1 1 0 0 0 0

859 35 m .5 2 2

7 0 0 0 2 0 0 7 5 0 0 4 0 0

833 33 f 3 3 6

7 0 0 0 6 8 0 8 0 0 0 8 6 0

221 36 f .5 1 5

0 7 0 0 0 7 0 0 7 0 0 7 7 0

220 32 f 2 4 5

5 0 5 0 5 5 5 0 5 5 5 5 5 5

684 19 f 2 4 2

0 2 0 2 0 0 0 0 0 2 2 0 0 0

493 55 f 1 0 5

5 0 0 5 0 0 0 0 7 0 0 0 0 0

221 27 m 1 1 7

7 0 0 0 0 0 0 0 5 0 0 0 5 0

684 19 f 0 .5 1

7 0 0 0 0 1 1 0 0 0 0 0 1 1

493 38 f .5 .5 5

0 8 0 0 5 0 0 0 5 0 0 0 0 0

221 26 f .5 2 1

0 1 0 0 0 1 0 0 5 5 5 1 0 0



Raw Data and DATA Steps � RADIO 1661

684 18 m 1 .5 1

0 2 0 0 0 0 1 0 0 0 0 1 1 0

684 19 m 1 1 1

0 0 0 1 1 0 0 0 0 0 1 0 0 0

221 29 m .5 .5 5

0 0 0 0 0 5 5 0 0 0 0 0 5 5

683 18 f 2 4 8

0 0 0 0 8 0 0 0 8 8 8 0 0 0

966 23 f 1 2 1

1 5 5 5 1 0 0 0 0 1 0 0 1 0

493 25 f 3 5 7

7 0 0 0 7 2 0 0 7 0 2 7 7 0

683 18 f .5 .5 2

1 0 0 0 0 0 5 0 0 1 0 0 0 1

382 21 f 3 1 8

0 8 0 0 5 8 8 0 0 8 8 0 0 0

683 18 f 4 6 2

2 0 0 0 2 2 2 0 2 0 2 2 2 0

684 19 m .5 2 1

0 0 0 0 1 1 0 0 0 1 1 1 1 5

684 19 m 1.5 3.5 2

2 0 0 0 2 0 0 0 0 0 2 5 0 0

221 23 f 1 5 1

7 5 1 5 1 3 1 7 5 1 5 1 3 1

684 18 f 2 3 1

2 0 0 1 1 1 1 7 2 0 1 1 1 1

683 19 f 3 5 2

2 0 0 2 0 6 1 0 1 1 2 2 6 1

683 19 f 3 5 1

2 0 0 2 0 6 1 0 1 1 2 0 2 1

221 35 m 3 5 5

7 5 0 1 7 0 0 5 5 5 0 0 0 0

221 43 f 1 4 5

1 0 0 0 5 0 0 5 5 0 0 0 0 0

493 32 f 2 1 6

0 0 0 6 0 0 0 0 0 0 0 0 4 0

221 24 f 4 5 2

2 0 5 0 0 2 4 4 4 5 0 0 2 2

684 19 f 2 3 2

0 5 5 2 5 0 1 0 5 5 2 2 2 2

221 19 f 3 3 8

0 1 1 8 8 8 4 0 5 4 1 8 8 4

221 29 m 1 1 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5

221 21 m 1 1 1

1 0 0 0 0 0 5 1 0 0 0 0 0 5

683 20 f 1 2 2

0 0 0 0 2 0 0 0 2 0 0 0 0 0

493 54 f 1 1 5

7 0 0 5 0 0 0 0 0 0 5 0 0 0

493 45 m 4 6 5

7 0 0 0 7 5 0 0 5 5 5 5 5 5

850 44 m 2.5 1.5 7

7 0 7 0 4 7 5 0 5 4 3 0 0 4



1662 RADIO � Appendix 3

220 33 m 5 3 5

1 5 0 5 1 0 0 0 0 0 0 0 5 5

684 20 f 1.5 3 1

1 0 0 0 1 0 1 0 1 0 0 1 1 0

966 63 m 3 5 3

5 4 7 5 4 5 0 5 0 0 5 5 4 0

683 21 f 4 6 1

0 1 0 1 1 1 1 0 1 1 1 1 1 1

493 23 f 5 2 5

7 5 0 4 0 0 0 0 1 1 1 1 1 0

493 32 f 8 8 5

7 5 0 0 7 0 5 5 5 0 0 7 5 5

942 33 f 7 2 5

0 5 5 4 7 0 0 0 0 0 0 7 8 0

493 34 f .5 1 5

5 0 0 0 5 0 0 0 0 0 6 0 0 0

382 40 f 2 2 5

5 0 0 0 5 0 0 5 0 0 5 0 0 0

362 27 f 0 3 8

0 0 0 0 0 0 0 0 0 0 0 0 8 0

542 36 f 3 3 7

7 0 0 0 7 1 0 0 0 7 1 1 0 0

966 39 f 3 6 5

7 0 0 0 7 5 0 0 7 0 5 0 5 0

849 32 m 1 .5 7

7 0 0 0 5 0 0 0 7 4 4 5 7 0

677 52 f 3 2 3

7 0 0 0 0 7 0 0 0 7 0 0 3 0

222 25 m 2 4 1

1 0 0 0 1 0 0 0 1 0 1 0 0 0

732 42 f 3 2 7

7 0 0 0 1 7 5 5 7 0 0 3 4 0

467 26 f 4 4 1

7 0 1 0 7 1 0 0 7 7 4 7 0 0

467 38 m 2.5 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

382 37 f 1.5 .5 7

7 0 0 0 7 0 0 0 3 0 0 0 3 0

856 45 f 3 3 7

7 0 0 0 7 5 0 0 7 7 4 0 0 0

677 33 m 3 2 7

7 0 0 4 7 0 0 0 7 0 0 0 0 0

490 27 f .5 1 2

2 0 0 0 2 0 0 0 2 0 2 0 0 0

362 27 f 1.5 2 2

2 0 0 0 1 0 4 0 1 0 0 0 4 4

783 25 f 2 1 1

1 0 0 0 1 7 0 0 0 0 1 1 1 0

546 30 f 8 3 1

1 1 1 1 1 0 0 1 0 5 5 0 0 0

677 30 f 2 0 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1

221 35 f 2 2 1

1 0 0 0 1 0 1 0 1 1 1 0 0 0



Raw Data and DATA Steps � RADIO 1663

966 32 f 6 1 7

7 1 1 1 7 4 0 1 7 1 8 8 4 0

222 28 f 1 5 4

7 0 0 0 4 0 0 4 4 4 4 0 0 0

467 29 f 5 3 4

4 5 5 5 1 4 4 5 1 1 1 1 4 4

467 32 m 3 4 1

1 0 1 0 4 0 0 0 4 0 0 0 1 0

966 30 m 1.5 1 7

7 0 0 0 7 5 0 7 0 0 0 0 5 0

967 38 m 14 4 7

7 7 7 7 7 0 4 8 0 0 0 0 4 0

490 28 m 8 1 1

7 1 1 1 1 0 0 7 0 0 8 0 0 0

833 30 f .5 1 6

6 0 0 0 6 0 0 0 0 6 0 0 6 0

851 40 m 1 0 7

7 5 5 5 7 0 0 0 0 0 0 0 0 0

859 27 f 2 5 2

6 0 0 0 2 0 0 0 0 0 0 2 2 2

851 22 f 3 5 2

7 0 2 0 2 2 0 0 2 0 8 0 2 0

967 38 f 1 1.5 7

7 0 0 0 7 5 0 7 4 0 0 7 5 0

856 34 f 1.5 1 1

0 1 0 0 0 1 0 0 4 0 0 0 0 0

222 33 m .1 .1 7

7 0 0 0 7 0 0 0 0 0 7 0 0 0

856 22 m .50 .25 1

0 1 0 0 1 0 0 0 0 0 0 0 0 0

677 30 f 2 2 4

1 0 4 0 4 0 0 0 4 0 0 0 0 0

859 25 m 2 3 7

0 0 0 0 0 7 0 0 7 0 2 0 0 1

833 35 m 2 6 7

7 0 0 0 7 1 1 0 4 7 4 7 1 1

677 35 m 10 4 1

1 1 1 1 1 8 6 8 1 0 0 8 8 8

848 29 f 5 3 8

8 0 0 0 8 8 0 0 0 8 8 8 0 0

688 26 m 3 1 1

1 1 7 1 1 7 0 0 0 8 8 0 0 0

490 41 m 2 2 5

5 0 0 0 0 0 5 5 0 0 0 0 0 5

493 35 m 4 4 7

7 5 0 5 7 0 0 7 7 7 7 0 0 0

677 27 m 15 11 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

848 27 f 3 5 1

1 1 0 0 1 1 0 0 1 1 1 1 0 0

362 30 f 1 0 1

1 0 0 0 7 5 0 0 0 0 0 0 0 0

783 29 f 1 1 4

4 0 0 0 4 0 0 0 4 0 0 0 4 0



1664 RADIO � Appendix 3

467 39 f .5 2 4

7 0 4 0 4 4 0 0 4 4 4 4 4 4

677 27 m 2 2 7

7 0 0 0 7 0 0 7 7 0 0 7 0 0

221 23 f 2.5 1 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

677 29 f 1 1 7

0 0 0 0 7 0 0 0 7 0 0 0 0 0

783 32 m 1 2 5

4 5 5 5 4 2 0 0 0 0 3 2 2 0

833 25 f 1 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0

859 24 f 7 3 7

1 0 0 0 1 0 0 0 0 1 0 0 1 0

677 29 m 2 2 8

0 8 8 0 8 0 0 0 8 8 8 0 0 0

688 31 m 8 2 5

7 5 5 5 5 7 0 0 7 7 0 0 0 0

856 31 m 9 4 1

1 1 1 1 1 0 0 0 0 0 0 0 1 0

856 44 f 1 0 6

6 0 0 0 6 0 0 0 0 0 0 0 0 0

677 37 f 3 3 1

0 0 1 0 0 0 0 0 4 4 0 0 0 0

859 27 m 2 .5 2

2 2 2 2 2 2 2 2 0 0 0 0 0 2

781 30 f 10 4 2

2 0 0 0 2 0 2 0 0 0 0 0 0 2

362 27 m 12 4 3

3 1 1 1 1 3 3 3 0 0 0 0 3 0

362 33 f 2 4 1

1 0 0 0 7 0 0 7 1 1 1 1 1 0

222 26 f 8 1 1

1 1 1 1 0 0 0 1 0 0 0 0 0 0

779 37 f 6 3 1

1 1 1 1 1 0 0 1 1 0 0 0 1 0

467 32 f 1 1 2

2 0 0 0 0 0 0 0 2 0 0 2 0 0

859 23 m 1 1 1

1 0 0 0 1 1 0 1 0 0 0 0 1 1

781 33 f 1 .5 6

6 0 0 0 6 0 0 0 0 0 0 0 0 0

779 28 m 5 2 1

1 1 1 1 1 0 0 0 0 7 7 1 1 0

677 28 m 3 1 5

7 5 5 5 5 6 0 0 6 6 6 6 6 0

677 25 f 9 2 5

1 5 5 5 5 1 1 0 1 1 1 1 1 1

848 30 f 6 2 8

8 0 0 0 2 7 0 0 0 0 2 0 2 0

546 36 f 4 6 4

7 0 0 0 4 4 0 5 5 5 5 2 4 4

222 30 f 2 3 2

2 2 0 0 2 0 0 0 2 0 2 2 0 0



Raw Data and DATA Steps � RADIO 1665

383 32 m 4 1 2

2 0 0 0 2 0 0 2 0 0 0 0 0 0

851 43 f 8 1 6

4 6 0 6 4 0 0 0 0 0 0 0 0 0

222 27 f 1 3 1

1 1 0 1 1 1 0 0 1 0 0 0 4 0

833 22 f 1.5 2 1

1 0 0 0 1 1 0 0 1 1 1 0 0 0

467 29 f 2 1 8

8 0 8 0 8 0 0 0 0 0 8 0 0 0

856 28 f 2 3 1

1 0 0 0 1 0 0 0 1 0 0 1 0 0

580 31 f 2.5 2.5 6

6 6 6 6 6 6 6 6 1 1 1 1 6 6

688 39 f 8 8 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

677 37 f 1.5 .5 1

6 1 1 1 6 6 0 0 1 1 6 6 6 0

859 38 m 3 6 3

7 0 0 0 7 3 0 0 3 0 3 0 0 0

677 25 f 7 1 1

0 1 1 1 2 0 0 0 1 2 1 1 1 0

848 36 f 7 1 1

0 1 0 1 1 0 0 0 0 0 0 1 1 0

781 31 f 2 4 1

1 0 0 0 1 1 0 1 1 1 1 1 0 0

781 40 f 2 2 8

8 0 0 8 8 0 0 0 0 0 8 8 0 0

677 25 f 3 5 1

1 6 1 6 6 3 0 0 2 2 1 1 1 1

779 33 f 3 2 1

1 0 1 0 0 0 1 0 1 0 0 0 1 0

677 25 m 7 1.5 1

1 1 0 1 1 0 0 0 0 0 1 0 0 0

362 35 f .5 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

677 41 f 6 2 7

7 7 0 7 7 0 0 0 0 0 8 0 0 0

677 24 m 5 1 5

1 5 0 5 0 0 0 0 1 0 0 0 0 0

833 29 f .5 0 6

6 0 0 0 6 0 0 0 0 0 0 0 0 0

362 30 f 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0

850 26 f 6 12 6

6 0 0 0 2 2 2 6 6 6 0 0 6 6

467 25 f 2 3 1

1 0 0 6 1 1 0 0 0 0 1 1 1 1

967 29 f 1 2 7

7 0 0 0 7 0 0 7 7 0 0 0 0 0

833 31 f 1 1 7

7 0 7 0 7 3 0 0 3 3 0 0 0 0

859 40 f 7 1 5

1 5 0 5 5 1 0 0 1 0 0 0 0 0



1666 RADIO � Appendix 3

848 31 m 1 2 1

1 0 0 0 1 1 0 0 4 4 1 4 0 0

222 32 f 2 3 3

3 0 0 0 0 7 0 0 3 0 8 0 0 0

783 33 f 2 0 4

7 0 0 0 7 0 0 0 4 0 4 0 0 0

856 28 f 8 4 2

0 2 0 2 2 0 0 0 2 0 2 0 4 0

781 30 f 3 5 1

1 1 1 1 1 1 0 0 1 1 1 1 1 0

850 25 f 6 3 1

7 5 0 5 7 1 0 0 7 0 1 0 1 0

580 33 f 2.5 4 2

2 0 0 0 2 0 0 0 0 0 8 8 0 0

677 38 f 3 3 1

1 0 0 0 1 0 1 1 1 0 1 0 0 4

677 26 f 2 2 1

1 0 1 0 1 0 0 0 1 1 1 0 0 0

467 52 f 3 2 2

2 6 6 6 6 2 0 0 2 2 2 2 0 0

542 31 f 1 3 1

1 0 1 0 1 0 0 0 1 1 1 1 1 0

859 50 f 9 3 6

6 6 6 6 6 6 6 6 6 3 3 3 6 6

779 26 f 1 2 1

7 0 1 0 1 1 4 1 4 1 1 1 4 4

779 36 m 1.5 2 4

1 4 0 4 4 0 0 4 4 4 4 0 0 0

222 31 f 0 3 7

1 0 0 0 7 0 0 0 0 0 0 0 0 0

362 27 f 1 1 1

1 0 1 0 1 4 0 4 4 1 0 4 4 0

967 32 f 3 2 7

7 0 0 0 7 0 0 0 1 0 0 1 0 0

362 29 f 10 2 2

2 2 2 2 2 2 2 2 2 2 2 7 0 0

677 27 f 3 4 1

0 5 1 1 0 5 0 0 0 1 1 1 0 0

546 32 m 5 .5 8

8 0 0 0 8 0 0 0 8 0 0 0 0 0

688 38 m 2 3 2

2 0 0 0 2 0 0 0 2 0 0 0 1 0

362 28 f 1 1 1

1 0 0 0 1 1 0 4 0 0 0 0 4 0

851 32 f .5 2 4

5 0 0 0 4 0 0 0 0 0 0 0 2 0

967 43 f 2 2 1

1 0 0 0 1 0 0 1 7 0 0 0 1 0

467 44 f 10 4 6

7 6 0 6 6 0 6 0 0 0 0 0 0 6

467 23 f 5 3 1

0 2 1 2 1 0 0 0 1 1 1 1 1 1

783 30 f 1 .5 1

1 0 0 0 1 0 0 0 0 0 0 7 0 0



Raw Data and DATA Steps � RADIO 1667

677 29 f 3 1 2

2 2 2 2 2 0 0 0 0 0 0 0 0 0

859 26 f 9.5 1.5 2

2 2 2 2 2 0 0 2 2 0 0 0 0 0

222 28 f 3 0 2

2 0 0 0 2 0 0 0 0 0 2 0 0 0

966 37 m 2 1 1

7 1 1 1 7 0 0 0 7 0 0 0 0 0

859 31 f 10 10 1

0 1 1 1 1 0 0 0 1 1 0 0 1 0

781 27 f 2 1 2

2 0 0 0 1 0 0 0 4 0 0 0 0 0

677 31 f .5 .5 6

7 0 0 0 0 0 0 0 6 0 0 0 0 0

848 28 f 5 1 2

2 2 0 2 0 0 0 0 2 0 0 0 0 0

781 24 f 3 3 6

1 6 6 6 1 6 0 0 0 0 1 0 1 1

856 27 f 1.5 1 6

2 6 6 6 2 5 0 2 0 0 5 2 0 0

382 30 m 1 2 7

7 0 0 0 7 0 4 7 0 0 0 7 4 4

848 25 f 9 3 1

7 1 1 5 1 0 0 0 1 1 1 1 1 0

382 30 m 1 2 4

7 0 0 0 7 0 4 7 0 0 0 7 4 4

688 40 m 2 3 1

1 0 0 0 1 3 1 0 5 0 4 4 7 1

856 40 f .5 5 5

3 0 0 0 3 0 0 0 0 0 5 5 0 0

966 25 f 2 .5 2

1 0 0 0 2 6 0 0 4 0 0 0 0 0

859 30 f 2 4 2

2 0 0 0 0 2 0 0 0 0 2 0 0 0

849 29 m 10 1 5

7 5 5 5 7 5 5 0 0 0 0 0 7 0

781 28 m 1.5 3 4

1 0 0 0 1 4 4 0 4 4 1 1 4 0

467 35 f 4 2 6

7 6 7 6 6 7 6 7 7 7 7 7 7 6

222 32 f 10 5 1

1 1 0 1 1 0 0 1 1 1 0 0 1 0

677 32 f 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0

222 54 f 21 4 3

5 0 0 0 7 0 0 7 0 0 0 0 0 0

677 30 m 4 6 1

7 0 0 0 0 1 1 1 7 1 1 0 8 1

683 29 f 1 2 8

8 0 0 0 8 0 0 0 0 8 8 0 0 0

467 38 m 3 5 1

1 0 0 0 1 0 0 1 1 0 0 0 0 0

781 29 f 2 3 8

8 0 0 0 8 8 0 0 8 8 0 8 8 0



1668 RADIO � Appendix 3

781 30 f 1 0 5

5 0 0 0 0 5 0 0 0 0 0 0 0 0

783 40 f 1.5 3 1

1 0 0 0 1 4 0 0 1 1 1 0 0 0

851 30 f 1 1 6

6 0 0 0 6 0 0 0 6 0 0 6 0 0

851 40 f 1 1 5

5 0 0 0 5 0 0 0 0 1 0 0 0 0

779 40 f 1 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

467 37 f 4 8 1

1 0 0 0 1 0 3 0 3 1 1 1 0 0

859 37 f 4 3 3

0 3 7 0 0 7 0 0 0 7 8 3 7 0

781 26 f 4 1 2

2 2 0 2 1 0 0 0 2 0 0 0 0 0

859 23 f 8 3 3

3 2 0 2 3 0 0 0 1 0 0 3 0 0

967 31 f .5 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0

851 38 m 4 2 5

7 5 0 5 4 0 4 7 7 0 4 0 8 0

467 30 m 2 1 2

2 2 0 2 0 0 0 0 2 0 2 0 0 0

848 33 f 2 2 7

7 0 0 0 0 7 0 7 7 0 0 0 7 0

688 35 f 5 8 3

2 2 2 2 2 0 0 3 3 3 3 3 0 0

467 27 f 2 3 1

1 0 1 0 0 1 0 0 1 1 1 0 0 0

783 42 f 3 1 1

1 0 0 0 1 0 0 0 1 0 1 1 0 0

687 40 m 1.5 2 1

7 0 0 0 1 1 0 0 1 0 7 0 1 0

779 30 f 4 8 7

7 0 0 0 7 0 6 7 4 2 2 0 0 6

222 34 f 9 0 8

8 2 0 2 8 0 0 0 0 0 0 0 0 0

467 28 m 3 1 2

2 0 0 0 2 2 0 0 0 2 2 0 0 0

222 28 f 8 4 2

1 2 1 2 2 0 0 1 2 2 0 0 2 0

542 35 m 2 3 2

6 0 7 0 7 0 7 0 0 0 2 2 0 0

677 31 m 12 4 3

7 3 0 3 3 4 0 0 4 4 4 0 0 0

783 45 f 1.5 2 6

6 0 0 0 6 0 0 6 6 0 0 0 0 0

942 34 f 1 .5 4

4 0 0 0 1 0 0 0 0 0 2 0 0 0

222 30 f 8 4 1

1 1 1 1 1 0 0 0 1 1 0 0 0 0

967 38 f 1.5 2 7

7 0 0 0 7 0 0 7 1 1 1 1 0 0



Raw Data and DATA Steps � RADIO 1669

783 37 f 2 1 1

6 6 1 1 6 6 0 0 6 1 1 1 6 0

467 31 f 1.5 2 2

2 0 7 0 7 0 0 7 7 0 0 0 7 0

859 48 f 3 0 7

7 0 0 0 0 0 0 0 0 7 0 0 0 0

490 35 f 1 1 7

7 0 0 0 7 0 0 0 0 0 0 0 8 0

222 27 f 3 2 3

8 0 0 0 3 8 0 3 3 0 0 0 0 0

382 36 m 3 2 4

7 0 5 4 7 4 4 0 7 7 4 7 0 4

859 37 f 1 1 2

7 0 0 0 0 2 0 2 2 0 0 0 0 2

856 29 f 3 1 1

1 0 0 0 1 1 1 1 0 0 1 1 0 1

542 32 m 3 3 7

7 0 0 0 0 7 7 7 0 0 0 0 7 7

783 31 m 1 1 1

1 0 0 0 1 0 0 0 1 1 1 0 0 0

833 35 m 1 1 1

5 4 1 5 1 0 0 1 1 0 0 0 0 0

782 38 m 30 8 5

7 5 5 5 5 0 0 4 4 4 4 4 0 0

222 33 m 3 3 1

1 1 1 1 1 1 1 1 4 1 1 1 1 1

467 24 f 2 4 1

0 0 1 0 1 0 0 0 1 1 1 0 0 0

467 34 f 1 1 1

1 0 0 0 1 0 0 1 1 0 0 0 0 0

781 53 f 2 1 5

5 0 0 0 5 5 0 0 0 0 5 5 5 0

222 30 m 2 5 3

6 3 3 3 6 0 0 0 3 3 3 3 0 0

688 26 f 2 2 1

1 0 0 0 1 0 0 0 1 0 1 1 0 0

222 29 m 8 5 1

1 6 0 6 1 0 0 1 1 1 1 0 0 0

783 33 m 1 2 7

7 0 0 0 7 0 0 0 7 0 0 0 7 0

781 39 m 1.5 2.5 2

2 0 2 0 2 0 0 0 2 2 2 0 0 0

850 22 f 2 1 1

1 0 0 0 1 1 1 0 5 0 0 1 0 0

493 36 f 1 0 5

0 0 0 0 7 0 0 0 0 0 0 0 0 0

967 46 f 2 4 7

7 5 0 5 7 0 0 0 4 7 4 0 0 0

856 41 m 2 2 4

7 4 0 0 7 4 0 4 0 0 0 7 0 0

546 25 m 5 5 8

8 8 0 0 0 0 0 0 0 0 0 0 0 0

222 27 f 4 4 3

2 2 2 3 7 7 0 2 2 2 3 3 3 0



1670 STATEPOP � Appendix 3

688 23 m 9 3 3

3 3 3 3 3 7 0 0 3 0 0 0 0 0

849 26 m .5 .5 8

8 0 0 0 8 0 0 0 0 8 0 0 0 0

783 29 f 3 3 1

1 0 0 0 4 0 0 4 1 0 1 0 0 0

856 34 f 1.5 2 1

7 0 0 0 7 0 0 7 4 0 0 7 0 0

966 33 m 3 5 4

7 0 0 0 7 4 5 0 7 0 0 7 4 4

493 34 f 2 5 1

1 0 0 0 1 0 0 0 7 0 1 1 8 0

467 29 m 2 4 2

2 0 0 0 2 0 0 2 2 2 2 2 2 2

677 28 f 1 4 1

1 1 1 1 1 0 0 0 1 0 1 0 0 0

781 27 m 2 2 1

1 0 1 0 4 2 4 0 2 2 1 0 1 4

467 24 m 4 4 1

7 1 0 1 1 1 0 7 1 0 0 0 0 0

859 26 m 5 5 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

848 27 m 7 2 5

7 5 0 5 4 5 0 0 0 7 4 4 0 4

677 25 f 1 2 8

8 0 0 0 0 5 0 0 8 0 0 0 2 0

222 26 f 3.5 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

833 32 m 1 2 1

1 0 0 0 1 0 0 0 5 0 1 0 0 0

781 28 m 2 .5 7

7 0 0 0 7 0 0 0 4 0 0 0 0 0

783 28 f 1 1 1

1 0 0 0 1 0 0 0 0 0 1 1 0 0

222 28 f 5 5 2

2 6 6 2 2 0 0 0 2 2 0 0 2 2

851 33 m 4 5 3

1 0 0 0 7 3 0 3 3 3 3 3 7 5

859 39 m 2 1 1

1 0 0 0 1 0 0 0 0 0 0 1 0 0

848 45 m 2 2 7

7 0 0 0 7 0 0 0 7 0 0 0 0 0

467 37 m 2 2 7

7 0 0 0 0 7 0 0 0 7 0 0 7 0

859 32 m .25 .25 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0

STATEPOP

data statepop;

input State $ CityPop_1990 CityPop_2000 NonCityPop_1990 NonCityPop_2000 Region @@;

label citypop_1990= ’1990 metropolitan pop in millions’



Raw Data and DATA Steps � STATEPOP 1671

noncitypop_1990=’1990 nonmetropolitan pop in millions’

citypop_2000= ’2000 metropolitan pop in millions’

noncitypop_2000=’2000 nonmetropolitan pop in million’

region=’Geographic region’;

datalines;

ME .443 .467 .785 .808 1 NH .659 .740 .450 .496 1

VT .152 .169 .411 .439 1 MA 5.788 6.088 .229 .261 1

RI .938 .986 .065 .062 1 CT 3.148 3.257 .140 .149 1

NY 16.516 17.473 1.475 1.503 1 NJ 7.730 8.414 .A .A 1

PA 10.084 10.392 1.799 1.890 1 DE .553 .627 .113 .157 2

MD 4.438 4.911 .343 .385 2 DC .607 .572 .A .A 2

VA 4.775 5.528 1.414 1.550 2 WV .748 .766 1.045 1.043 2

NC 4.380 5.437 2.253 2.612 2 SC 2.422 2.807 1.064 1.205 2

GA 4.351 5.667 2.127 2.520 2 FL 12.024 14.837 .915 1.145 2

KY 1.780 1.973 1.907 2.069 2 TN 3.311 3.862 1.567 1.827 2

AL 2.797 3.109 1.244 1.338 2 MS .874 1.024 1.701 1.821 2

AR 1.109 1.321 1.242 1.352 2 LA 3.160 3.370 1.061 1.099 2

OK 1.870 2.098 1.276 1.352 2 TX 14.166 17.692 2.821 3.160 2

OH 8.826 9.214 2.021 2.139 3 IN 3.962 4.390 1.582 1.691 3

IL 9.574 10.542 1.857 1.878 3 MI 7.698 8.169 1.598 1.769 3

WI 3.331 3.640 1.561 1.723 3 MN 3.011 3.463 1.364 1.456 3

IA 1.200 1.326 1.577 1.600 3 MO 3.491 3.795 1.626 1.800 3

ND .257 .284 .381 .358 3 SD .221 .261 .475 .494 3

NE .787 .900 .791 .811 3 KS 1.333 1.521 1.145 1.167 3

MT .270 .306 .529 .597 4 ID .362 .508 .645 .786 4

WY .134 .148 .319 .346 4 CO 2.779 3.608 .515 .694 4

NM .842 1.035 .673 .784 4 AZ 3.202 4.527 .463 .604 4

UT 1.341 1.708 .382 .525 4 NV 1.014 1.748 .188 .251 4

WA 4.036 4.899 .830 .995 4 OR 2.056 2.502 .787 .919 4

CA 28.797 32.750 .961 1.121 4 AK .226 .260 .324 .367 4

HI .836 .876 .272 .335 4

;

run;



1672



1673

A P P E N D I X

4
Recommended Reading

Recommended Reading 1673

Recommended Reading

For a complete list of SAS publications, refer to the current SAS Publishing Catalog.
The catalog is produced twice a year. To order books or to receive a free copy of the
catalog, write, call, or fax the Institute (or access the online version of the SAS
Publishing Catalog via the World Wide Web).

When you order a title, we will provide you with the most current edition that is
available.

SAS Institute 
Fulfillment Services Dept. 
SAS Campus Dr.
Cary, NC 27513 
Telephone: 1-800-727-3228*
Fax: 919-677-8166
E-mail: sasbook@sas.com
Web site: www.sas.com/pubs 

* For other SAS Institute business, call 919-677-8000.

Customers outside the U.S. should contact their local SAS office.

The recommended reading list for this title includes

The Little SAS Book: A Primer, Second Edition

Output Delivery System: The Basics

PROC TABULATE by Example

SAS Guide to Report Writing: Examples

SAS Language Reference: Concepts

SAS Language Reference: Dictionary



1674 Recommended Reading � Appendix 4

SAS Output Delivery System User’s Guide

SAS Programming by Example

SAS SQL Procedure User’s Guide

Step-by-Step Programming with Base SAS Software



Index 1675

Index

A
ACCELERATE= option

ITEM statement (PMENU) 786
ACROSS option

DEFINE statement (REPORT) 987
PROC FORMS statement 498

across variables 946, 987
activities data set 81, 102
adjusted logit odds ratio 579
adjusted odds ratio 577
AFTER= option

PROC CPORT statement 310
AGE statement

DATASETS procedure 334
aging data sets 405
aging files 334
AGREE option

TABLES statement (FREQ) 531
AIRCRAFT data set 1615
ALIGN= option

PROC FORMS statement 498
ALL class variable 1324
ALL keyword 1178
ALL option

PROC UNIVARIATE statement 1445
TABLES statement (FREQ) 531

ALLOBS option
PROC COMPARE statement 215

ALLSTATS option
PROC COMPARE statement 215

ALLVARS option
PROC COMPARE statement 215

ALPHA option
PROC CORR statement 269
EXACT statement (FREQ) 523
HISTOGRAM statement (UNIVARI-

ATE) 1458
PROBPLOT statement (UNIVARIATE) 1487
PROC MEANS statement 654
PROC TABULATE statement 1268
PROC UNIVARIATE statement 1445
QQPLOT statement (UNIVARIATE) 1500
TABLES statement (FREQ) 531

ALTER= option
AGE statement (DATASETS) 334
CHANGE statement (DATASETS) 343
COPY statement (DATASETS) 347
DELETE statement (DATASETS) 353
EXCHANGE statement (DATASETS) 357

MODIFY statement (DATASETS) 367
PROC DATASETS statement 331
REPAIR statement (DATASETS) 371
SELECT statement (DATASETS) 374

ALTER TABLE statement
SQL procedure 1125

alternative hypotheses 1607
ANALYSIS option

DEFINE statement (REPORT) 987
analysis variables 946, 987

SUMMARY procedure 1259
weighting 1000
weights for 59

Anderson-Darling EDF test 1522
Anderson-Darling statistic 1522
ANNOKEY option

HISTOGRAM statement (UNIVARI-
ATE) 1459

PROBPLOT statement (UNIVARIATE) 1488
QQPLOT statement (UNIVARIATE) 1500

ANNOTATE= option
HISTOGRAM statement (UNIVARI-

ATE) 1459
PROBPLOT statement (UNIVARIATE) 1488
PROC UNIVARIATE statement 1445
QQPLOT statement (UNIVARIATE) 1500

ANOVA statistic 576
ANSI Standard for SQL 1204
APPEND 73
APPEND procedure 73

overview 71
syntax 73

APPEND statement
DATASETS procedure 335

appending data
APPEND statement (DATASETS) 337
SET statement 337

appending data sets 335
APPEND procedure 340
APPEND statement (DATASETS) 340
compressed data sets 338
data sets with different variables 339
generation groups for 339
indexed data sets 338
integrity constraints and 339
password-protected data sets 337
restricting observations 337
system failures 340
variables with different attributes 339

appending observations 71

APPENDVER= option
APPEND statement (DATASETS) 336

arc-sine distribution 1531
arithmetic mean 1581, 1587
arithmetic operators 1205
ASCENDING option

CHART procedure 178
CLASS statement (MEANS) 662
CLASS statement (TABULATE) 1276

ASCII collating sequence 1094, 1101
ASCII option

PROC SORT statement 1094
ASIS option

PROC CPORT statement 310
asterisk (*) notation 1143
asymptotic tests 539, 551
ATTR= option

TEXT statement (PMENU) 792
ATTRIB statement 53
audit files 342
AUDIT statement

DATASETS procedure 341
AUTOLABEL option

OUTPUT statement (MEANS) 671
AUTONAME option

OUTPUT statement (MEANS) 671
AXIS= option

CHART procedure 178
PLOT statement (TIMEPLOT) 1372

B
bar charts 166

horizontal 175, 192, 1448
percentage charts 186
side-by-side 190
vertical 177, 187

BARWIDTH= option
HISTOGRAM statement (UNIVARI-

ATE) 1459
BASE= argument

APPEND statement (DATASETS) 335
base data set 210
BASE= option

PROC COMPARE statement 216
BASETYPE= option

PROC DBCSTAB statement 408
batch mode

creating printer definitions 893



1676 Index

printing from 957
BATCH option, PROC DISPLAY statement 414
BDT option

TABLES statement (FREQ) 531
BEST= option

PROC CORR statement 269
beta distribution 1530, 1536
BETA option

HISTOGRAM statement (UNIVARI-
ATE) 1459

PROBPLOT statement (UNIVARIATE) 1488
QQPLOT statement (UNIVARIATE) 1500
HISTOGRAM statement (UNIVARI-

ATE) 1459
PROBPLOT statement (UNIVARIATE) 1488
QQPLOT statement (UNIVARIATE) 1501

BETWEEN condition 1155
BETWEEN= option

PROC FORMS statement 498
BINOMIAL option

TABLES statement (FREQ) 532
binomial proportions 560, 599
BINOMIALC option

TABLES statement (FREQ) 532
block charts 167, 173

for BY groups 194
BLOCK statement

CHART procedure 173
body file 44
BOTH option

CLEAR statement (TRANTAB) 1415
LIST statement (TRANTAB) 1416
SAVE statement (TRANTAB) 1418

Bowker’s test of symmetry 569
BOX option

PLOT statement (PLOT) 735
PROC REPORT statement 962
TABLE statement (TABULATE) 1283

box plots 1448, 1513
side-by-side 1448, 1514

_BREAK_ automatic variable 953
break lines 952

_BREAK_ automatic variable 953
creating 952
order of 953, 977, 999

BREAK statement
REPORT procedure 974

BREAK window, REPORT procedure 1001
breaks 952
Breslow-Day test 580
BRIEFSUMMARY option

PROC COMPARE statement 216
browsing external files 627
BTRIM function (SQL) 1155
BTYPE= option

PROC DBCSTAB statement 408
BY-group processing 19, 55

formats and 30
BY groups

transposing 1400
BY lines

suppressing 19
BY statement 54

CALENDAR procedure 87
CHART procedure 174
COMPARE procedure 220
CORR procedure 273

example 55
FORMS procedure 501
FREQ procedure 521
MEANS procedure 660, 664, 687
PLOT procedure 732
PRINT procedure 829, 832
procedures supporting 55
RANK procedure 914
REPORT procedure 978
SORT procedure 1100
STANDARD procedure 1248
TABULATE procedure 1275
TIMEPLOT procedure 1369
TRANSPOSE procedure 1391
UNIVARIATE procedure 1451, 1484

BY variable names
inserting into titles 22

C
C= option

HISTOGRAM statement (UNIVARI-
ATE) 1459

PROBPLOT statement (UNIVARIATE) 1488
QQPLOT statement (UNIVARIATE) 1501

CACHED_UPDATES= option
PROC SQL statement 1120

_CAL_ variable 101
calculated columns 1156
CALCULATED component 1156
CALEDATA= option

PROC CALENDAR statement 81
CALENDAR 80
calendar data set 81, 100, 101, 104
CALENDAR procedure 80

activities data set 102
activity lines 108
automating scheduling tasks 129
BY statement 87
calendar, defined 99
calendar data set 104
calendar types 97
CALID statement 88, 101
concepts 97
customizing appearance 108
date versus datetime values 104
default calendars 98
default workshifts 105, 106
definitions 99
DUR statement 89
duration 89
examples 108
FIN statement 90
holiday duration 91
holidays data set 103
HOLIDUR statement 90
HOLIFIN statement 91
HOLISTART statement 92
HOLIVAR statement 92
input data sets 102
MEAN statement 93
missing values 106
multiple calendars 87, 100
OUTDUR statement 94
OUTFIN statement 94
output, effects of size 108

output, quantity of 107
OUTSTART statement 95
overview 74
PROC CALENDAR statement 81
project management tasks 77
results 107
schedule calendars 75, 76, 97
START statement 95
SUM statement 96
summary calendars 78, 98, 103
syntax 80
task tables 80, 81
VAR statement 96
workdays data set 105, 106

calendar reports 99
CALID statement

CALENDAR procedure 88, 101
CALL DEFINE statement

REPORT procedure 979
CAPS option, PROC FSLIST statement 629
Cartesian product 1166, 1167
case-control studies 564, 1238

adjusted logit 579
Mantel-Haenszel adjusted 578

CASE expression 1157
case-record data 541
CATALOG 144
CATALOG= argument

PROC CATALOG statement 145
PROC DISPLAY statement 414

CATALOG= option
CONTENTS statement (CATALOG) 147
PROC DBCSTAB statement 408
PROC PMENU statement 781

CATALOG procedure 144
CHANGE statement 146
concatenating catalogs 157
concepts 154
CONTENTS statement 147
COPY statement 148
DELETE statement 150
ending a step 154
entry type specification 155
ENTRYTYPE= options 155, 156
error handling 154
examples 158
EXCHANGE statement 150
EXCLUDE statement 151
interactive processing 154
MODIFY statement 152
overview 143
PROC CATALOG statement 145
RUN groups 154
SAVE statement 153
SELECT statement 153
syntax 144
task tables 144, 145, 148

catalogs
concatenating 157
copying entries 148, 153, 158
deleting entries 146, 150, 153, 158
displaying entry contents 162
entry descriptions 152, 162
excluding entries for copying 151
exporting 317
exporting entries 318, 321
format catalogs 467



Index 1677

listing contents of 147
managing entries 143
moving entries 158
PMENU entries 781, 788, 794
renaming entries 146, 162
repairing 371
routing log or output to entries 886
storing informats/formats 467
switching names of two entries 150
writing to transport files 307

categories 1264
CAXIS= option

HISTOGRAM statement (UNIVARI-
ATE) 1460

PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CBARLINE= option
HISTOGRAM statement (UNIVARI-

ATE) 1460
CC option

FSLIST command 631
PROC FORMS statement 498
PROC FSLIST statement 629

cell count data 541
CELLCHI2 option

TABLES statement (FREQ) 532
CENSUS data set 1616
CENTER option

DEFINE statement (REPORT) 987
PROC REPORT statement 962

centiles
indexed variables and 362

CENTILES option
CONTENTS statement (DATASETS) 344

CFILL= option
HISTOGRAM statement (UNIVARI-

ATE) 1460
INSET statement (UNIVARIATE) 1477

CFILLH= option
INSET statement (UNIVARIATE) 1477

CFRAME= option
HISTOGRAM statement (UNIVARI-

ATE) 1460
INSET statement (UNIVARIATE) 1477
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CFRAMESIDE= option
HISTOGRAM statement (UNIVARI-

ATE) 1460
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CFRAMETOP= option
HISTOGRAM statement (UNIVARI-

ATE) 1461
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CFREQ option
CHART procedure 179

CGRID= option
HISTOGRAM statement (UNIVARI-

ATE) 1461
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CHANGE statement
CATALOG procedure 146
DATASETS procedure 342

character data
converting to numeric values 480

character sets, and translation tables 1410
character strings

converting to lowercase 1176
converting to uppercase 1197
returning a substring 1189
trimming 1155
writing ranges for 490

character values
formats for 476

character variables
sorting orders for 1101

CHARITY data set 1617
CHART 171
CHART procedure 171

bar charts 166, 190
block charts 167, 173, 194
BLOCK statement 173
BY statement 174
concepts 183
customizing charts 177
examples 184
formatting characters 171
frequency counts 184
HBAR statement 175
horizontal bar charts 175, 192
missing values 181, 183
options 178
overview 165
percentage bar charts 186
pie charts 168, 175
PIE statement 175
PROC CHART statement 171
results 183
star charts 169, 176
STAR statement 176
syntax 171
task table 177
variable characteristics 183
VBAR statement 177
vertical bar charts 177, 187

charts 165
bar charts 166, 186, 190
block charts 167, 173, 194
customizing 177
horizontal bar charts 175, 192, 1448
pie charts 168, 175
star charts 169, 176
vertical bar charts 177, 187

CHARTYPE option
PROC MEANS statement 654

CHEADER= option
INSET statement (UNIVARIATE) 1477

check boxes 782
active versus inactive 782
color of 782
definition of 784

CHECKBOX statement
PMENU procedure 782

chi-square tests 546
continuity-adjusted 548
for one-way tables 546, 596
for two-way tables 547
likelihood-ratio 547
Mantel-Haenszel 548
output data set for 605

CHISQ option
TABLES statement (FREQ) 532

CHREF= option
HISTOGRAM statement (UNIVARI-

ATE) 1461
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1501

CIBASIC option
PROC UNIVARIATE statement 1445

CIMPORT procedure 200
Data Control Blocks 205
examples 205
EXCLUDE statement 203
excluding files or entries 203
overview 199
PROC CIMPORT statement 200
results 205
SELECT statement 204
specifying entries or files to import 204
syntax 200
task table 200
translation tables with 1411

CIPCTLDF option
PROC UNIVARIATE statement 1445

CIPCTLNORMAL option
PROC UNIVARIATE statement 1446

CIQUANTDF option
PROC UNIVARIATE statement 1446

CIQUANTNORMAL option
PROC UNIVARIATE statement 1446

CL option
TABLES statement (FREQ) 533

CLASS statement
MEANS procedure 661
TABULATE procedure 1276
TIMEPLOT procedure 1370
UNIVARIATE procedure 1452

class variables 675
BY statement (MEANS) with 687
CLASSDATA= option (MEANS) with 689
combinations of 1312
computing descriptive statistics with 685
formatting 1292
identifying 1276
level value headings 1280
missing 1302, 1303, 1304
missing values 704, 1279
multilabel value formats with 693
ordering 676
preloaded formats with 696, 1315
TIMEPLOT procedure 1370

CLASSDATA= option
PROC MEANS statement 654, 689
PROC TABULATE statement 1268

classifying data 27
CLASSLEV statement

TABULATE procedure 1280
CLEAR statement, TRANTAB procedure 1415
CLEARSASUSER option

PROC REGISTRY statement 926
CLM keyword 1585
CLONE option

COPY statement (DATASETS) 347
CMH option

TABLES statement (FREQ) 533
CMH1 option

TABLES statement (FREQ) 533



1678 Index

CMH2 option
TABLES statement (FREQ) 533

CNTLIN= option
PROC FORMAT statement 444

CNTLOUT= option
PROC FORMAT statement 444, 446

COALESCE function (SQL) 1158
Cochran-Armitage test for trend 566, 611
Cochran-Mantel-Haenszel statistics 574, 609
Cochran’s Q test 574

testing marginal homogeneity 618
coefficient of variation 1580, 1593
cohort studies 565, 579
COLOR= option

BREAK statement (REPORT) 974
CHECKBOX statement (PMENU) 782
DEFINE statement (REPORT) 988
HISTOGRAM statement (UNIVARI-

ATE) 1461
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1502
RBREAK statement (REPORT) 997
RBUTTON statement (PMENU) 790
TEXT statement (PMENU) 793

column aliases 1143
column attributes 1160

REPORT procedure 979
column-definition component 1159
column dimension 1265
column-header option

DEFINE statement (REPORT) 988
column headings

customizing 1322
customizing text in 840
layout of 836
orientation of 822
variable labels as 822

column-modifier component 1160
column modifiers 1205
column-name component 1161
COLUMN statement

REPORT procedure 981
column width

in page layout 836
columns 1115

See also variables
aliases 1143
attributes 1160
calculated 1156
combinations of values 1236
indexes on 1127, 1129, 1141
inserting values 1140
modifiers 1205
returning values 1158
selecting 1142, 1161
storing values of 1144
updating values 1153

COLWIDTH= option
PROC REPORT statement 962

COMMAND option
PROC REPORT statement 963

COMMIT statement (SQL) 1206
COMPARE 213
COMPARE= option

PROC COMPARE statement 216
COMPARE procedure 213

BY processing 221

BY statement 220
comparing selected variables 224
comparing unsorted data 222
comparing variables in same data set 224
comparing variables of different names 224
comparison by position of observations 224
concepts 224
duplicate ID values 222
equality criterion 226
examples 239
ID statement 222
ID variables 222, 225
listing variables for matching 222
log and 228
macro return codes 228
output 230
output data set 236
output statistics data set 237
overview 209
PROC COMPARE statement 214
restricting the comparion 223
results 228
syntax 213
task tables 213, 214
VAR statement 223
variable formats 228
WITH statement 224

COMPAREREG1 option
PROC REGISTRY statement 926

COMPAREREG2 option
PROC REGISTRY statement 927

COMPARETO= option
PROC REGISTRY statement 927

comparison data set 210
compass point position 1479
COMPLETECOLS option

PROC REPORT statement 963
COMPLETEROWS option

PROC REPORT statement 963
COMPLETETYPES option

PROC MEANS statement 655
composite indexes 1129
compound names 1025
COMPRESS option

PROC FREQ statement 519
compressed data sets

appending 338
compute blocks 949

compound names in 1025
COMPUTE statement (REPORT) 983
contents of 950
processing 952
purpose of 950
referencing report items in 951

COMPUTE statement
REPORT procedure 983

COMPUTE window, REPORT procedure 1004
COMPUTED option

DEFINE statement (REPORT) 989
COMPUTED VAR window, REPORT proce-

dure 1004
computed variables 947, 989

storing 1072
concatenating catalogs 157
concatenating data sets 403
CONDENSE option

TABLE statement (TABULATE) 1283

confidence limits 522, 551
for parameters of normal distribution 1517
for quantiles 1528
for the mean 650, 699, 1268
MEANS procedure 679

confidence limits, for the mean
keywords and formulas 1585
one-sided, above the mean 1586
one-sided, below the mean 1585
two-sided 1585

CONNECT statement
SQL procedure 1128

CONNECTION TO component 1162
CONSTRAINT= option

COPY statement (DATASETS) 349
PROC CPORT statement 310

CONTAINS condition 1163
CONTENT= option

PROC PRINT statement 821
CONTENTS 258
CONTENTS= option

PROC REPORT statement 963
PROC TABULATE statement 1268
TABLE statement (TABULATE) 1284
TABLES statement (FREQ) 533

CONTENTS procedure 258
overview 257
PROC CONTENTS statement 258
syntax 258
task table 258
versus CONTENTS statement

(DATASETS) 347
CONTENTS statement

CATALOG procedure 147
DATASETS procedure 344

contingency coefficient 550
contingency tables 515, 601, 1347
continuation message 1265
continuity-adjusted chi-square test 548
CONTOUR= option, PLOT statement

(PLOT) 735
contour plots 735, 759
CONVERGE= option

TABLES statement (FREQ) 534
conversion tables

creating 409
for double-byte character sets 407
in Japanese 410

converting files 307
converting SAS files 199
COPIES= option

PROC FORMS statement 499
COPY 260
COPY procedure 260

concepts 260
overview 259
syntax 260
transporting data sets between hosts 260
versus COPY statement (DATASETS) 352

COPY statement
CATALOG procedure 148
DATASETS procedure 347
TRANSPOSE procedure 1393

copying data libraries
entire data library 350

copying datasets
with long variable names 351



Index 1679

copying files 259
COPY statement (DATASETS) versus COPY

procedure 352
excluding files 358
member type specification 350
password-protected files 351
selecting files 350, 374

CORR 267
CORR procedure 267

BY statement 273
computer resources 277
concepts 276
correlation coefficients, interpreting 276
examples 291
FREQ statement 274
missing values 287
ODS table names 287
output 289
output data sets 290
overview 263
PARTIAL statement 274
PROC CORR statement 268
results 287
statistical computations 279
syntax 267
task tables 267, 268
VAR statement 275
WEIGHT statement 275
WITH statement 276

corrected sum of squares 1580
corrected sums of squares and crossproducts 269
correlated subqueries 1187
correlation coefficients 263

interpreting 276
limited combinations of 276
partial correlations 302
printing, for each variable 269, 271
rectangular 295
suppressing probabilities 270

correlation statistic 576
CORRESPONDING keyword 1177
COUNT(*) function 1191
COV option

PROC CORR statement 269
covariances 269, 272
CPERCENT option

CHART procedure 179
CPM procedure 77, 129
CPORT 308
CPORT procedure 308

concepts 316
Data Control Blocks 317
examples 317
EXCLUDE statement 313
excluding files or entries 313
including files or entries 314
overview 307
password-protected data sets 316
PROC CPORT statement 308
results 317
SELECT statement 314
syntax 308
task table 308
translation tables 315
translation tables with 1411
TRANTAB statement 315

CPROP= option
HISTOGRAM statement (UNIVARI-

ATE) 1461
Cramer-von Mises EDF test 1522
Cramer-von Mises statistic 1523
Cramer’s V 550
CREATE INDEX statement

SQL procedure 1129
CREATE TABLE statement

SQL procedure 1130
CREATE VIEW statement

SQL procedure 1134
CRITERION= option

PROC COMPARE statement 216
Cronbach’s coefficient alpha 284

calculating and printing 269
example 299
for estimating reliability 264
for multiple-item mixed-rating scale 299

cross joins 1170
crosstabulation tables 515, 528, 1347
CSHADOW= option

INSET statement (UNIVARIATE) 1477
CSS keyword 1580
CSSCP option

PROC CORR statement 269
CTEXT= option

HISTOGRAM statement (UNIVARI-
ATE) 1461

INSET statement (UNIVARIATE) 1477
PROBPLOT statement (UNIVARIATE) 1489
QQPLOT statement (UNIVARIATE) 1502

CTEXTSIDE= option
HISTOGRAM statement (UNIVARI-

ATE) 1461
CTEXTTOP= option

HISTOGRAM statement (UNIVARI-
ATE) 1461

CUMCOL option
TABLES statement (FREQ) 534

cumulative distribution function 1587
CUSTOMER_RESPONSE data set 1619
customizing output 48

excluding output objects 48
for output objects 50
SAS output 48
selecting output objects 48
style definitions 47

CV keyword 1580
CVREF= option

HISTOGRAM statement (UNIVARI-
ATE) 1462

PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1502

D
DANISH option

PROC SORT statement 1095
DATA= argument

PROC EXPORT statement 428
DATA COLUMNS window, REPORT proce-

dure 1005
data component 39
Data Control Blocks (DCBs) 205, 317
data entry programs 811

data libraries
copying entire library 350
copying files 347
deleting files 353, 373
exchanging file names 357
listing files in 326
printing directories of 257, 344
processing all data sets 30
renaming files 342
USER data library 17
writing to transport files 307

DATA option
INSET statement (UNIVARIATE) 1477
APPEND statement (DATASETS) 336
CONTENTS statement (DATASETS) 345
PROC CALENDAR statement 81
PROC CHART statement 171
PROC COMPARE statement 216
PROC CORR statement 270
PROC DBCSTAB statement 408
PROC FORMS statement 499
PROC FREQ statement 519
PROC MEANS statement 655
PROC OPTLOAD statement 722
PROC OPTSAVE statement 724
PROC PLOT statement 729
PROC PRINT statement 821
PROC PRTDEF statement 894
PROC RANK statement 912
PROC REPORT statement 963
PROC SORT statement 1096
PROC STANDARD statement 1246
PROC TABULATE statement 1268
PROC TIMEPLOT statement 1368
PROC TRANSPOSE statement 1390
PROC UNIVARIATE statement 1446

DATA SELECTION window, REPORT proce-
dure 1005

data set options 17
SQL procedure with 1197

data sets
aging 405
appending 335
appending observations to 71
attribute listings 326
base data set 210
comparing 209
comparing variables in 243, 246
comparison data set 210
compressed, appending to 338
concatenating 403
content descriptions 344
contents of 257
creating formats from 482
creating informats/formats 442
data component versus 39
data set options 17
describing 400
exporting 319
exporting data 427
for examples 1615
importing data 633
indexed, appending to 338
indexes 363
input data sets 19
integrity constraints 326
loading system options from 721



1680 Index

managing with DATASETS procedure 326
modifying 398
modifying attributes 326
modifying variables 326
output data sets 44
password-protected, appending 337
password-protected, transporting 316
permanent 16
printing all data sets in a library 875
printing observations 817
processing all data sets in a library 30
producing with OUTPUT destination 40
renaming variables 371
repairing 371
saving system option settings in 723
standardizing variables 1243
storing informat/format descriptions 442
temporary 16
transporting between hosts 260, 352
writing printer attributes to 907
writing to transport files 307

DATA step variables 1024, 1030
DATA step views 1115
DATA step window applications, menus for 807
data summaries 1191, 1324
data summarization tools 650, 1257, 1436
DATABASE= statement

EXPORT procedure 433
IMPORT procedure 640

DATAFILE= argument
PROC IMPORT statement 634

DATAROW= statement
IMPORT procedure 638

DATASETS 330
DATASETS procedure 330

AGE statement 334
APPEND statement 335
AUDIT statement 341
CHANGE statement 342
concepts 375
CONTENTS statement 344
COPY statement 347
DELETE statement 353
directory listings 381
ending 377
error handling 376
examples 392
EXCHANGE statement 357
EXCLUDE statement 358
execution of 375
FORMAT statement 358
IC CREATE statement 359
IC DELETE statement 361
IC REACTIVATE statement 362
INDEX CENTILES statement 362
INDEX CREATE statement 363
INDEX DELETE statement 364
INFORMAT statement 365
LABEL statement 366
member types 379
MODIFY statement 366
ODS and 382
output data sets 386
overview 326
passwords 377
PROC DATASETS statement 330, 378
procedure output 382

referencing generation group version 380
RENAME statement 371
REPAIR statement 371
restricting member types 378
results 381
RUN-group processing 375
RUN groups, forcing processing 377
SAVE statement 373
SELECT statement 374
syntax 330
task tables 330, 344, 366

DATATYPE= option
PICTURE statement (FORMAT) 451

date formats 478
DATECOPY option

PROC CPORT statement 310
PROC SORT statement 1096
COPY statement (DATASETS) 349

DATETIME option
PROC CALENDAR statement 82

DAYLENGTH= option
PROC CALENDAR statement 82

DBCSLANG= option
PROC DBCSTAB statement 408

DBCSTAB 407
DBCSTAB procedure 407

conversion tables, creating 409
conversion tables, Japanese 410
examples 409
overview 407
PROC DBCSTAB statement 407
syntax 407
when to use 408

DBMS connections
ending 1138
establishing 1128
LIBNAME statement for 1198
sending DBMS statements to 1139
SQL Procedure Pass-Through Facility

for 1198
storing in views 1135

DBMS= option
PROC EXPORT statement 429
PROC IMPORT statement 635

DBMS queries 1162
DBMS tables

exporting 432
importing 640

DBPWD= statement
EXPORT procedure 433
IMPORT procedure 640

DCBs (Data Control Blocks) 205, 317
DDNAME= argument, PROC FSLIST state-

ment 628
DDNAME= option

PROC DATASETS statement 332
PROC FORMS statement 499

DEBUGOFF option
PROC REGISTRY statement 927

DEBUGON option
PROC REGISTRY statement 927

DECSEP= option
PICTURE statement (FORMAT) 451

DEF option
PROC UNIVARIATE statement 1448

DEFAULT= option
FORMAT procedure 462

INVALUE statement (FORMAT) 448
PICTURE statement (FORMAT) 450
RADIOBOX statement (PMENU) 789
VALUE statement (FORMAT) 460

DEFINE option
PROC OPTIONS statement 716

DEFINE statement
REPORT procedure 986

DEFINITION window, REPORT proce-
dure 1006

DELETE option
PROC PRTDEF statement 894

DELETE statement
CATALOG procedure 150
DATASETS procedure 353
SQL procedure 1136

delimited files
exporting 432, 434
importing 638, 641

DELIMITER= statement
EXPORT procedure 432
IMPORT procedure 638

denominator definitions 1347
density curves 1561
density function 1587
DESC option

PROC PMENU statement 781
PROC DBCSTAB statement 408

DESCENDING option
BY statement 54
BY statement (CALENDAR) 87
BY statement (CHART) 174
BY statement (COMPARE) 221
BY statement (CORR) 273
BY statement (FORMS) 501
BY statement (FREQ) 521
BY statement (MEANS) 661
BY statement (PLOT) 732
BY statement (PRINT) 830
BY statement (RANK) 914
BY statement (REPORT) 978
BY statement (SORT) 1100
BY statement (STANDARD) 1248
BY statement (TABULATE) 1276
BY statement (TIMEPLOT) 1369
BY statement (TRANSPOSE) 1391
BY statement (UNIVARIATE) 1451
CHART procedure 179
CLASS statement (MEANS) 662
CLASS statement (TABULATE) 1276
DEFINE statement (REPORT) 989
ID statement (COMPARE) 222
PROC RANK statement 912

DESCENDTYPES option
PROC MEANS statement 655

DESCRIBE statement
SQL procedure 1137

DESCRIPTION= argument
MODIFY statement (CATALOG) 152

DESCRIPTION= option
HISTOGRAM statement (UNIVARI-

ATE) 1462
PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1502

descriptive statistics 31, 650, 683, 1257
based on moments 650
computing with class variables 685



Index 1681

keywords and formulas 1580
tabular format 1260

destination-independent input 42
detail reports 939
detail rows 939
DETAILS option

CONTENTS statement (DATASETS) 345
PROC DATASETS statement 331

deviation from the mean 1593
DEVIATION option

TABLES statement (FREQ) 534
dialog boxes 783

check boxes in 782
collecting user input 798
color for 793
definition of 779
input fields 792
radio buttons in 790
searching multiple values 801
text for 792

DIALOG statement
PMENU procedure 783

DICTIONARY tables 1199
performance and 1201
reporting from 1218
retrieving information about 1200
uses for 1201

difference
definition of 227
report of differences 239

DIG3SEP= option
PICTURE statement (FORMAT) 451

digit selectors 453
dimension 1265
dimension expressions

constructing 1286
definition of 1265
elements in 1287
operators in 1288
style elements in 1288

directives 453
DIRECTORY option

CONTENTS statement (DATASETS) 345
DISCONNECT statement

SQL procedure 1138
DISCRETE option

CHART procedure 179
DISPLAY option

DEFINE statement (REPORT) 989
DISPLAY PAGE window, REPORT proce-

dure 1011
DISPLAY procedure 413

example 414
overview 413
PROC DISPLAY statement 414
syntax 413

display variables 945, 989
distribution 1587
distribution of numeric variables 1436
DJIA data set 1621
DMOPTLOAD command 721
DMOPTSAVE command 723
DOCUMENT destination 40, 43
DOL option

BREAK statement (REPORT) 975
RBREAK statement (REPORT) 997

double-byte character sets
conversion tables for 407

DOUBLE option
PROC PRINT statement 821
PROC SQL statement 1121

double overlining 975, 997
double underlining 975, 997
DOWN= option

PROC FORMS statement 499
DQUOTE= option

PROC SQL statement 1121
DROP statement

SQL procedure 1138
DTC= option

MODIFY statement (DATASETS) 367
DUL option

RBREAK statement (REPORT) 975, 997
DUR statement

CALENDAR procedure 89

E
EBCDIC collating sequence 1095, 1101
EBCDIC option

PROC SORT statement 1095
EDF goodness-of-fit tests 1521

probability values of 1523
EDUCATION data set 1622
EET= option

PROC CIMPORT statement 201
PROC CPORT statement 310

efficiency issues
statistical procedures 7

elementary statistics procedures 1577
embedded LIBNAME statements 1135
embedded SQL 1207
EMPDATA data set 1623
ENDCOMP statement

REPORT procedure 994
ENDPOINTS= option

HISTOGRAM statement (UNIVARI-
ATE) 1462

ENERGY data set 1625
ENTRYTYPE= option

CHANGE statement (CATALOG) 147
COPY statement (CATALOG) 149
DELETE statement (CATALOG) 150
EXCHANGE statement (CATALOG) 151
EXCLUDE statement (CATALOG) 151
EXCLUDE statement (CIMPORT) 203
EXCLUDE statement (CPORT) 314
MODIFY statement (CATALOG) 152
PROC CATALOG statement 145
SAVE statement (CATALOG) 153
SELECT statement (CATALOG) 153
SELECT statement (CIMPORT) 204
SELECT statement (CPORT) 315

equal kappa coefficients 573
EQUALS option

PROC SORT statement 1096
equijoins 1166
error checking

formats and 30
ERROR option

PROC COMPARE statement 216

error processing
of BY-group specifications 24

ERRORSTOP option
PROC SQL statement 1121

estimates 1587
ET= option

PROC CIMPORT statement 201
PROC CPORT statement 310

ETYPE= option
EXCLUDE statement (CIMPORT) 203
EXClUDE statement (CPORT) 314
SELECT statement (CIMPORT) 204
SELECT statement (CPORT) 315

event logging 341
EXACT option

TABLES statement (FREQ) 534
EXACT statement

FREQ procedure 522
exact statistics 581
exact tests 522, 552
examples

raw data for 1615
EXCEPT operator 1181
EXCHANGE statement

CATALOG procedure 150
DATASETS procedure 357

EXCLNPWDTS option
PROC MEANS statement 655
PROC TABULATE statement 1268

EXCLNPWGT option
PROC CORR statement 270
PROC REPORT statement 963
PROC STANDARD statement 1246
PROC UNIVARIATE statement 1446

EXCLUDE statement
CATALOG procedure 151
CIMPORT procedure 203
CPORT procedure 313
DATASETS procedure 358
FORMAT procedure 446
PRTEXP procedure 906

exclusion lists 48
EXCLUSIVE option

CLASS statement (MEANS) 662
CLASS statement (TABULATE) 1277
DEFINE statement (REPORT) 989
PROC MEANS statement 655
PROC TABULATE statement 1268

EXEC option
PROC SQL statement 1121

EXECUTE statement
SQL procedure 1139

EXISTS condition 1163
EXPECTED option

TABLES statement (FREQ) 534
expected value 1587
EXPLODE procedure 420

ending PROC EXPLODE step 423
examples 423
message lines 421
Null statement 423
options 421
overview 419
PARMCARDS statement 420
PARMCARDS4 statement 420
PROC EXPLODE statement 420
syntax 420



1682 Index

exploded output 419
EXPLORE window, REPORT procedure 1012
Explorer window

displaying list of styles 47
exponential distribution 1531, 1537
EXPONENTIAL option

HISTOGRAM statement (UNIVARI-
ATE) 1463

PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1502

EXPORT 428
EXPORT= option

PROC REGISTRY statement 927
EXPORT procedure 428

data source statements 432
DBMS specifications 429
DBMS table statements 432
delimited files 432, 434
examples 434
Excel spreadsheets 431, 437
Microsoft Access tables 433, 438
overview 427
PC files 432
PROC EXPORT statement 428
spreadsheets 432, 438
syntax 428

exporting
printer definitions 894
registry contents 927, 933

exporting data 427
DBMS tables 432
delimited files 432, 434
Excel spreadsheets 431, 437
Microsoft Access tables 433, 438

exporting files 307
EXTENDSN= option, PROC CIMPORT state-

ment 201
Extensible Markup Language (XML) 38
external data sources

importing data 633
writing to 427

external files
comparing registry with 934
exporting delimited files 434
importing delimited files 641
routing output or log to 883

external files, browsing 627
extreme value distribution 1532
extreme values 650, 706, 709, 1473,

F
features of ODS 42
FEEDBACK option

PROC SQL statement 1121
FILE= option

CONTENTS statement (CATALOG) 147
PROC CIMPORT statement 202
PROC CPORT statement 311
PROC FORMS statement 499

FILEREF= argument, PROC FSLIST state-
ment 628

files
aging 334
changing attributes of 366
converting 307

copying 259, 347, 358, 374
DATASETS procedure for 326
deleting 353, 373
exchanging names 357
exporting 307
listing 326
moving among environments 307
passwords 326
renaming 342
renaming groups of 334
repairing 371

FILL option
HISTOGRAM statement (UNIVARI-

ATE) 1463
PROC CALENDAR statement 82
PICTURE statement (FORMAT) 451

FIN statement
CALENDAR procedure 90

FINNISH option
PROC SORT statement 1095

FISHER option
TABLES statement (FREQ) 534

Fisher’s exact test 548
fitted continuous distributions 1530

beta distribution 1530
exponential distribution 1531
gamma distribution 1532
kernel density estimates 1534
lognormal distribution 1533
normal distribution 1533
Weibull distribution 1534

flip charts 419
floating point exception (FPE) recovery 1274
FLOW option

DEFINE statement (REPORT) 989
PROC SQL statement 1122

FMTLEN option
CONTENTS statement (DATASETS) 346

FMTLIB option
PROC FORMAT statement 445, 446, 459

FONT= option
HISTOGRAM statement (UNIVARI-

ATE) 1463
INSET statement (UNIVARIATE) 1478
PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1502

FORCE option
APPEND statement (DATASETS) 336
COPY statement (DATASETS) 349
PROC CATALOG statement 146
PROC CIMPORT statement 202
PROC DATASETS statement 332
PROC DBCSTAB statement 408
PROC SORT statement 1096

FORCEHIST option
HISTOGRAM statement (UNIVARI-

ATE) 1463
FOREIGN option

PROC PRTDEF statement 894
form units 495

layout of 503
single form unit per observation 505

FORMAT 443
format catalogs 467
format-name formats 462
FORMAT= option

DEFINE statement (REPORT) 989

INSET statement (UNIVARIATE) 1478
MEAN statement (CALENDAR) 93
PROC TABULATE statement 1268
SUM statement (CALENDAR) 96
TABLES statement (FREQ) 534

FORMAT procedure 443
associating informats/formats with vari-

ables 465
concepts 465
examples 474
EXCLUDE statement 446
excluding entries from processing 446
formats for character values 459
informats for reading and converting raw

data 447
input control data set 471
INVALUE statement 447
options for informats/formats 462
output 472
output control data set 468
overview 442
permanent informats/formats 467
picture formats 450
PICTURE statement 450
PROC FORMAT statement 444
ranges 464
results 468
SELECT statement 459
selecting entries for processing 459
storing informats/formats 467
syntax 443
task tables 443, 444, 447, 450,
template for printing numbers 450
temporary informats/formats 467
VALUE statement 459
values, specifying 464

FORMAT statement 53
DATASETS procedure 358

formats
See also picture formats
associating with variables 465
BY-group processing and 30
comparing unformatted values 228
creating 442
creating from data sets 482
creating groups with 1075
DATASETS procedure and 358
date formats 478
definition of 442
error checking and 30
for character values 459, 476
for columns 1160
for values in tables 1293
format-name formats 462
formatted values 25
missing 468
multilabel 1320
multilabel value formats 693
permanent 467, 488
picture-name formats 458
preloaded 992, 1278, 1315
preloaded, with class variables 696
printing descriptions of 487
retrieving permanent formats 488
storing 467
temporary 467
temporary associations 28, 29



Index 1683

user-defined 442
FORMATS window, REPORT procedure 1013
formatted values 25

classifying data 27
grouping data 27
printing 25

formatting data
instructions in output objects 40
table definitions 39

FORMCHAR option
PROC CHART statement 171
PROC FREQ statement 519
PROC PLOT statement 729
PROC REPORT statement 963
PROC TABULATE statement 1269
PROC CALENDAR statement 82

forms
printing reports with 956

FORMS 497
FORMS procedure 497

BY statement 501
concepts 503
continuous mode 504
examples 505
form layout 503
FREQ statement 502
LINE statement 502
modes of operation 504
multiple copies of a label 510
overview 495
page mode 504
PROC FORMS statement 497
procedure output file 504
single form unit per observation 505
syntax 497
task tables 497, 502
two sets of mailing labels 508

formulas, for statistics 1578
FORTCC option

FSLIST command 631
PROC FSLIST statement 629

FPE recovery 1274
FRACTION option

PROC RANK statement 912
FRAME applications

associating menus with 813
FREQ 518
FREQ option

CHART procedure 179
PROC UNIVARIATE statement 1446
CHART procedure 179

FREQ procedure 43, 518
adjusted odds ratio 577
ANOVA statistic 576
asymptotic tests 551
binomial proportions 560, 599
Bowker’s test of symmetry 569
Breslow-Day test 580
BY statement 521
chi-square tests 546, 596, 605
Cochran-Armitage test for trend 566, 611
Cochran-Mantel-Haenszel statistics 574, 609
Cochran’s Q test 574, 618
computational algorithms 581
computational resources 543, 583
concepts 541
confidence limits 551

contingency coefficient 550
correlation statistic 576
Cramer’s V 550
crosstabulation tables 528
definitions 544
equal kappa coefficients 573
EXACT statement 522
exact statistics 581
exact tests 552
examples 592
Fisher’s exact test 548
formatting characters 519
frequency counts, inputting 541
frequency tables 528
Friedman’s Chi-square statistic 615
gamma 552
general association statistic 577
grouping with formats 542
Jonckheere-Terpstra test 567
Kendall’s tau-b 552
lambda asymmetric 558
lambda symmetric 559
Mantel-Haenszel adjusted odds ratio 578
Mantel-Haenszel chi-square test 548
McNemar’s test 569
measures of agreement 569
measures of association 550
missing values 585
Monte Carlo estimation 584
negative weights 541
notation 544
odds ratio 564, 579
ODS table names 586
output 589
output data sets 525, 590, 593, 605
OUTPUT statement 525, 591
overall kappa coefficient 573
overview 515
p-values 582
Pearson correlation coefficient 555
phi coefficient 549
polychoric correlation 558
PROC FREQ statement 519
relative risk estimates 577
relative risks 565, 579
results 585
risks and risk differences 562
scores 545
simple kappa coefficient 570
Somers’ D 554
Spearman correlation statistics 556
statistical computations 544
Stuart’s tau-c 553
suppressing displayed output 590
syntax 518
TABLES statement 524, 525, 528, 590
task tables 518, 519, 529
TEST statement 539
uncertainty coefficient asymmetric 559
uncertainty coefficient symmetric 560
WEIGHT statement 540
weighted kappa coefficient 571
zero weights 541

FREQ statement 57
CORR procedure 274
example 57
FORMS procedure 502

MEANS procedure 665
procedures supporting 57
REPORT procedure 994
STANDARD procedure 1249
TABULATE procedure 1280
UNIVARIATE procedure 1455

frequency counts 1347
CHART procedure 184

frequency of observations 57
frequency tables 515, 528
Friedman’s Chi-square statistic 615
FROM clause, SQL procedure 1147
FRONTREF option

HISTOGRAM statement (UNIVARI-
ATE) 1463

FSEDIT applications
menu bars for 796

FSEDIT sessions
associating menu bar with 798, 805

FSEDIT window
associating menu bar with 800

FSLIST command 628, 630
FSLIST procedure 627

FSLIST command 628, 630
overview 627
PROC FSLIST statement 628
syntax 627

FULLSTATUS option
PROC REGISTRY statement 928

functions
SQL procedure and 1182, 1206

FUZZ= option
FORMAT procedure 462
INVALUE statement (FORMAT) 448
PICTURE statement (FORMAT) 450
PROC COMPARE statement 216
TABLE statement (TABULATE) 1284
VALUE statement (FORMAT) 460

FW= option
PROC MEANS statement 655

G
G100 option

CHART procedure 180
gallery of samples 33
gamma 552
gamma distribution 1532, 1537
GAMMA option

HISTOGRAM statement (UNIVARI-
ATE) 1464

PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1502

Gaussian distribution 1594
general association statistic 577
generation groups

appending with 339
copying 352
DATASETS procedure and 354, 370

GENERATION option
PROC CPORT statement 311

GENMAX= option
MODIFY statement (DATASETS) 367

GENNUM= data set option 339
GENNUM= option

AUDIT statement (DATASETS) 341



1684 Index

CHANGE statement (DATASETS) 343
DELETE statement (DATASETS) 353
MODIFY statement (DATASETS) 368
PROC DATASETS statement 332
REPAIR statement (DATASETS) 371

GETDELETED= statement
IMPORT procedure 639

GETNAMES= statement
IMPORT procedure 639

Ghostview printer definition 900
Gini’s mean difference 1527
global statements 18
goodness-of-fit tests 1448, 1520

Anderson-Darling statistic 1522
Cramer-von Mises statistic 1523
EDF 1521, 1523
Kolmogorov D statistic 1522
Shapiro-Wilk statistic 1521

GOUT= option
PROC UNIVARIATE statement 1447

graphics 1436
annotating 1445
high-resolution 1436, 1514
insets 1474, 1479, 1480
probability plots 1485, 1514, 1515
quantile-quantile plots 1497, 1514, 1515
saving 1447

GRAY option
ITEM statement (PMENU) 786

GRID option
HISTOGRAM statement (UNIVARI-

ATE) 1464
PROBPLOT statement (UNIVARIATE) 1490
QQPLOT statement (UNIVARIATE) 1503

GROC data set 1626
GROUP BY clause, SQL procedure 1149
GROUP option

DEFINE statement (REPORT) 990
CHART procedure 179
PROC OPTIONS statement 716

group variables 946, 990
grouping data 27
GROUPINTERNAL option

CLASS statement (MEANS) 662
CLASS statement (TABULATE) 1277

GROUPS= option
PROC RANK statement 912

GSPACE= option
CHART procedure 180

H
HAVING clause, SQL procedure 1150
HAXIS= option, PLOT statement (PLOT) 736
HBAR statement

CHART procedure 175
HEADER= option

INSET statement (UNIVARIATE) 1478
PROC CALENDAR statement 84

header pages 419
HEADING= option

PROC PRINT statement 822
HEADLINE option

PROC REPORT statement 965
HEADSKIP option

PROC REPORT statement 966

HEIGHT= option
HISTOGRAM statement (UNIVARI-

ATE) 1464
INSET statement (UNIVARIATE) 1478
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

HELP= option
ITEM statement (PMENU) 786
PROC REPORT statement 966

HEXPAND option, PLOT statement
(PLOT) 738

high-resolution graphics 1436, 1514
See graphics

HILOC option
PLOT statement (TIMEPLOT) 1374

HISTOGRAM statement
UNIVARIATE procedure 1455

histograms 1455, 1541
extreme values and 1546
intervals 1541
quantiles 1541
two-way comparative 1568

HMINOR= option
HISTOGRAM statement (UNIVARI-

ATE) 1464
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

HOEFFDING option
PROC CORR statement 270

Hoeffding’s measure of dependence 264, 281
calculating and printing 270
example 292
output data set with 271

HOFFSET= option
HISTOGRAM statement (UNIVARI-

ATE) 1464
HOLIDATA= option

PROC CALENDAR statement 84
holidays data set 84, 100, 101, 103
HOLIDUR statement

CALENDAR procedure 90
HOLIFIN statement

CALENDAR procedure 91
HOLISTART statement

CALENDAR procedure 92
HOLIVAR statement

CALENDAR procedure 92
HOMELOANS data set 1627
horizontal bar charts 175, 1448

for subset of data 192
horizontal separators 1328
HOST option

PROC OPTIONS statement 716
host options listing 716
host-specific procedures 1613
HPERCENT= option, PROC PLOT state-

ment 730
HPOS= option, PLOT statement (PLOT) 738
HREF= option

HISTOGRAM statement (UNIVARI-
ATE) 1464

PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

HREF= option, PLOT statement (PLOT) 738
HREFCHAR= option, PLOT statement

(PLOT) 738

HREFLABELS= option
HISTOGRAM statement (UNIVARI-

ATE) 1464
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

HREFLABPOS= option
HISTOGRAM statement (UNIVARI-

ATE) 1465
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

HREVERSE option, PLOT statement
(PLOT) 738

HSCROLL= option, PROC FSLIST state-
ment 630

HSPACE= option, PLOT statement (PLOT) 738
HTML destination 44
HTML files 1078, 1357
HTML output 35
HTML reports 838, 856, 871
Hypertext Markup Language (HTML) 35, 44
hypotheses, testing 1607

keywords and formulas 1585
HZERO option, PLOT statement (PLOT) 738

I
IC CREATE statement

DATASETS procedure 359
IC DELETE statement

DATASETS procedure 361
IC REACTIVATE statement

DATASETS procedure 362
ID option

DEFINE statement (REPORT) 990
ITEM statement (PMENU) 786

ID statement
COMPARE procedure 222
MEANS procedure 665
PRINT procedure 830
TIMEPLOT procedure 1370
TRANSPOSE procedure 1393
UNIVARIATE procedure 1473

ID variables 990
IDLABEL statement

TRANSPOSE procedure 1394
IDMIN option

PROC MEANS statement 655
IMPORT 634
IMPORT= option

PROC REGISTRY statement 928
IMPORT procedure 634

data source statements 638
delimited files 638, 641
examples 641
Excel spreadsheets 645, 646
input data sources 636
Microsoft Access tables 641, 647
overview 633
PC files 638
PROC IMPORT statement 634
spreadsheets 638, 645
syntax 634

IMPORT statement
DBMS table statements 640

importing
to registry 928, 932



Index 1685

transport files 199
importing data 633

delimited files 638, 641
Excel spreadsheets 645
Microsoft Access tables 641, 647
PC files 638
spreadsheets 638, 645

IN condition 1164
in-line views 1148, 1205

querying 1230
IN= option

COPY statement (CATALOG) 149
COPY statement (DATASETS) 349

INDENT= option
LINE statement (FORMS) 503
PROC FORMS statement 499
TABLE statement (TABULATE) 1284

INDEX CENTILES statement
DATASETS procedure 362

INDEX CREATE statement
DATASETS procedure 363

INDEX DELETE statement
DATASETS procedure 364

INDEX= option
COPY statement (DATASETS) 349
PROC CPORT statement 311

indexes
appending indexed data sets 338
centiles and 362
composite indexes 1129
creating 363
deleting 364, 1138
managing 1129
on altered columns 1127
on columns 1129, 1141
simple indexes 1129
SQL procedure and 1129
UNIQUE keyword 1129

INFILE= option
PROC CIMPORT statement 202

INFONT= option
HISTOGRAM statement (UNIVARI-

ATE) 1465
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

INFORMAT statement
DATASETS procedure 365

informats
associating with variables 465
creating 442
DATASETS procedure and 365
definition of 442
for columns 1160
for converting raw data 480
for raw data values 447
missing 468
permanent 467
printing descriptions of 487
storing 467
temporary 467
user-defined 442

INHEIGHT= option
HISTOGRAM statement (UNIVARI-

ATE) 1465
PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1503

INITIATE argument
AUDIT statement (DATASETS) 341

inner joins 1167
INOBS= option

PROC SQL statement 1122
input data sets 19
input fields 792
input files

procedure output as 889
INSERT statement

SQL procedure 1140
INSET statement

UNIVARIATE procedure 1474
insets 1474

positioning in margins 1480
positioning with compass point 1479
positioning with coordinates 1480

integrity constraints 326
appending data sets and 339
copying data sets and 349
creating 359
deleting 361
names for 360
PROC SQL tables 1125, 1127, 1133, 11
reactivating 362
SORT procedure 1102

interactive line mode
printing from 957

interquartile range 1527, 1593
INTERSECT operator 1181
INTERTILE= option

HISTOGRAM statement (UNIVARI-
ATE) 1465

PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1504

INTERVAL= option
PROC CALENDAR statement 85

INTO clause, SQL procedure 1144
INTYPE= option

PROC CPORT statement 311
INVALUE statement

FORMAT procedure 447
INVERSE statement, TRANTAB proce-

dure 1415
IS condition 1164
ITEM statement

PMENU procedure 785
ITEMHELP= option

DEFINE statement (REPORT) 990

J
Japanese conversion tables 410
joined-table component 1165
JOINREF option

PLOT statement (TIMEPLOT) 1374
joins

cross joins 1170
definition of 1166
equijoins 1166
inner joins 1167
joining a table with itself 1167
joining more than two tables 1172
joining tables 1166
joining three tables 1227
joining two tables 1213

natural joins 1171
outer joins 1169, 1205, 1220
reflexive joins 1167
rows to be returned 1166
subqueries compared with 1174
table limit 1166
types of 1166
union joins 1171

Jonckheere-Terpstra test 567
JT option

TABLES statement (FREQ) 535
JUST option

INVALUE statement (FORMAT) 448

K
K= option

HISTOGRAM statement (UNIVARI-
ATE) 1465

kappa statistics
equal kappa coefficients 573
overall kappa coefficient 573
simple kappa coefficient 570
weighted kappa coefficient 571

KEEPLEN option
OUTPUT statement (MEANS) 671

Kendall correlation statistics 271
Kendall’s partial tau-b 264, 274
Kendall’s tau-b 264, 270, 280, 552

KENDALL option
PROC CORR statement 270

kernel density estimates 1534
KERNEL option

HISTOGRAM statement (UNIVARI-
ATE) 1466

key cell 1452
KEY= option

PROC OPTLOAD statement 722
PROC OPTSAVE statement 724

KEYLABEL statement
TABULATE procedure 1281

KEYLEVEL= option
CLASS statement (UNIVARIATE) 1452

KEYWORD statement
TABULATE procedure 1281

keywords, for statistics 1578
KILL option

PROC CATALOG statement 146
PROC DATASETS statement 332

Kolmogorov D statistic 1522
Kolmogorov-Smirnov EDF test 1522
kurtosis 1594
KURTOSIS keyword 1580

L
L= option

HISTOGRAM statement (UNIVARI-
ATE) 1466

PROBPLOT statement (UNIVARIATE) 1491
QQPLOT statement (UNIVARIATE) 1504

LABEL option
PROC PRINT statement 822
MODIFY statement (DATASETS) 368



1686 Index

PROC PRINTTO statement 881
PROC TRANSPOSE statement 1390

LABEL statement 53
DATASETS procedure 366

labels
for columns 1160
multiple copies of, within a set of labels 510
producing with FORMS procedure 495

lambda asymmetric 558
lambda symmetric 559
LASTNAME option

LINE statement (FORMS) 503
LCLM keyword 1585
LEFT option

DEFINE statement (REPORT) 990
LEGEND option

PROC CALENDAR statement 85
lengths

for columns 1161
LET option

PROC TRANSPOSE statement 1390
LEVELS option

OUTPUT statement (MEANS) 671
CHART procedure 180

LGRID= option
HISTOGRAM statement (UNIVARI-

ATE) 1466
PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1504

LHREF= option
HISTOGRAM statement (UNIVARI-

ATE) 1466
PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1504

LIBNAME statement
DBMS connections with 1198
embedding in views 1135

libraries
printing all data sets 875

LIBRARY= option
PROC DATASETS statement 332
PROC FORMAT statement 445

librefs
stored views and 1134

LIKE condition 1174
likelihood-ratio chi-square test 547
line-drawing characters 962
line printer plots 1512

box plots 1513, 1514
normal probability plots 1513
stem-and-leaf plots 1512

LINE statement
FORMS procedure 502
REPORT procedure 995

LINES= option
PROC FORMS statement 499

LIST option
PLOT statement (PLOT) 738
PROC PRTDEF statement 894
PROC REGISTRY statement 928
PROC REPORT statement 966
TABLES statement (FREQ) 535

LIST statement, TRANTAB procedure 1416
LISTALL option

PROC COMPARE statement 216
LISTBASE option

PROC COMPARE statement 217

LISTBASEOBS option
PROC COMPARE statement 217

LISTBASEVAR option
PROC COMPARE statement 217

LISTCOMP option
PROC COMPARE statement 217

LISTCOMPOBS option
PROC COMPARE statement 217

LISTCOMPVAR option
PROC COMPARE statement 217

LISTEQUALVAR option
PROC COMPARE statement 217

LISTHELP= option
PROC REGISTRY statement 928

LISTING destination 40, 43
open as default 46

Listing output 33
LISTOBS option

PROC COMPARE statement 217
LISTREG= option

PROC REGISTRY statement 928
LISTUSER option

PROC REGISTRY statement 929
LISTVAR option

PROC COMPARE statement 217
listwise deletion 287
LOAD REPORT window, REPORT proce-

dure 1013
LOAD statement, TRANTAB procedure 1416
LOCALE option

PROC CALENDAR statement 85
LOCATION= option

PROC UNIVARIATE statement 1447
location parameters 1539
LOCCOUNT option

PROC UNIVARIATE statement 1447
log

default destinations 879
destinations for 879
displaying SQL definitions 1137
listing registry contents in 928
routing to catalog entries 886
routing to external files 883
routing to printer 883, 892
system options list in 713, 717
writing printer attributes to 907
writing registry contents to 928

LOG option
AUDIT statement (DATASETS) 341
PROC PRINTTO statement 881

logit odds ratio, adjusted 579
lognormal distribution 1533, 1537
LOGNORMAL option

HISTOGRAM statement (UNIVARI-
ATE) 1466

PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1504

LONG option
PROC OPTIONS statement 716

LOOPS= option
PROC SQL statement 1122

LOWER function (SQL) 1176
LOWER= option

HISTOGRAM statement (UNIVARI-
ATE) 1466

LPI= option
PROC CHART statement 172

LS= option
PROC REPORT statement 967

LVREF= option
HISTOGRAM statement (UNIVARI-

ATE) 1467
PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1504

M
macro return codes 228
macro variables

set by SQL procedure 1202
MAD (median absolute deviation) 1527
mailing labels 495

examples 505
multiple copies of a label, within a set 510
printing two sets 508

Mantel-Haenszel adjusted odds ratio 578
Mantel-Haenszel chi-square test 548
marginal homogeneity 618
markers 971, 1272
MARKUP destination 40, 44
markup languages 40, 44
MATCH_11 data set 1641
matching observations 210
matching patterns 1174, 1238
matching variables 210
MAX keyword 1581
MAX= option

FORMAT procedure 463
INVALUE statement (FORMAT) 448
PICTURE statement (FORMAT) 450
VALUE statement (FORMAT) 460

MAXDEC= option
PROC MEANS statement 655
PROC TIMEPLOT statement 1368

maximum value 1581
MAXITER= option

TABLES statement (FREQ) 535
MAXLABLEN= option

PROC FORMAT statement 445
MAXNBIN= option

HISTOGRAM statement (UNIVARI-
ATE) 1467

MAXPRINT= option
PROC COMPARE statement 217

MAXSELEN= option
PROC FORMAT statement 445

MAXSIGMAS= option
HISTOGRAM statement (UNIVARI-

ATE) 1467
MAXTIME= option

EXACT statement (FREQ) 523
MC option

EXACT statement (FREQ) 523
McNemar’s test 569
mean 1587, 1588
MEAN keyword 1581
MEAN option

CHART procedure 180
PROC STANDARD statement 1246

MEAN statement
CALENDAR procedure 93

MEANS 652



Index 1687

MEANS procedure 652
analysis variables 673
BY statement 660, 664, 687
CLASS statement 661
class variables 661, 672, 674, 675
column width for output 681
computational resources 677
computer resources 665
concepts 675
confidence limits 679
examples 683
FREQ statement 665
ID statement 665
missing values 664, 681, 704
N Obs statistic 681
output data set 665, 666, 682
OUTPUT statement 666
output statistics 700, 702, 704, 706,
overview 650
PROC MEANS statement 653
quantiles 680
results 681
statistic keywords 658, 666
statistical computations 678
Student’s t test 680
syntax 652
task tables 652, 653
TYPES statement 672
VAR statement 673
WAYS statement 674
WEIGHT statement 675
weighting observations 675

MEANTYPE= option
PROC CALENDAR statement 86

measures of agreement 539, 569
zero rows or columns 574

measures of association 292, 539, 550
nonparametric 263

measures of location 1588
measures of shape 1593
measures of variability 1592
MEASURES option

TABLES statement (FREQ) 535
median 1588
median absolute deviation (MAD) 1527
MEDIAN keyword 1583
MEMOSIZE= statement

IMPORT procedure 639, 640
MEMTYPE= option

AGE statement (DATASETS) 334
CHANGE statement (DATASETS) 343
CONTENTS statement (DATASETS) 346
COPY statement (DATASETS) 349, 350
DELETE statement (DATASETS) 353
EXCHANGE statement (DATASETS) 357
EXCLUDE statement (CIMPORT) 203
EXCLUDE statement (CPORT) 314
EXCLUDE statement (DATASETS) 358
MODIFY statement (DATASETS) 368
PROC CIMPORT statement 202
PROC CPORT statement 312
PROC DATASETS statement 333
REPAIR statement (DATASETS) 372
SAVE statement (DATASETS) 373
SELECT statement (CIMPORT) 204
SELECT statement (CPORT) 315
SELECT statement (DATASETS) 374

menu bars
associating with FSEDIT sessions 798, 805
associating with FSEDIT window 800
definition of 779
for FSEDIT applications 796
items in 785
items in, defining 787
key sequences for 786

MENU statement
PMENU procedure 788

menus 779
activating 779
associating FRAME applications with 813
associating windows with 810
data entry programs and 811
for DATA step window applications 807
printing from 812
submenus 792

merging data 1192
message characters 453
MESSAGE= option

IC CREATE statement (DATASETS) 361
MESSAGES window, REPORT procedure 1014
METHOD= option

PROC COMPARE statement 217
Microsoft Access tables

exporting 431, 433, 438
importing 641, 647

Microsoft Excel
exporting spreadsheets 431, 437, 438
importing spreadsheets 637, 645, 646

Microsoft Word 45
MIDPERCENTS option

HISTOGRAM statement (UNIVARI-
ATE) 1467

MIDPOINTS= option
CHART procedure 180
HISTOGRAM statement (UNIVARI-

ATE) 1467
MIN keyword 1581
MIN= option

FORMAT procedure 463
INVALUE statement (FORMAT) 448
PICTURE statement (FORMAT) 450
VALUE statement (FORMAT) 460

minimum value 1581
missing formats 468
missing informats 468
MISSING option

CHART procedure 181
CLASS statement (MEANS) 662
CLASS statement (TABULATE) 1277
CLASS statement (UNIVARIATE) 1453
DEFINE statement (REPORT) 990
PROC CALENDAR statement 86
PROC MEANS statement 656
PROC PLOT statement 731
PROC REPORT statement 967
PROC TABULATE statement 1270
TABLES statement (FREQ) 535

missing values
NMISS keyword 1581
PLOT procedure 749, 767

MISSPRINT option
TABLES statement (FREQ) 535

MISSTEXT= option
TABLE statement (TABULATE) 1284

MLF option
CLASS statement (MEANS) 663
CLASS statement (TABULATE) 1277

MNEMONIC= option
ITEM statement (PMENU) 787

mode 1588
mode calculation 1530
MODE keyword 1581
MODES option

PROC UNIVARIATE statement 1447
MODIFY statement

CATALOG procedure 152
DATASETS procedure 366

Monte Carlo estimation 522, 584
MOVE option

COPY statement (CATALOG) 149
COPY statement (DATASETS) 350

MT= option
PROC CPORT statement 312

MTYPE= option
AGE statement (DATASETS) 334
CHANGE statement (DATASETS) 343
CONTENTS statement (DATASETS) 346
COPY statement (DATASETS) 349, 350
DELETE statement (DATASETS) 353
EXCLUDE statement (CIMPORT) 203
EXCLUDE statement (CPORT) 314
EXCLUDE statement (DATASETS) 358
MODIFY statement (DATASETS) 368
PROC DATASETS statement 333
REPAIR statement (DATASETS) 372
SAVE statement (DATASETS) 373
SELECT statement (CIMPORT) 204
SELECT statement (CPORT) 315
SELECT statement (DATASETS) 374

MU= option
HISTOGRAM statement (UNIVARI-

ATE) 1468
PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1504

MU0 option
PROC UNIVARIATE statement 1447

multi-threaded sorting 1100
multilabel formats 1320
MULTILABEL option

PICTURE statement (FORMAT) 451
VALUE statement (FORMAT) 460

multilabel value formats 693
multiple-choice survey data 1338
multiple-response survey data 1333
MULTIPLIER= option

PICTURE statement (FORMAT) 452

N
N keyword 1581
N Obs statistic 681
N option

PROC PRINT statement 822
EXACT statement (FREQ) 524

NADJ= option
PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1505

NAME= argument
PROC DBCSTAB statement 407
TRANTAB statement (CPORT) 315



1688 Index

NAME= option
HISTOGRAM statement (UNIVARI-

ATE) 1468
PROBPLOT statement (UNIVARIATE) 1492
PROC TRANSPOSE statement 1390
QQPLOT statement (UNIVARIATE) 1505

NAMED option
PROC REPORT statement 967

NATIONAL option
PROC SORT statement 1095

natural joins 1171
NCOLS= option

HISTOGRAM statement (UNIVARI-
ATE) 1468

PROBPLOT statement (UNIVARIATE) 1492
QQPLOT statement (UNIVARIATE) 1505

NDOWN= option
PROC FORMS statement 500

NEDIT option
PROC CIMPORT statement 202
PROC CPORT statement 312

negative weights 541
nested variables 1265
NEW option

COPY statement (CATALOG) 149
PROC CIMPORT statement 202
PROC PRINTTO statement 882
APPEND statement (DATASETS) 336

NEXTROBS= option
PROC UNIVARIATE statement 1447

NEXTRVAL= option
PROC UNIVARIATE statement 1447

NLS option
LOAD statement (TRANTAB) 1416
PROC TRANTAB statement 1414

NMISS keyword 1581
NOALIAS option

PROC REPORT statement 967
NOBARS option

HISTOGRAM statement (UNIVARI-
ATE) 1468

NOBORDER option, PROC FSLIST state-
ment 630

NOBS keyword 1582
NOBYLINE system option

BY statement (MEANS) with 661
BY statement (PRINT) with 830

NOBYPLOT option
PROC UNIVARIATE statement 1448

NOCAPS option, PROC FSLIST statement 629
NOCC option

FSLIST command 631
PROC FSLIST statement 629

NOCENTER option
PROC REPORT statement 962

NOCLONE option
COPY statement (DATASETS) 347

NOCOL option
TABLES statement (FREQ) 535

NOCOMPLETECOLS option
PROC REPORT statement 963

NOCOMPLETEROWS option
PROC REPORT statement 963

NOCOMPRESS option
PROC CPORT statement 312

NOCONTINUED option
TABLE statement (TABULATE) 1284

NOCORR option
PROC CORR statement 270

NOCUM option
TABLES statement (FREQ) 535

NODATE option
PROC COMPARE statement 218

NODETAILS option
CONTENTS statement (DATASETS) 345
PROC DATASETS statement 331

NODOUBLE option
PROC SQL statement 1121

NODS option
CONTENTS statement (DATASETS) 346

NODUPKEY option
PROC SORT statement 1097

NODUPRECS option
PROC SORT statement 1097

NOEDIT option
COPY statement (CATALOG) 149
PICTURE statement (FORMAT) 452
PROC CIMPORT statement 202
PROC CPORT statement 312

NOEQUALS option
PROC SORT statement 1096

NOERRORSTOP option
PROC SQL statement 1121

NOEXEC option
PROC REPORT statement 967
PROC SQL statement 1121

NOFEEDBACK option
PROC SQL statement 1121

NOFLOW option
PROC SQL statement 1122

NOFRAME option
HISTOGRAM statement (UNIVARI-

ATE) 1468
INSET statement (UNIVARIATE) 1478
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1505

NOFREQ option
TABLES statement (FREQ) 536

NOHEADER option
CHART procedure 181
PROC REPORT statement 967

NOHLABEL option
HISTOGRAM statement (UNIVARI-

ATE) 1468
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1505

NOHOST option
PROC OPTIONS statement 716

NOINHERIT option
OUTPUT statement (MEANS) 671

NOLEGEND option
CHART procedure 181
PROC PLOT statement 731

NOLIST option
PROC DATASETS statement 333

NOMISS option
INDEX CREATE statement

(DATASETS) 364
PROC CORR statement 270
PROC PLOT statement 731

NOMISSBASE option
PROC COMPARE statement 218

NOMISSCOMP option
PROC COMPARE statement 218

NOMISSING option
PROC COMPARE statement 218

NONE option
RBUTTON statement (PMENU) 790

noninteractive mode
printing from 957

NONOBS option
PROC MEANS statement 656

nonparametric measures of association 263
NONUM option, PROC FSLIST statement 630
NONUMBER option

PROC SQL statement 1123
NOOBS option

PROC PRINT statement 823
NOOVP option

FSLIST command 632
PROC FSLIST statement 630

NOPERCENT option
TABLES statement (FREQ) 536

NOPLOT option
HISTOGRAM statement (UNIVARI-

ATE) 1468
NOPRINT option

CONTENTS statement (DATASETS) 346
DEFINE statement (REPORT) 990
HISTOGRAM statement (UNIVARI-

ATE) 1469
PROC COMPARE statement 218
PROC CORR statement 270
PROC FREQ statement 520
PROC MEANS statement 657
PROC SQL statement 1123
PROC SUMMARY statement 1258
PROC UNIVARIATE statement 1448
TABLES statement (FREQ) 536

NOPROB option
PROC CORR statement 270

NOPROMPT option
PROC SQL statement 1123

NOREPLACE option
PROC FORMAT statement 445

normal distribution 1533, 1538, 1587, 15
NORMAL option

HISTOGRAM statement (UNIVARI-
ATE) 1469

PROBPLOT statement (UNIVARIATE) 1493
PROC UNIVARIATE statement 1448
QQPLOT statement (UNIVARIATE) 1505
PROC RANK statement 912

normal probability plots 1448, 1513
reference lines on 1566

NOROW option
TABLES statement (FREQ) 536

NORWEGIAN option
PROC SORT statement 1095

NOSEPS option
PROC TABULATE procedure 1271

NOSIMPLE option
PROC CORR statement 270

NOSORTMSG option
PROC SQL statement 1123

NOSOURCE option
COPY statement (CATALOG) 149

NOSRC option
PROC CIMPORT statement 202
PROC CPORT statement 312



Index 1689

NOSTATS option
CHART procedure 181

NOSTIMER option
PROC SQL statement 1123

NOSUMMARY option
PROC COMPARE statement 218

NOSYMBOL option
CHART procedure 181

NOSYMNAME option
PLOT statement (TIMEPLOT) 1374

NOTE option
PROC COMPARE statement 218

NOTHREADS option
PROC MEANS statement 659
PROC SQL statement 1123

NOTRAP option
PROC MEANS statement 656
PROC TABULATE statement 1274

NOTSORTED option
BY statement 54
BY statement (CALENDAR) 87
BY statement (CHART) 174
BY statement (COMPARE) 221
BY statement (CORR) 273
BY statement (FORMS) 501
BY statement (FREQ) 521
BY statement (MEANS) 661
BY statement (PLOT) 732
BY statement (PRINT) 830
BY statement (RANK) 914
BY statement (REPORT) 978
BY statement (STANDARD) 1248
BY statement (TABULATE) 1276
BY statement (TIMEPLOT) 1369
BY statement (TRANSPOSE) 1391
BY statement (UNIVARIATE) 1451
FORMAT procedure 463
ID statement (COMPARE) 222
INVALUE statement (FORMAT) 448
PICTURE statement (FORMAT) 450
VALUE statement (FORMAT) 460

NOVALUES option
PROC COMPARE statement 218

NOVLABEL option
HISTOGRAM statement (UNIVARI-

ATE) 1469
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1505

NOVTICK option
HISTOGRAM statement (UNIVARI-

ATE) 1469
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1505

NOWARN option
PROC DATASETS statement 333
TABLES statement (FREQ) 536

NOWINDOWS option
PROC REPORT statement 973

NOZERO option
DEFINE statement (REPORT) 991

NOZEROS option
CHART procedure 181

NPLUS1 option
PROC RANK statement 913

NPP option
PLOT statement (TIMEPLOT) 1374

NROWS= option
HISTOGRAM statement (UNIVARI-

ATE) 1469
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1505

NSRC option
PROC CIMPORT statement 202
PROC CPORT statement 312

null hypothesis 1607
Null statement, EXPLODE procedure 423
NUM option, PROC FSLIST statement 630
NUMBER option

PROC SQL statement 1123
numeric values

converting raw character data to 480
numeric variables

distribution of 1436
ranks for 909
sorting orders for 1100

NWAY option
PROC MEANS statement 656

O
OBS= option

PROC PRINT statement 823
obserations

statistics for groups of 7
observations 1115

See also rows
appending to data sets 71
comparing 248, 251
frequency of 57
matching 210
printing 817
sorting 1091
total number of 1582
transposing variables into 1387

odds ratio 564
odds ratio, adjusted 577, 578
ODS destinations

definition of 40
descriptions of 42
destination-independent input 42
determining, for output objects 50
diagram of 40
opening and closing 46
SAS formatted destinations 43
system resources and 46
third-party formatted destinations 44

ODS output
definition of 40
figure of 40

ODS (Output Delivery System)
CORR procedure and 287
DATASETS procedure and 382
description 32
features 42
FREQ procedure and 586
how ODS works 40
printing reports 956
REPORT procedure and 1078, 1083
samples of formatted output 33
style elements for output 1078, 1083
table names 1541
TABULATE procedure and 1357

terminology 39
ODS processing 40
ODS statements

formatting options 45
OL option

BREAK statement (REPORT) 975
RBREAK statement (REPORT) 998

ON option
CHECKBOX statement (PMENU) 782

ONE option
CLEAR statement (TRANTAB) 1415
LIST statement (TRANTAB) 1416
SAVE statement (TRANTAB) 1418

one-tailed tests 1608
operands

values from 1182
operating environment-specific procedures 30,

1613
operators

arithmetic 1205
in dimension expressions 1288
order of evaluation 1183
set operators 1177, 1206
truncated string comparison operators 1184
values from 1182

OPT= option
TRANTAB statement (CPORT) 316

OPTION= option
PROC OPTIONS statement 717

OPTIONS 716
OPTIONS procedure 716

displaying options in groups 716
examples 717
format for display of settings 716
host options listing 716
log display 717
overview 713
portable options listing 716
PROC OPTIONS statement 716
results 717
setting of a single option 718
short descripitons of system options 717
short form of options listing 717
syntax 716
task table 716

OPTLOAD 721
OPTLOAD procedure 721

overview 721
PROC OPTLOAD statement 722
task table 722

OPTSAVE 723
OPTSAVE procedure 723

PROC OPTSAVE statement 724
task table 724

ORDER BY clause, SQL procedure 1151, 1205
ORDER option

DEFINE statement (REPORT) 991
CLASS statement (MEANS) 663
CLASS statement (TABULATE) 1277
CLASS statement (UNIVARIATE) 1453
DEFINE statement (REPORT) 991
PROC FREQ statement 520
PROC MEANS statement 656
PROC TABULATE statement 1271, 1308

order variables 945, 991
orthogonal expressions 1205



1690 Index

OUT= argument
APPEND statement (DATASETS) 335
COPY statement (CATALOG) 148
COPY statement (DATASETS) 347
PROC IMPORT statement 635

OUT= option
CONTENTS statement (CATALOG) 147
CONTENTS statement (DATASETS) 346
OUTPUT statement (FREQ) 525
OUTPUT statement (MEANS) 666
OUTPUT statement (UNIVARIATE) 1482
PROC COMPARE statement 219, 236
PROC PRTEXP statement 906
PROC RANK statement 913
PROC REPORT statement 968
PROC SORT statement 1098
PROC STANDARD statement 1247
PROC TABULATE statement 1272
PROC TRANSPOSE statement 1391
TABLES statement (FREQ) 536

OUT2= option
CONTENTS statement (DATASETS) 346

OUTALL option
PROC COMPARE statement 219

OUTBASE option
PROC COMPARE statement 219

OUTCOMP option
PROC COMPARE statement 219

OUTCUM option
TABLES statement (FREQ) 536

OUTDIF option
PROC COMPARE statement 219

OUTDUR statement
CALENDAR procedure 94

outer joins 1169, 1205, 1220
OUTER UNION set operator 1178
OUTEXPECT option

TABLES statement (FREQ) 536
OUTFILE= argument

PROC EXPORT statement 429
OUTFIN statement

CALENDAR procedure 94
OUTH= option

PROC CORR statement 271
OUTHISTOGRAM= option

HISTOGRAM statement (UNIVARI-
ATE) 1469, 1543

OUTK= option
PROC CORR statement 271

OUTLIB= option
PROC CPORT statement 312

OUTNOEQUAL option
PROC COMPARE statement 219

OUTOBS= option
PROC SQL statement 1123

OUTP= option
PROC CORR statement 271

OUTPCT option
TABLES statement (FREQ) 536

OUTPERCENT option
PROC COMPARE statement 219

output
components of 40
customizing 48
oversized text for printed output 419

output data sets 44
comparing observations 251

storing partial correlations in 302
summary statistics in 253

OUTPUT destination 40, 44
output objects

customizing output for 50
definition of 40
determining destinations for 50
excluding 48
selecting 48

OUTPUT= option
CALID statement (CALENDAR) 88

OUTPUT statement
FREQ procedure 525, 591
MEANS procedure 666
UNIVARIATE procedure 1482, 1510

Output window
printing from 957

OUTREPT= option
PROC REPORT statement 968

OUTS= option
PROC CORR statement 271

OUTSTART statement
CALENDAR procedure 95

OUTSTATS= option
PROC COMPARE statement 220, 237

OUTTABLE= argument
PROC EXPORT statement 429

OUTTYPE= option
PROC CPORT statement 313

OUTWARD= option, PLOT statement
(PLOT) 738

overall kappa coefficient 573
OVERLAY option

PLOT statement (PLOT) 739
PLOT statement (TIMEPLOT) 1374

overlining 975, 997, 998
OVP option

FSLIST command 632
PROC FSLIST statement 630

OVPCHAR= option
PLOT statement (TIMEPLOT) 1374

P
P keywords 1583
p-values 582, 1610
PACK option

LINE statement (FORMS) 503
page description languages 45
page dimension 1265, 1294
page dimension text 1265
page layout 834

customizing 869
with many variables 863

page numbering 883
PAGE option

BREAK statement (REPORT) 976
DEFINE statement (REPORT) 992
PROC FORMAT statement 445
PROC FREQ statement 520
RBREAK statement (REPORT) 998

PAGEBY statement
PRINT procedure 831

PAGESIZE= option
PROC FORMS statement 500

paired data 1518, 1552

pairwise deletion 287
PANELS= option

PROC REPORT statement 969, 1058
parameters 1587
PARMCARDS statement, EXPLODE proce-

dure 420
PARMCARDS4 statement, EXPLODE proce-

dure 420
partial correlations 282

example 302
PARTIAL statement

CORR procedure 274
partitioned data sets

multi-threaded sorting 1100
password-protected data sets

transporting 316
passwords 369

appending password-protected data sets 337
assigning 369
changing 370
copying password-protected files 351
removing 370

pattern matching 1174, 1238
PC files

exporting 432
importing 638

PCTLAXIS option
QQPLOT statement (UNIVARIATE) 1506

PCTLDEF= option
PROC MEANS statement 658
PROC TABULATE statement 1273
PROC UNIVARIATE statement 1448

PCTLMINOR option
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1506

PCTLORDER= option
PROBPLOT statement (UNIVARIATE) 1493

PCTLSCALE option
QQPLOT statement (UNIVARIATE) 1506

PDF files 1078, 1357
PDF output 37
PDF reports 842
peakedness 1594
Pearson correlation statistics 263, 555

example 292
in output data set 271
Pearson partial correlation 264, 274
Pearson product-moment correlation 263,

271, 279, 292
Pearson weighted product-moment correla-

tion 263, 275
suppressing 270

PEARSON option
PROC CORR statement 271

Pearson Type I or II distributions 1531
PENALTIES= option, PLOT statement

(PLOT) 739
percent coefficient of variation 1580
percent difference

definition of 227
PERCENT option

CHART procedure 181
PROC RANK statement 913

percentage bar charts 186
percentages

denominator definitions and 1347
in reports 1064



Index 1691

TABULATE procedure 1294, 1344, 1347
percentiles 1588

calculating 1528
from quantile-quantile plots 1509
keywords and formulas 1583
probability plots and 1485
saving 1484, 1555
TABULATE output 1483
theoretical 1509

PERCENTS= option
HISTOGRAM statement (UNIVARI-

ATE) 1469
permanent data sets 16
permanent informats and formats 467

accessing 467
retrieving 488

PFILL= option
HISTOGRAM statement (UNIVARI-

ATE) 1470
phi coefficient 549
picture formats 450

creating 474
digit selectors 453
directives 453
filling 492
message characters 453
PRINT procedure and 824
steps for building 454

picture-name formats 458
PICTURE statement

FORMAT procedure 450
pie charts 168, 175
PIE statement

CHART procedure 175
PLACEMENT= option, PLOT statement

(PLOT) 739
PLCORR option

TABLES statement (FREQ) 537
PLOT procedure 729

BY statement 732
collision states 747
computational resources 748
concepts 744
contour plots 735, 759
examples 750
generating data with program statements 744
hidden label characters 748
hidden observations 749
labeling plot points with variable values 745
labeling points 727
missing values 749, 767
overlaying plots 726, 748, 753
overview 726
penalties 746, 775
PLOT statement 733
pointer symbols 745
printed output 749
PROC PLOT statement 729
reference lines 748, 751
results 749
RUN groups 744
scale of axes 749
syntax 729
task tables 729, 733
variable combinations in plot requests 735
variable lists in plot requests 734

PLOT statement
PLOT procedure 733
TIMEPLOT procedure 1371

plots
box plots 1448, 1513, 1514
customizing axes 1378
horizontal bar charts 1448
line printer plots 1512
multiple observations, on one plot line 1384
normal probability plots 1448, 1513, 1566
page layout 1375
plotting a single variable 1376
probability plots 1485, 1514, 1515, 15
quantile-quantile plots 1497, 1514, 1536, 15
size of 1448
specifying 1371
stem-and-leaf 1448, 1512
superimposing 1382

PLOTS option
PROC UNIVARIATE statement 1448

PLOTSIZE= option
PROC UNIVARIATE statement 1448

plotting symbols 1378, 1380
plotting variables, over time intervals 1365
PMENU 781
PMENU catalog entries

naming 788
steps for building and using 794
storing 781

PMENU command 779
PMENU procedure

CHECKBOX statement 782
concepts 793
defining pull-down menus 788
DIALOG statement 783
ending 794
examples 796
execution of 793
ITEM statement 785
MENU statement 788
overview 779
PMENU catalog entries 794
PROC PMENU statement 781
RADIOBOX statement 789
RBUTTON statement 790
SELECTION statement 791
SEPARATOR statement 791
SUBMENU statement 792
syntax 781
task tables 781, 785
templates for 794
TEXT statement 792

POINT option
EXACT statement (FREQ) 524

polychoric correlation 558
populations 1586
Portable Document Format (PDF) 37
PORTABLE option

PROC OPTIONS statement 716
portable options listing 716
POS= option

PLOT statement (TIMEPLOT) 1374
POSITION= option

INSET statement (UNIVARIATE) 1478
posters 419
PostScript files 860
PostScript output 35, 900

power, of statistical tests 1609
power-function distribution 1531
PREFIX= option

PICTURE statement (FORMAT) 452
PROC TRANSPOSE statement 1391

preloaded formats 992, 1278, 1315
class variables with 696

PRELOADFMT option
CLASS statement (MEANS) 664
CLASS statement (TABULATE) 1278
DEFINE statement (REPORT) 992

primary label 451
PRINT 820
PRINT option

PROC MEANS statement 657
PROC SQL statement 1123
PROC STANDARD statement 1247
PROC SUMMARY statement 1258
PROC PRINTTO statement 882

PRINT procedure 43, 48, 820
BY statement 829, 832
column headings 836, 840
column width 836
examples 837
grouping observations 844
HTML reports 838, 856, 871
ID statement 830
listing report 837
order of variables 833
output 834
overview 817
page ejects 831
page layout 834, 863, 869
PAGEBY statement 831
PDF reports 842
PostScript files 860
printing all data sets in a library 875
PROC PRINT statement 820
results 834
RTF reports 846, 866
selecting variables 833, 837
style elements 825, 831, 832, 834
SUM statement 832
SUMBY statement 833
summing numeric values 832, 849, 853
sums, limiting number of 833, 858
syntax 820
task tables 820
VAR statement 833
XML files 851

PRINTALL option
PROC COMPARE statement 220

PRINTALLTYPES option
PROC MEANS statement 657

printer attributes 905
writing to data sets 907
writing to log 907

printer definitions 893, 906
available to all users 901
creating 906
deleting 894
exporting 894
for Ghostview printer 900
in SASHELP library 894
modifying 906
multiple 900
replicating 906



1692 Index

PRINTER destination 40, 45
Printer Family destination 40, 45
printer forms 495
printers

list of 894
routing log or output to 883, 892

PRINTIDVARS option
PROC MEANS statement 657

printing 817
all data sets in a library 875
data set contents 257
formatted values 25
from menus 812
grouping observations 844
informat/format descriptions 487
page ejects 831
page layout 834, 863, 869
reports 956
reports, from batch mode 957
reports, from interactive line mode 957
reports, from noninteractive mode 957
reports, from Output window 957
reports, from REPORT window 956
reports, with forms 956
reports, with ODS 956
reports, with PRINTTO procedure 957
selecting variables for 837
variable values 1370

PRINTKWT option
TABLES statement (FREQ) 537

PRINTMISS option
TABLE statement (TABULATE) 1284

PRINTTO 880
PRINTTO procedure 880

concepts 883
examples 883
overview 879
page numbering 883
printing reports 957
PROC PRINTTO statement 880
syntax 880
task table 880

probability function 1587
probability plots 1485, 1514

interpreting 1515
location and scale parameters 1539
shape parameters 1539
theoretical distributions for 1536

probability values 286, 1610
PROBPLOT statement

UNIVARIATE procedure 1485
PROBT keyword 1585
PROC CALENDAR statement 81
PROC CATALOG 144
PROC CATALOG statement 145
PROC CHART 171
PROC CHART statement 171
PROC CIMPORT statement 200
PROC COMPARE 213
PROC COMPARE statement 214
PROC CONTENTS statement 258
PROC COPY 260
PROC CORR 267
PROC CORR statement 268
PROC CPORT 308
PROC CPORT statement 308
PROC DATASETS 330

PROC DATASETS statement 330, 378
PROC DBCSTAB 407
PROC DBCSTAB statement 407
PROC DISPLAY statement 414
PROC EXPLODE statement 420
PROC EXPORT 428
PROC EXPORT statement 428
PROC FORMAT 443
PROC FORMAT statement 444
PROC FORMS 497
PROC FORMS statement 497
PROC FREQ 518
PROC FREQ statement 519
PROC FSLIST statement 628
PROC IMPORT 634
PROC IMPORT statement 634
PROC MEANS 652
PROC MEANS statement 653
PROC OPTIONS 716
PROC OPTIONS statement 716
PROC OPTLOAD 721
PROC OPTLOAD statement 722
PROC OPTSAVE 723
PROC OPTSAVE statement 724
PROC PLOT statement 729
PROC PMENU 781
PROC PMENU statement 781
PROC PRINT 820
PROC PRINT statement 820
PROC PRINTTO 880
PROC PRINTTO statement 880
PROC PRTDEF 893
PROC PRTDEF statement 894
PROC PRTEXP 905
PROC PRTEXP statement 906
PROC RANK 911
PROC RANK statement 911
PROC REGISTRY 926
PROC REGISTRY statement 926
PROC REPORT 959
PROC REPORT statement 959
PROC SORT 1093
PROC SORT statement 1093
PROC SQL 1117
PROC SQL statement 1120
PROC SQL tables 1115

aliases 1148, 1166
column attributes 1125, 1127
columns, adding 1125
columns, dropping 1125
columns, initial values of 1127
columns, renaming 1127
columns, selecting 1142
combining 1216
creating 1130, 1207
creating, from query expressions 1133
creating, from query results 1209
deleting 1138
inserting data 1207
inserting values 1141
integrity constraints 1125, 1127, 1133, 11
joining 1165, 1213, 1233
joining a table with itself 1165, 1167
joining more than two tables 1172
joining three tables 1227
recursive table references 1133
retrieving data from 1176

rows, adding 1140
rows, counting 1191
rows, deleting 1136
rows, deleting through views 1136
rows, ordering 1151
rows, selecting 1142
rows, without 1132
source tables 1147
table definitions 1137
table expressions 1177, 1196
updating 1211
updating column values 1153
updating through views 1153
without rows 1132

PROC SQL views 1115
columns, selecting 1142
creating, from query expressions 1134
creating, from query results 1224
deleting 1138
embedding LIBNAME statements in 1135
librefs and stored views 1134
rows, adding 1140
rows, deleting 1136
rows, deleting through views 1136
rows, inserting through views 1141
rows, selecting 1142
sorting data retrieved by 1134
source views 1147
storing DBMS connection information 1135
updating 1135, 1203
updating column values 1153
updating tables through 1153
view definitions 1137, 1205

PROC STANDARD 1245
PROC STANDARD statement 1246
PROC SUMMARY statement 1258
PROC TABULATE 1266
PROC TABULATE statement 1267
PROC TIMEPLOT 1368
PROC TIMEPLOT statement 1368
PROC TRANSPOSE 1390
PROC TRANSPOSE statement 1390
PROC TRANTAB statement 1414
PROC UNIVARIATE 1443
PROC UNIVARIATE statement 1444
procedure output

as input file 889
default destinations 879
destinations for 879
page numbering 883
routing to catalog entries 886
routing to external files 883
routing to printer 883, 892

procedures
choosing 3
concepts 19
descriptions of 10
functional categories of 3
report-writing procedures 3, 4
statistical procedures 3, 6
utility procedures 4, 8

processing diagram 40
PROCLIB.DELAY data set 1642
PROCLIB.EMP95 data set 1643
PROCLIB.INTERNAT data set 1645
PROCLIB.LAKES data set 1646
PROCLIB.MARCH data set 1646



Index 1693

PROCLIB.PAYLIST2 data set 1647
PROCLIB.PAYROLL data set 1648
PROCLIB.PAYROLL2 data set 1651
PROCLIB.SCHEDULE data set 1651
PROCLIB.STAFF data set 1654
PROCLIB.SUPERV data set 1657
PROFILE= option

PROC REPORT statement 969
PROFILE window, REPORT procedure 1014
PROMPT option

PROC REPORT statement 970
PROC SQL statement 1123

PROMPTER window, REPORT procedure 1015
PRTDEF 893
PRTDEF procedure 893

examples 899
Ghostview printer definition 900
input data set 895
multiple printer definitions 900
optional variables 897
overview 893
printer definition for all users 901
PROC PRTDEF statement 894
required variables 896
task table 894
valid variables 895

PRTEXP 905
PRTEXP procedure 905

concepts 906
examples 907
EXCLUDE statement 906
overview 905
PROC PRTEXP statement 906
SELECT statement 906
syntax 905

PS= option
PROC FORMS statement 500
PROC REPORT statement 970

PSPACE= option
PROC REPORT statement 970

pull-down menus 779
defining 788
items in 785
key sequences for 786
separator lines for 791

push buttons 785
PUT statement

compared with LINE statement (RE-
PORT) 996

PW= option
MODIFY statement (DATASETS) 368
PROC DATASETS statement 333

PWD= statement
EXPORT procedure 433
IMPORT procedure 640

Q
Q keywords 1583
Q-Q plots

See quantile-quantile plots
QMARKERS= option

PROC MEANS statement 657
PROC REPORT statement 971
PROC TABULATE statement 1272

QMETHOD= option
PROC MEANS statement 658
PROC REPORT statement 971
PROC TABULATE statement 1272

QNTLDEF= option
PROC MEANS statement 658
PROC REPORT statement 971
PROC TABULATE statement 1273

QQPLOT statement
UNIVARIATE procedure 1497

QRANGE keyword 1583
quantile-quantile plots 1497, 1514

interpreting 1515
location and scale parameters 1539
percentiles of 1509
reference lines 1566
shape parameters 1539
theoretical distributions for 1536

quantiles 971, 1272, 1273
confidence limits for 1528
efficiency issues 7
histograms and 1541
MEANS procedure 650, 680
TABULATE procedure 1448
weighted 1529

queries
creating tables from results 1209
creating views from results 1224
DBMS queries 1162
in-line view queries 1230

query-expression component 1176
query expressions 1177, 1185

creating PROC SQL tables from 1133
creating PROC SQL views from 1134
validating syntax 1154

QUIT statement 53, 58
procedures supporting 58

R
radio boxes 784, 789
radio buttons 790

color of 790
default 789
definition of 784

RADIO data set 1658
RADIOBOX statement

PMENU procedure 789
range 1592
RANGE keyword 1582
RANGE= statement

IMPORT procedure 639
ranges

for character strings 490
FORMAT procedure and 464

RANK 911
RANK option

PROC CORR statement 271
RANK procedure 911

BY statement 914
computer resources 916
concepts 916
examples 917
input variables 915
missing values 916
output data set 916

overview 909
PROC RANK statement 911
RANKS statement 915
RANKS statement with VAR statement 915
results 916
statistical applications 916
syntax 911
task tables 911
VAR statement 915
variables for rank values 915

RANKADJ= option
PROBPLOT statement (UNIVARIATE) 1493
QQPLOT statement (UNIVARIATE) 1506

ranks 909
groups based on 920
of multiple variables 917
values within BY groups 918

RANKS statement
RANK procedure 915

raw data 541
for examples 1615
informats for 447, 480

RBREAK statement
REPORT procedure 996

RBUTTON statement
PMENU procedure 790

READ= option
MODIFY statement (DATASETS) 368
PROC DATASETS statement 333

rectangular correlation statistics 295
REF= option

CHART procedure 181
PLOT statement (TIMEPLOT) 1374

REFCHAR= option
PLOT statement (TIMEPLOT) 1375

reference lines 1566
reflexive joins 1167
REFPOINT= option

INSET statement (UNIVARIATE) 1478
REFRESH option

INDEX CENTILES statement
(DATASETS) 363

registry
clearing SASUSER 926
comparing file contents with 927, 934
comparing registries 926, 927, 935
debugging 927
exporting contents of 927
importing to 928, 932
keys, subkeys, and values 928, 929
listing 933
listing contents in log 928
loading system options from 721
sample entries 931
SASHELP specification 929
saving system option settings in 723
uppercasing key names 929
writing contents to log 928
writing SASHELP to log 928
writing SASUSER to log 929

REGISTRY 926
registry files

creating 930
key names 930
sample registry entries 931
structure of 930
values for keys 930



1694 Index

REGISTRY procedure 926
creating registry files 930
examples 932
overview 925
PROC REGISTRY statement 926
syntax 926
task table 926

relative risk estimates 577
relative risks 565, 579
reliability estimation 264
RELRISK option

TABLES statement (FREQ) 537
remerging data 1192
Remote Library Services (RLS), with translation

tables 1412
REMOVE option

LINE statement (FORMS) 503
RENAME statement

DATASETS procedure 371
REPAIR statement

DATASETS procedure 371
REPLACE option

PROC EXPORT statement 431
PROC IMPORT statement 637
PROC PRTDEF statement 894
PROC STANDARD statement 1247

REPLACE statement, TRANTAB proce-
dure 1417

REPORT 959
report definitions

specifying 971
storing and reusing 957, 1055

report items 986
REPORT= option

PROC REPORT statement 971
REPORT procedure 43, 48, 959

See also REPORT procedure windows
break lines 952, 977, 999
BREAK statement 974
building reports 1024
BY statement 978
CALL DEFINE statement 979
column attributes 979
COLUMN statement 981
columns 981, 1049
compute blocks 949, 983
COMPUTE statement 983
concepts 944
customized summaries 995, 1060
DATA step variables 1024, 1030
default summaries 974, 996
DEFINE statement 986
ENDCOMP statement 994
ending program statements 994
examples 1037
formatting characters 963
FREQ statement 994
groups 1026, 1075
header arrangement 981
layout of reports 944
LINE statement 995
missing values 951, 990, 1067
output data set 1070
overview 939
panels 1058
percentage calculation 1064
printing reports 956

PROC REPORT statement 959
RBREAK statement 996
report definitions 957, 1055
report items 986
report types 939
report variables 1024
rows 1040, 1047
sample reports 939
selecting report variables 1038
statistics 949, 1043, 1053
style elements 953, 1078, 1083
summaries 1026
summary lines 1025
syntax 959
task tables 959, 974, 986, 996
WEIGHT statement 1000
weighting analysis variables 1000
windowing environment 939, 1001

REPORT procedure windows 1001
BREAK 1001
COMPUTE 1004
COMPUTED VAR 1004
DATA COLUMNS 1005
DATA SELECTION 1005
DEFINITION 1006
DISPLAY PAGE 1011
EXPLORE 1012
FORMATS 1013
LOAD REPORT 1013
MESSAGES 1014
PROFILE 1014
PROMPTER 1015
REPORT 1016
ROPTIONS 1016
SAVE DATA SET 1021
SAVE DEFINITION 1021
SOURCE 1022
STATISTICS 1022
WHERE 1023
WHERE ALSO 1024

report variables 1024
REPORT window, REPORT procedure 1016

printing from 956
report-writing procedures 3, 4
reports 939

across variables 946, 987
analysis variables 946, 987, 1000
building 1024
code for 966
colors for 988, 997
column for each variable value 1049
computed variables 947, 989, 1072
detail reports 939
display variables 945, 989
from DICTONARY tables 1218
group variables 946, 990
help for 966
HTML 838, 856, 871
ID variables 990
layout of 944
multiple observations in one row 1047
on multiple-choice survey data 1338
order variables 945, 991
ordering rows in 1040
panels 1058
PDF 842
percentages in 1064

PostScript 860
printing 956
printing, from batch mode 957
printing, from interactive line mode 957
printing, from noninteractive mode 957
printing, from Output window 957
printing, from REPORT window 956
printing, with forms 956
printing, with ODS 956
printing, with PRINTTO procedure 957
printing observations 817
RTF 846, 866
samples of 939
selecting variables for 1038
sharing columns 948
statistics in 1043, 1053
stub-and-banner reports 1347
summary reports 939
suppressing 967
variables 945
variables, position and usage 947
XML 851

RESET statement
SQL procedure 1141

RESUME option
AUDIT statement (DATASETS) 342

REVERSE option
PLOT statement (TIMEPLOT) 1375
PROC SORT statement 1098

rich text format (RTF) 36, 45
RIGHT option

DEFINE statement (REPORT) 992
risk differences 562
RISKDIFF option

TABLES statement (FREQ) 537
RISKDIFFC option

TABLES statement (FREQ) 537
risks 562
RLS (Remote Library Services), with translation

tables 1412
robust estimators 1525, 1549

robust measures of scale 1527
trimmed means 1526
Winsorized means 1525

robust measures of scale 1527
ROBUSTSCALE option

PROC UNIVARIATE statement 1448
ROLLBACK statement (SQL) 1206
ROPTIONS window, REPORT procedure 1016
ROUND option

PICTURE statement (FORMAT) 453
PROC PRINT statement 823
PROC UNIVARIATE statement 1449

rounding 1511
row dimension 1265
row headings

customizing 1322
eliminating 1326
indenting 1328

row mean scores statistic 576
ROW= option

TABLE statement (TABULATE) 1285
rows 1115

See also observations
adding to tables or views 1140
counting 1191
deleting 1136



Index 1695

deleting through views 1136
inserting through views 1141
joins and 1166
ordering 1151
returned by subqueries 1163
selecting 1155
selecting from tables and views 1142

ROWS= option
PROC PRINT statement 824

RTF destination 40, 45
RTF files 1078, 1357
RTF output 36
RTF reports 846, 866
RTINCLUDE option

HISTOGRAM statement (UNIVARI-
ATE) 1470

RTSPACE= option
TABLE statement (TABULATE) 1285

RUN-group processing 19

S
S= option, PLOT statement (PLOT) 742
samples 1587
samples of formatted output 33
sampling distribution 1597
SAS/ACCESS views 1115

updating 1203
SAS/AF applications, executing 413
SAS data views 1115

DICTIONARY tables 1199
SAS files

converting 199
SAS formatted destinations 43
SAS/GRAPH software, translation tables

in 1412
SAS Registry

See REGISTRY procedure
SASHELP views 1199

retrieving information about 1200
SASUSER library

Ghostview printer definition in 900
SAVAGE option

PROC RANK statement 913
SAVE DATA SET window, REPORT proce-

dure 1021
SAVE DEFINITION window, REPORT proce-

dure 1021
SAVE statement

CATALOG procedure 153
DATASETS procedure 373
TRANTAB procedure 1418

SCALE= option
HISTOGRAM statement (UNIVARI-

ATE) 1470
PROBPLOT statement (UNIVARIATE) 1494
QQPLOT statement (UNIVARIATE) 1506

scale parameters 1539
schedule calendars 75, 76, 97
scores 545
SCORES= option

TABLES statement (FREQ) 537
SCOROUT option

TABLES statement (FREQ) 538
searching for patterns 1174, 1238

SEED= option
EXACT statement (FREQ) 524

SELECT clause, SQL procedure 1142
SELECT statement

CATALOG procedure 153
CIMPORT procedure 204
CPORT procedure 314
DATASETS procedure 374
FORMAT procedure 459
PRTEXP procedure 906
SQL procedure 1142

selection lists 48
SELECTION statement

PMENU procedure 791
SEPARATOR statement

PMENU procedure 791
set membership 1164
set operators 1177, 1206
SET statement

appending data 337
SETS= option

PROC FORMS statement 500
SHAPE= option

HISTOGRAM statement (UNIVARI-
ATE) 1470

PROBPLOT statement (UNIVARIATE) 1494
QQPLOT statement (UNIVARIATE) 1506

shape parameters 1539
Shapiro-Wilk statistic 1521
Shapiro-Wilk test 1448
SHEET= statement

EXPORT procedure 432
IMPORT procedure 640

SHORT option
CONTENTS statement (DATASETS) 347
PROC OPTIONS statement 716

SHOWALL option
PROC REPORT statement 971

SIGMA= option
HISTOGRAM statement (UNIVARI-

ATE) 1470
PROBPLOT statement (UNIVARIATE) 1494
QQPLOT statement (UNIVARIATE) 1506

sign test 1518, 1519
paired data and 1552

significance 1608
simple indexes 1129
simple kappa coefficient 570
simple random sample 1587
SINGULAR= option

PROC CORR statement 271
singularity of variables 271
skewness 1593
SKEWNESS keyword 1582
SKIP option

BREAK statement (REPORT) 976
RBREAK statement (REPORT) 998
PROC FORMS statement 500

SLIST= option, PLOT statement (PLOT) 742
SLOPE= option

PROBPLOT statement (UNIVARIATE) 1494
QQPLOT statement (UNIVARIATE) 1507

Somers’ D 554
SORT 1093
SORT procedure 1093

ASCII order 1101
BY statement 1100

character variable sorting orders 1101
collating-sequence options 1094
concepts 1100
EBCDIC order 1101
examples 1103
integrity constraints 1102
maintaining relative order of observa-

tions 1107
multi-threaded sorting 1100
numeric variable sorting orders 1100
output 1103
output data set 1103
overview 1091
PROC SORT statement 1093
results 1103
retaining first observation of BY groups 1110
sorting by multiple variable values 1103
sorting in descending order 1105
stored sort information 1102
syntax 1093
task tables 1093, 1103
translation tables in 1411
variables specification 1100

SORTEDBY= option
MODIFY statement (DATASETS) 368

sorting
by multiple variable values 1103
data retrieved by views 1134
in descending order 1105
multi-threaded 1100
stored sort information 1102
translation tables for 1429

sorting observations 1091
sorting orders

ASCII 1094, 1101
EBCDIC 1095, 1101
for character variables 1101
for numeric variables 1100

SORTMSG option
PROC SQL statement 1123

SORTSEQ= option
PROC SORT statement 1095
PROC SQL statement 1123

SORTSIZE= option
PROC SORT statement 1098

SOUNDS-LIKE operator 1231
SOURCE window, REPORT procedure 1022
SPACE= option

CHART procedure 181
SPACING= option

DEFINE statement (REPORT) 992
PROC REPORT statement 972

SPARSE option
TABLES statement (FREQ) 538

Spearman correlation statistics 271, 272, 556
Spearman partial correlation 264, 274
Spearman rank-order correlation 263, 280,

292
SPEARMAN option

PROC CORR statement 272
SPLIT= option

PLOT statement (PLOT) 743
PROC PRINT statement 824
PROC REPORT statement 972
PROC TIMEPLOT statement 1368

spread of values 1592



1696 Index

spreadsheets
exporting 432
importing 638, 645

SQL 1117
SQL, embedded 1207
SQL components 1154

BETWEEN condition 1155
BTRIM function 1155
CALCULATED 1156
CASE expression 1157
COALESCE function 1158
column-definition 1159
column-modifier 1160
column-name 1161
CONNECTION TO 1162
CONTAINS condition 1163
EXISTS condition 1163
IN condition 1164
IS condition 1164
joined-table 1165
LIKE condition 1174
LOWER function 1176
query-expression 1176
sql-expression 1182
SUBSTRING function 1189
summary-function 1190
table-expression 1196
UPPER function 1197

sql-expression component 1182
SQL procedure 1117

See also PROC SQL tables
See also PROC SQL views
See also SQL components
ALTER TABLE statement 1125
ANSI Standard and 1204
coding conventions 1116
collating sequences 1205
column modifiers 1205
concepts 1197
CONNECT statement 1128
CREATE INDEX statement 1129
CREATE TABLE statement 1130
CREATE VIEW statement 1134
data set options with 1197
data types and dates 1159
DBMS connections 1128, 1138, 1198
DBMS statements 1139
DELETE statement 1136
DESCRIBE statement 1137
DICTIONARY tables 1199
DISCONNECT statement 1138
displaying list of styles 47
DROP statement 1138
examples 1207
EXECUTE statement 1139
FROM clause 1147
functions supported by 1182, 1206
GROUP BY clause 1149
HAVING clause 1150
indexes 1129, 1138
INSERT statement 1140
INTO clause 1144
macro variables set by 1202
missing values 1164, 1207, 1240
naming conventions 1206
ORDER BY clause 1151, 1205
orthogonal expressions 1205

overview 1115
PROC SQL statement 1120
reserved words 1204
RESET statement 1141
resetting options 1141
SELECT clause 1142
SELECT statement 1142
statistical functions 1206
subsetting grouped data 1150
subsetting output 1149
syntax 1117
task tables 1119, 1120
three-valued logic 1207
UPDATE statement 1153
user privileges 1207
VALIDATE statement 1154
WHERE clause 1149

SQL Procedure Pass-Through Facility
DBMS connections 1198
return codes 1198

SQLOBS macro variable 1202
SQLOOPS macro variable 1202
SQLRC macro variable 1202
SQLXMSG macro variable 1202
SQLXRC macro variable 1202
SQUARE option

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1507

SSCP option
PROC CORR statement 272

STANDARD 1245
standard deviation 272, 1582, 1593
standard error of the mean 1582, 1598
STANDARD procedure 1245

BY statement 1248
examples 1251
FREQ statement 1249
frequency of observations 1249
missing values 1250
output data set 1250
overview 1243
PROC STANDARD statement 1246
results 1250
statistical computations 1250
syntax 1245
task tables 1245, 1246
VAR statement 1249
variables, order of 1249
variables, specifying 1249
WEIGHT statement 1249
weights for analysis variables 1249

standardized variables 1243
star charts 169, 176
STAR statement

CHART procedure 176
START statement

CALENDAR procedure 95
STARTAT= option

PROC REGISTRY statement 929
STATE= option

ITEM statement (PMENU) 787
statements, with same function in multiple proce-

dures 53
STATEPOP data set 1670
STATES option, PLOT statement (PLOT) 743
statistic, defined 1587

statistic option
DEFINE statement (REPORT) 992

statistical analysis
transposing data for 1404

statistical procedures 3, 6
efficiency issues 7

statistical summaries 1190
statistically significant 1608
statistics 31, 1586

based on number of arguments 1191
computational requirements for 32
descriptive statistics 31, 1257
for groups of observations 7
formulas for 1578
in tabular format 1260
keywords for 1578
measures of location 1588
measures of shape 1593
measures of variability 1592
normal distribution 1594
percentiles 1588
populations 1586
REPORT procedure 949
samples 1587
sampling distribution 1597
summarization procedures 1586
TABULATE procedure 1291
testing hypotheses 1607
weights 1586

statistics procedures 1577
STATISTICS window, REPORT procedure 1022
STATS option

PROC COMPARE statement 220
STD keyword 1582
STD= option

PROC STANDARD statement 1247
STDDEV keyword 1582
STDERR keyword 1582
STDMEAN keyword 1582
stem-and-leaf plots 1448, 1512
STIMER option

PROC SQL statement 1123
stratified tables 609
string comparison operators

truncated 1184
Structured Query Language (SQL)

See SQL procedure
Stuart’s tau-c 553
stub-and-banner reports 1347
Student’s t distribution 1609
Student’s t statistic 1585

two-tailed p-value 1585
Student’s t test 680, 1518
STYLE= attribute

CALL DEFINE statement (REPORT) 981
style attributes 46, 47
style definitions 47

Base procedures with 48
list of 47
SAS-supplied 47

style elements 44, 47
for ODS output 1078
in dimension expressions 1288
PRINT procedure 825, 831, 832, 834
REPORT procedure 953, 972, 1078, 1083
TABULATE procedure 1273, 1281, 1298, 13



Index 1697

STYLE= option
BREAK statement (REPORT) 976
CLASS statement (TABULATE) 1279
CLASSLEV statement (TABULATE) 1280
COMPUTE statement (REPORT) 984
DEFINE statement (REPORT) 993
ID statement (PRINT) 831
KEYWORD statement (TABULATE) 1281
PROC PRINT statement 825
PROC REPORT statement 972
PROC TABULATE statement 1273
RBREAK statement (REPORT) 998
REPORT procedure 953
SUM statement (PRINT) 832
TABLE statement (TABULATE) 1285
TABULATE procedure 1298
VAR statement (PRINT) 834
VAR statement (TABULATE) 1290

SUBGROUP= option
CHART procedure 181

SUBMENU statement
PMENU procedure 792

submenus 792
subqueries 1185

compared with joins 1174
correlated 1187
efficiency and 1188
returning rows 1163

subsetting data 64, 1149, 1150
SUBSTITUTE= option

CHECKBOX statement (PMENU) 782
RBUTTON statement (PMENU) 790

SUBSTRING function (SQL) 1189
subtables 1265
SUM keyword 1583
sum of squares, corrected 1580
sum of squares, uncorrected 1583
sum of the weights 1583
SUM option

CHART procedure 182
SUM statement

CALENDAR procedure 96
PRINT procedure 832

SUMBY statement
PRINT procedure 833

summarization procedures, data require-
ments 1586

SUMMARIZE option
BREAK statement (REPORT) 976
RBREAK statement (REPORT) 998

summarizing data 650, 1191
summary calendars 78, 98, 103
summary-function component 1190
summary lines 939

construction of 1025
SUMMARY procedure 1258

overview 1257
PROC SUMMARY statement 1258
syntax 1258
VAR statement 1259

summary reports 939
summary statistics

in output data sets 253
insets of 1474

sums of squares and crossproducts 272
SUMSIZE= option

PROC MEANS statement 659

SUMVAR= option
CHART procedure 182

SUMWGT keyword 1583
superimposing plots 1382
SUPPRESS option

BREAK statement (REPORT) 977
survey data

multiple-choice 1338
multiple-response 1333

SUSPEND option
AUDIT statement (DATASETS) 342

SWAP statement, TRANTAB procedure 1419
SWEDISH option

PROC SORT statement 1095, 1096
SYMBOL= option

CHART procedure 182
symbol variables 1370
SYSINFO return code 228
system options 17

current settings list 713
host options listing 716
loading from registry or data sets 721
log listing of 713
portable options listing 716
saving current settings 723

system resources
ODS destinations and 46

T
T keyword 1585
t test 650

Student’s 1518
Student’s t test 680

table aliases 1148, 1166
TABLE= argument

PROC DBCSTAB statement 407
PROC IMPORT statement 635

table attributes 46
table definitions 39, 46, 1137

for customizing output 50
modifying 51

table elements 46
table-expression component 1196
table expressions 1177
TABLE= option

SAVE statement (TRANTAB) 1418
TABLE statement

TABULATE procedure 1282
tables

See also PROC SQL tables
class variables combinations 1312
crosstabulation 1347
describing for printing 1282
formatting values in 1293
multipage 1330
subtables 1265
two-dimensional 1310

TABLES statement, FREQ procedure 528
options 529
output data set 590
requests 528
with EXACT statement 524
with OUTPUT statement 525
without options 528

tabular reports for statistics 1260

TABULATE 1266
TABULATE procedure 43, 48

analysis variables 1289, 1291
BY-group processing 1294
BY statement 1275
CLASS statement 1276
class variables 1276
class variables, formatting 1292, 1315
class variables, level value headings 1280
class variables, missing values 1279
CLASSLEV statement 1280
concepts 1291
dimension expressions 1265, 1286
examples 1310
formatting characters 1269
formatting values in tables 1293
FREQ statement 1280
frequency counts 1347
headings 1305, 1307, 1308
KEYLABEL statement 1281
KEYWORD statement 1281
missing values 1270, 1279, 1299
ODS output 1357
overview 1260
page dimension 1265, 1294
percentages 1294, 1344, 1347
PROC TABULATE statement 1267
results 1299
statistics 1291
style elements 1273, 1281, 1298, 13
syntax 1266
table descriptions 1282
TABLE statement 1282
task tables 1266, 1267, 1282
terminology 1263
VAR statement 1289
WEIGHT statement 1291

tagsets 44
SAS-supplied and -supported 41

TAGSORT option
PROC SORT statement 1099

TAPE option
PROC CIMPORT statement 203
PROC CPORT statement 313

TEMPLATE procedure
displaying list of styles 47

temporary data sets 16
TERMINATE option

AUDIT statement (DATASETS) 342
terminology 39
TEST statement

FREQ procedure 539
TESTF= option

TABLES statement (FREQ) 538
TESTP= option

TABLES statement (FREQ) 538
tests for location 1518

sign test 1519
Student’s t test 1518
Wilcoxon signed rank test 1519

text fields 784, 792
TEXT statement

PMENU procedure 792
theoretical distributions 1536
THETA= option

HISTOGRAM statement (UNIVARI-
ATE) 1470



1698 Index

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1507

third-party formatted destinations 44
formatting features 45
HTML 44
MARKUP 44
PRINTER 45
RTF 45

threads
multi-threaded sorting 1100

THREADS option
PROC MEANS statement 659
PROC SQL statement 1123
SORT procedure 1099

three-parameter Weibull distribution 1538
three-valued logic 1207
THRESHOLD= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

TIES= option
PROC RANK statement 913

tiles 1465
TIMEPLOT 1368
TIMEPLOT procedure 1368

BY statement 1369
CLASS statement 1370
customizing axes 1378
data considerations 1375
examples 1376
ID statement 1370
missing values 1376
multiple observations, on one plot line 1384
output 1375
overview 1365
page layout 1375
PLOT statement 1371
plotting a single variable 1376
plotting symbols 1378, 1380
printing variable values 1370
PROC TIMEPLOT statement 1368
results 1375
superimposing plots 1382
symbol variables 1370
syntax 1368
task tables 1368, 1371

titles
BY-group information in 19, 20
BY line in 23

TOTPCT option
TABLES statement (FREQ) 538

trace records 50
traditional SAS output 33
TRANSLATE= option

PROC CPORT statement 313
translation tables 1409

applying to transport files 320
character sets and 1410
creating 1420
device-to-operating environment transla-

tion 1412
editing 1423, 1425, 1431
exchanging 1419
hexadecimal representation of 1416
in SAS/GRAPH software 1412
in SORT procedure 1411

inverse tables 1415, 1427
loading into memory for editing 1416
modifying Institute-supplied tables 1411
operating environment-to-device transla-

tion 1412
outside TRANTAB procedure 1411
positions 1409, 1410
positions, setting to zero 1415
purposes of 1410
replacing characters in 1417
saving 1418
sorting data 1429
storing 1410
table one area 1412
table two area 1412
viewing 1419
with CIMPORT procedure 1411
with CPORT procedure 1411
with Remote Library Sservices (RLS) 1412

transport files 199
applying translation tables to 320
importing 199
moving between hosts 260
writing 307

transporting
data sets 260
password-protected data sets 316

TRANSPOSE 1390
TRANSPOSE option

PROC COMPARE statement 220
TRANSPOSE procedure 1390

BY statement 1391
COPY statement 1393
copying variables without transposing 1393
duplicate ID values 1393
examples 1396
formatted ID values 1393
ID statement 1393
IDLABEL statement 1394
labeling transposed variables 1394
listing variables to transpose 1395
missing values 1394
output data set 1395
overview 1387
PROC TRANSPOSE statement 1390
results 1395
statistical analysis and 1404
syntax 1390
task table 1390
transposing BY groups 1392, 1400
VAR statement 1395
variable names, from numeric values 1394

transposed variables 1387
attributes of 1396
labeling 1394, 1399
naming 1396, 1398, 1402

TRANTAB procedure 1413
character sets 1410
CLEAR statement 1415
concepts 1410
examples 1419
exchanging tables 1419
hexadecimal tables 1416
INVERSE statement 1415
LIST statement 1416
LOAD statement 1416
loading tables into memory for editing 1416

modifying Institute-supplied translation ta-
bles 1411

overview 1409
positions, setting to zero 1415
PROC TRANTAB statement 1414
REPLACE statement 1417
replacing characters in tables 1417
SAVE statement 1418
saving tables 1418
storing translation tables 1410
SWAP statement 1419
syntax 1413
table two, creating 1415
task table 1413
translation tables, outside TRANTAB proce-

dure 1411
TRANTAB statement

CPORT procedure 315
TRAP option

PROC TABULATE procedure 1274
TREND option

TABLES statement (FREQ) 538
trimmed means 1526
TRIMMED= option

PROC UNIVARIATE statement 1449
truncated string comparison operators 1184
TURNVLABELS option

HISTOGRAM statement (UNIVARI-
ATE) 1471

two-dimensional tables 1310
TWO option

CLEAR statement (TRANTAB) 1415
LIST statement (TRANTAB) 1416
SAVE statement (TRANTAB) 1418

two-parameter Weibull distribution 1538
two-tailed tests 1608
Type I error rate 1608
Type II error rate 1609
TYPE= option

CHART procedure 182
MODIFY statement (DATASETS) 369
TRANTAB statement (CPORT) 316

TYPES statement
MEANS procedure 672

U
UCLM keyword 1586
UID= statement

EXPORT procedure 433
IMPORT procedure 641

UL option
BREAK statement (REPORT) 977
RBREAK statement (REPORT) 999

uncertainty coefficient asymmetric 559
uncertainty coefficient symmetric 560
uncorrected sum of squares 1583
underlining 975, 977, 997, 999
UNDO_POLICY= option

PROC SQL statement 1124
UNIFORM option

PROC PLOT statement 731
PROC TIMEPLOT statement 1368

UNINSTALL= option
PROC REGISTRY statement 929

union joins 1171



Index 1699

UNION operator 1179
UNIQUE keyword 1129
UNIQUE option

CREATE INDEX statement
(DATASETS) 364

UNIT= argument, PROC FSLIST statement 628
UNIT= option

PROC PRINTTO statement 882
univariate analysis

for multiple variables 1543
UNIVARIATE procedure 1443

analysis variables 1510, 1560
BY statement 1451, 1484
CLASS statement 1452
classification levels 1452
computer resources 1516
concepts 1511
confidence limits 1517
data distribution 1555
density curves 1561
examples 1543
extreme values 1473, 1546
fitted continuous distributions 1530
FREQ statement 1455
goodness-of-fit tests 1520
high-resolution graphics 1514
HISTOGRAM statement 1455
histograms 1541, 1546, 1568
ID statement 1473
INSET statement 1474
keywords 1474, 1482
line printer plots 1512
missing values 1453, 1540
mode calculation 1530
normal probability plots 1513, 1566
ODS table names 1541
OUTHISTOGRAM= data set 1543
output data set 1482, 1542, 1560
OUTPUT statement 1482, 1510
overview 1436
percentiles 1483, 1485, 1528, 15
probability plots 1485, 1514, 1515, 15
PROBPLOT statement 1485
PROC UNIVARIATE statement 1444
QQPLOT statement 1497
quantile-quantile plots 1497, 1514, 1515, 15
results 1540
robust estimators 1525, 1549
rounding 1511
sign test 1519, 1552
statistical computations 1517
summary statistics 1474
syntax 1443
task tables 1443, 1444, 1455, 14
tests for location 1518
VAR statement 1510
WEIGHT statement 1510

universe 1586
UPCASE option

INVALUE statement (FORMAT) 448
PROC REGISTRY statement 929

UPDATE statement
SQL procedure 1153

UPDATECENTILES= option
CREATE INDEX statement

(DATASETS) 364

INDEX CENTILES statement
(DATASETS) 363

UPPER function (SQL) 1197
UPPER= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

USER data library 17
USER literal 1183
USER_VAR option

AUDIT statement (DATASETS) 341
USESASHELP option

PROC PRTDEF statement 894
PROC REGISTRY statement 929

USESSASHELP option
PROC PRTEXP statement 906

USS keyword 1583
utility procedures 4, 8

V
V5FMT option

TABLES statement (FREQ) 539
VALIDATE statement

SQL procedure 1154
value formats

multilabel 693
VALUE option

PROC OPTIONS statement 717
value-range-sets 464
VALUE statement

FORMAT procedure 459
VAR keyword 1583
VAR statement

CALENDAR procedure 96
COMPARE procedure 223
CORR procedure 275
MEANS procedure 673
PRINT procedure 833
RANK procedure 915
STANDARD procedure 1249
SUMMARY procedure 1259
TABULATE procedure 1289
TRANSPOSE procedure 1395
UNIVARIATE procedure 1510

VARDEF= option
PROC CORR statement 272
PROC MEANS statement 659
PROC REPORT statement 972
PROC STANDARD statement 1247
PROC TABULATE statement 1274
PROC UNIVARIATE statement 1449

variability 1592
variable formats 228
variables 1115

See also columns
associating informats/formats with 465
attributes of 366
class variables 1276
comparing 209, 243, 244, 246
formatted values 25
in reports 945
labels of 366
matching 210
modifying, within a data set 326
nested 1265
plotting over time intervals 1365

printing values of 1370
renaming 371
shortcuts for lists of variable names 24
standardizing 1243
symbol variables 1370
transposing into observations 1387

variance 1583, 1593
variances 272
VARNUM option

CONTENTS statement (DATASETS) 347
VAXIS= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

VAXIS= option, PLOT statement (PLOT) 743
VAXISLABEL= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

VBAR statement
CHART procedure 177

VERIFY option
PROC DBCSTAB statement 408

vertical bar charts 177
subdividing bars 187

VEXPAND option, PLOT statement
(PLOT) 743

view definitions 1137
views 1115

See also PROC SQL views
DATA step views 1115
in-line 1148, 1205, 1230
SAS/ACCESS views 1115, 1203
SAS data views 1115, 1199
SASHELP views 1199, 1200

VMINOR= option
HISTOGRAM statement (UNIVARI-

ATE) 1471
PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

VOFFSET= option
HISTOGRAM statement (UNIVARI-

ATE) 1471
VPERCENT= option, PROC PLOT state-

ment 731
VPOS= option, PLOT statement (PLOT) 743
VREF= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

VREF= option, PLOT statement (PLOT) 743
VREFCHAR= option, PLOT statement

(PLOT) 743
VREFLABELS= option

HISTOGRAM statement (UNIVARI-
ATE) 1471

PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

VREFLABPOS= option
HISTOGRAM statement (UNIVARI-

ATE) 1472
PROBPLOT statement (UNIVARIATE) 1495
QQPLOT statement (UNIVARIATE) 1508

VREVERSE option, PLOT statement
(PLOT) 744



1700 Index

VSCALE= option

HISTOGRAM statement (UNIVARI-
ATE) 1472

VSPACE= option, PLOT statement (PLOT) 744

VTOH= option, PROC PLOT statement 731

VZERO option, PLOT statement (PLOT) 744

W
W= option

HISTOGRAM statement (UNIVARI-
ATE) 1472

PROBPLOT statement (UNIVARIATE) 1496

QQPLOT statement (UNIVARIATE) 1508

WARNING option

PROC COMPARE statement 220

WAXIS= option

HISTOGRAM statement (UNIVARI-
ATE) 1472

PROBPLOT statement (UNIVARIATE) 1496

QQPLOT statement (UNIVARIATE) 1508

WAYS option

OUTPUT statement (MEANS) 672

WAYS statement

MEANS procedure 674

WBARLINE= option

HISTOGRAM statement (UNIVARI-
ATE) 1472

WBUILD macro 806

WEEKDAYS option

PROC CALENDAR statement 86

Weibull distribution 1534

three-parameter 1538

two-parameter 1538

WEIBULL option

HISTOGRAM statement (UNIVARI-
ATE) 1472

PROBPLOT statement (UNIVARIATE) 1496

QQPLOT statement (UNIVARIATE) 1508

WEIBULL2 option

PROBPLOT statement (UNIVARIATE) 1496

QQPLOT statement (UNIVARIATE) 1509

WEIGHT= option

DEFINE statement (REPORT) 993

VAR statement (MEANS) 673

VAR statement (TABULATE) 1290

WEIGHT statement 53, 59

calculating weighted statistics 60

CORR procedure 275

example 60

FREQ procedure 540

MEANS procedure 675

procedures supporting 59

REPORT procedure 1000

STANDARD procedure 1249

TABULATE procedure 1291

UNIVARIATE procedure 1510

weight values 963, 1268, 1446

weighted kappa coefficient 571

weighted quantiles 1529

weighted statistics 60

weights 1586

weights for analysis variables 59

WGDB= statement

EXPORT procedure 433

IMPORT procedure 641

WGRID= option

HISTOGRAM statement (UNIVARI-
ATE) 1473

WHERE ALSO window, REPORT proce-
dure 1024

WHERE clause, SQL procedure 1149

WHERE statement 54, 64

example 64

procedures supporting 64

WHERE window, REPORT procedure 1023

WIDTH= option
CHART procedure 183
DEFINE statement (REPORT) 993
PROC FORMS statement 500
PROC PRINT statement 828

Wilcoxon signed rank test 1518, 1519
windows

associating with menus 810
WINDOWS option

PROC REPORT statement 973
Winsorized means 1450, 1525
WINSORIZED= option

PROC UNIVARIATE statement 1450
WITH statement

COMPARE procedure 224
CORR procedure 276

WORKDATA= option
PROC CALENDAR statement 86

workdays data set 86, 105, 106
WRAP option

PROC REPORT statement 973
WRITE= option

MODIFY statement (DATASETS) 369

X
XML files 851
XML output 38

Z
zero weights 541
ZEROS option

WEIGHT statement (FREQ) 541
ZETA= option

HISTOGRAM statement (UNIVARI-
ATE) 1473

PROBPLOT statement (UNIVARIATE) 1496
QQPLOT statement (UNIVARIATE) 1509



Your Turn

If you have comments or suggestions about Base SAS ® 9 Procedures Guide, please
send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

Send suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com




